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In this paper, we develop a modified gradient based algorithm for solving matrix equations 𝐴𝑋𝐵 + 𝐶𝑋𝑇𝐷 = 𝐹. Different from the
gradient based method introduced by Xie et al., 2010, the information generated in the first half-iterative step is fully exploited and
used to construct the approximate solution.Theoretical analysis shows that the new method converges under certain assumptions.
Numerical results are given to verify the efficiency of the new method.

1. Introduction

Consider a linear matrix equation of the following form:

𝐴𝑋𝐵 + 𝐶𝑋
𝑇
𝐷 = 𝐹, (1)

where 𝐴 ∈ R𝑟×𝑚, 𝐵 ∈ R𝑛×𝑠, 𝐶 ∈ R𝑟×𝑛, 𝐷 ∈ R𝑚×𝑠, and
𝐹 ∈ R𝑟×𝑠 are the given constant matrices and 𝑋 ∈ R𝑚×𝑛 is
the unknownmatrix to be solved. A Sylvester equation𝐴𝑋+
𝑋
𝑇
𝐵 = 𝐹 is the special case of (1) with 𝑟 = 𝑠 = 𝑛 and 𝐵 = 𝐶 =

𝐼
𝑛
, the notation 𝐼

𝑛
is the identity matrix of 𝑛 × 𝑛. Such kind of

problems frequently arise from many areas of applications in
control and system theory [1], stability of linear systems [2],
analysis of bilinear systems [3], power systems [4], signal and
image processing [5], and so forth.

The exact solutions ofmatrix equations, such as Lyapunov
and Sylvester matrix equations, can be obtained from matrix
inversion by using the Kronecker product. The drawback of
this approach is that considerable computational costs and
storage requirements are needed, so that this approach is only
applicable for small sized Sylvester equations. Some direct
methods have also been proposed in [6–9] which are based
on the idea of transforming the coefficientmatrix into a Schur
or Hessenberg form, by which the original equation can be
solved by a backward substitution.

In the numerical linear community, iterative methods are
becoming more and more popular. Several iterative schemes

for Sylvester equations have been proposed; see, for example,
[10–15]. Recently, some efficient gradient based and least
squares based iterative algorithms for solving generalized
Sylvester equations and coupled (general coupled) Sylvester
equations have been presented [16–28]. The basic idea of
these approaches is based on a hierarchical identification
principle [16–18], which regards the unknown matrix as the
system parameter matrix to be identified and then constructs
a recursive formula to approximate the unknown solution.
Particularly, for general linear matrix equations of form (1), it
is illustrated in [3, 4] that the unknownmatrix to be identified
can be computed by a gradient based iterative algorithm.The
convergence properties of the methods are also investigated
in [3]. In this paper, a modified gradient based iterative
algorithm is proposed for solving linear matrix equations of
form (1). The information generated in the first half-iterative
step is fully exploited and used to construct the approximate
solution by themodifiedmethod.The convergence condition
of the method is analyzed.The numerical performance of the
method is compared with the algorithms in [3, 4]. Numerical
results show that the new method is efficient and robust.

The paper is organized as follows. In Section 2, the
gradient based iterative method is recalled, and the modi-
fied gradient based method is introduced and analyzed in
Section 3. In Section 4, performance of themodified gradient
based method is compared with the original one. Finally, we
conclude the paper in Section 5.
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2. A Brief Review of the Gradient
Based Iterative Method

We firstly recall an iterative method proposed by Xie et al. [3]
for solving (1). The basic idea is regarding (1) as two linear
matrix equations as follows:

𝐴𝑋𝐵 = 𝐹 − 𝐶𝑋
𝑇
𝐷, 𝐶𝑋

𝑇
𝐷 = 𝐹 − 𝐴𝑋𝐵. (2)

Then, define two recursive sequences as follows:

𝑋
(1)

𝑘
= 𝑋
𝑘−1
+ 𝜇𝐴
𝑇
(𝐹 − 𝐴𝑋

𝑘−1
𝐵 − 𝐶𝑋

𝑇

𝑘−1
𝐷)𝐵
𝑇
, (3)

𝑋
(2)

𝑘
= 𝑋
𝑘−1
+ 𝜇𝐷(𝐹 − 𝐴𝑋

𝑘−1
𝐵 − 𝐶𝑋

𝑇

𝑘−1
𝐷)
𝑇

𝐶, (4)

where 𝜇 is the iterative step size.The above procedures can be
regarded as two separate iterative procedures for solving two
matrix equations in (3).

With 𝑋(1)
𝑘

and 𝑋(2)
𝑘

at hand, then the 𝑘th approximate
solution 𝑋

𝑘
can be defined by taking the average of two

approximate solutions, that is,

𝑋
𝑘
=
𝑋
(1)

𝑘
+ 𝑋
(2)

𝑘

2
. (5)

By selecting an appropriate initial approximate solution 𝑋
0
,

and using 𝑋
𝑘−1

to substitute 𝑋(1)
𝑘−1

in (4) and 𝑋(2)
𝑘−1

in (5),
then the above (4)–(6) constitute the gradient based iterative
method proposed in [3]. It is shown in [3] that the gradient
based iterative algorithm converges as long as

0 < 𝜇

≤
2

𝜆max (𝐴𝐴
𝑇) 𝜆max (𝐵

𝑇𝐵) + 𝜆max (𝐶𝐶
𝑇) 𝜆max (𝐷

𝑇)𝐷
,

(6)

where 𝜆max(𝐴𝐴
𝑇
) is the largest eigenvalue of 𝐴𝐴𝑇.

According to lots of numerical experiments, GBI algo-
rithm is computationally efficient. However, we observe that
the GBI algorithm has some limitations. The convergent rate
is slow and the stagnation will happen for ill-conditioned
problem. Also, in [3], the authors pointed out that how to
choose a best convergence factor is a subject to be studied
and deserves further research. In this paper, we present the
optimal convergence factor explicitly, and then propose a
modified algorithm for solving the linear matrix equations
(1).

3. A Modified Gradient Based
Iterative Algorithm

The above GBI process can be accomplished by the following
algorithm.

Algorithm 1 (see [3]). The gradient based iterative algorithm
(GBI algorithm).

(1) Give two initial approximate solutions𝑋(1)
0

and𝑋(2)
0

(2) for 𝑘 = 1, 2, . . ., until converges

(3) 𝑋
𝑘−1
= (𝑋
(1)

𝑘−1
+ 𝑋
(2)

𝑘−1
)/2

(4) 𝑋(1)
𝑘
= 𝑋
𝑘−1
+ 𝜇𝐴
𝑇
(𝐹 − 𝐴𝑋

𝑘−1
𝐵 − 𝐶𝑋

𝑇

𝑘−1
𝐷)𝐵
𝑇

(5) 𝑋(2)
𝑘
= 𝑋
𝑘−1
+ 𝜇𝐷(𝐹 − 𝐴𝑋

𝑘−1
𝐵 − 𝐶𝑋

𝑇

𝑘−1
𝐷)
𝑇

𝐶

(6) end.

In the step of computing 𝑋(2)
𝑘
, the last approximate

solution𝑋(1)
𝑘

has been computed.Hence,we canuse the infor-
mation of𝑋(1)

𝑘
to update the𝑋

𝑘−1
and present a modification

of GBI algorithm.

Algorithm 2. Themodified gradient based iterative algorithm
(MGBI algorithm).

(1) Give two initial approximate solutions𝑋(1)
0

and𝑋(2)
0

(2) for 𝑘 = 1, 2, . . ., until converges

(3) 𝑋
𝑘−1
= (𝑋
(1)

𝑘−1
+ 𝑋
(2)

𝑘−1
)/2

(4) 𝑋(1)
𝑘
= 𝑋
𝑘−1
+ 𝜇𝐴
𝑇
(𝐹 − 𝐴𝑋

𝑘−1
𝐵 − 𝐶𝑋

𝑇

𝑘−1
𝐷)𝐵
𝑇

(5) 𝑋
𝑘−1
= (𝑋
(1)

𝑘
+ 𝑋
(2)

𝑘−1
)/2

(6) 𝑋(2)
𝑘
= 𝑋
𝑘−1
+ 𝜇𝐷(𝐹 − 𝐴𝑋

𝑘−1
𝐵 − 𝐶𝑋

𝑇

𝑘−1
𝐷)
𝑇

𝐶

(7) end.

Let 𝐵 ∈ R𝑛×𝑠, 𝐷 = [𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑠
], 𝑑
𝑖
∈ R𝑚, 𝑋 =

[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
], vec(𝑋) = [𝑥𝑇

1
, . . . , 𝑥

𝑇

𝑛
]
𝑇, and

𝑆 = 𝐵
𝑇
⊗ 𝐴 +

[
[
[
[
[
[

[

𝐶 ⊗ 𝑑
𝑇

1

𝐶 ⊗ 𝑑
𝑇

2

...
𝐶 ⊗ 𝑑

𝑇

𝑠

]
]
]
]
]
]

]

∈R
𝑟𝑠×𝑚𝑛

. (7)

Lemma 3 (see [3]). The Sylvester equation given by (1) has a
unique solution if and only if rank 𝑆, vec(𝐹) = rank[𝑆] = 𝑚𝑛,
in this case, the unique solution is given by

vec (𝑋) = (𝑆𝑇𝑆)
−1

𝑆
𝑇 vec (𝐹) . (8)

The corresponding homogeneous equation 𝐴𝑋𝐵 + 𝐶𝑋𝑇𝐷 = 0
has a unique zero solution𝑋 = 0.

The following result discusses the convergence conditions
of the Algorithm 2.

Theorem4. If the linearmatrix equation (1) has a unique solu-
tion 𝑋 and

0 < 𝜇

< min{ 2

[𝜆max (𝐴𝐴
𝑇) 𝜆max (𝐵

𝑇𝐵)]
,

2

[𝜆max (𝐶𝐶
𝑇) 𝜆max (𝐷

𝑇𝐷)]
} ,

(9)
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then the iterative sequence 𝑋
𝑘
generated by Algorithm 2

converges to 𝑋; that is, lim
𝑘→∞

𝑋
𝑘
= 𝑋; or the error 𝐸

𝑘
=

𝑋
𝑘
− 𝑋 converges to zero for any initial value𝑋

0
.

Proof. In the following discussions, we always assume that the
Frobenius matrix norm is used. For the clarity of proof, we
introduce another variable 𝑋

𝑘−1
instead of 𝑋

𝑘−1
in the fifth

iteration. Define the following error matrices:

𝐸
𝑘
= 𝑋
𝑘
− 𝑋, 𝐸

(1)

𝑘
= 𝑋
(1)

𝑘
− 𝑋,

𝐸
(2)

𝑘
= 𝑋
(2)

𝑘
− 𝑋, 𝐸

𝑘
= 𝑋
𝑘
− 𝑋,

𝜉
𝑘
= 𝐴𝐸
𝑘−1
𝐵, 𝜂

𝑘
= 𝐶𝐸
𝑇

𝑘−1
𝐷,

𝛿
𝑘
= 𝐴𝐸
𝑘−1
𝐵, 𝜁

𝑘
= 𝐶𝐸
𝑇

𝑘−1
𝐷.

(10)

By using (1) and (10), the proof of the following equalities is
trivial:

𝐸
(1)

𝑘
= 𝐸
𝑘−1
+ 𝜇𝐴
𝑇
(−𝜉
𝑘
− 𝜂
𝑘
) 𝐵
𝑇
,

𝐸
(2)

𝑘
= 𝐸
𝑘−1
+ 𝜇𝐷 (−𝛿

𝑇

𝑘
− 𝜁
𝑇

𝑘
) 𝐶.

(11)

Taking the Frobenius normof both sides of (11), it follows that

󵄩󵄩󵄩󵄩󵄩
𝐸
(1)

𝑘

󵄩󵄩󵄩󵄩󵄩

2

= tr [(𝐸(1)
𝑘
)
𝑇

𝐸
(1)

𝑘
]

=
󵄩󵄩󵄩󵄩𝐸𝑘−1

󵄩󵄩󵄩󵄩

2
+ 2𝜇 tr {(𝐸

𝑘−1
)
𝑇
𝐴
𝑇
[−𝜉
𝑘
− 𝜂
𝑘
] 𝐵
𝑇
}

+ 𝜇
2󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
[−𝜉
𝑘
− 𝜂
𝑘
] 𝐵
𝑇󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝐸𝑘−1

󵄩󵄩󵄩󵄩

2
+ 2𝜇 tr {𝜉𝑇

𝑘
[−𝜉
𝑘
− 𝜂
𝑘
]}

+ 𝜇
2
𝜆max (𝐴𝐴

𝑇
) 𝜆max (𝐵

𝑇
𝐵)
󵄩󵄩󵄩󵄩𝜉𝑘 + 𝜂𝑘

󵄩󵄩󵄩󵄩

2
,

󵄩󵄩󵄩󵄩󵄩
𝐸
(2)

𝑘

󵄩󵄩󵄩󵄩󵄩

2

= tr [(𝐸(2)
𝑘
)
𝑇

𝐸
2

𝑘
]

≤
󵄩󵄩󵄩󵄩󵄩
𝐸
𝑘−1

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜇 tr {[−𝛿𝑇
𝑘
− 𝜁
𝑇

𝑘
] 𝜁
𝑘
}

+ 𝜇
2
𝜆max (𝐶𝐶

𝑇
) 𝜆max (𝐷

𝑇
𝐷)
󵄩󵄩󵄩󵄩𝛿𝑘 + 𝜁𝑘

󵄩󵄩󵄩󵄩

2
.

(12)

From 𝐸
𝑘
= [𝐸
(1)

𝑘
+ 𝐸
(2)

𝑘
]/2, we have

󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩

2
≤

[
󵄩󵄩󵄩󵄩󵄩
𝐸
(1)

𝑘

󵄩󵄩󵄩󵄩󵄩

2

+ ‖
󵄩󵄩󵄩󵄩󵄩
𝐸
(1)

𝑘

󵄩󵄩󵄩󵄩󵄩

2

]

2

≤

󵄩󵄩󵄩󵄩𝐸𝑘−1
󵄩󵄩󵄩󵄩

2

2
+ 𝜇 tr {𝜉𝑇

𝑘
[−𝜉
𝑘
− 𝜂
𝑘
]}

+
𝜇
2

2
𝜆max (𝐴𝐴

𝑇
) 𝜆max (𝐵

𝑇
𝐵)
󵄩󵄩󵄩󵄩𝜉𝑘 + 𝜂𝑘

󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑘−1

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝜇 tr {[−𝛿𝑇

𝑘
− 𝜁
𝑇

𝑘
] 𝜁
𝑘
}

+
𝜇
2

2
𝜆max (𝐶𝐶

𝑇
) 𝜆max (𝐷

𝑇
𝐷)
󵄩󵄩󵄩󵄩𝛿𝑘 + 𝜁𝑘

󵄩󵄩󵄩󵄩

2

≤

󵄩󵄩󵄩󵄩𝐸𝑘−1
󵄩󵄩󵄩󵄩

2

2

− 𝜇 [1 −
𝜇

2
𝜆max (𝐴𝐴

𝑇
) 𝜆max (𝐵

𝑇
𝐵)]

󵄩󵄩󵄩󵄩𝜉𝑘 + 𝜂𝑘
󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑘−1

󵄩󵄩󵄩󵄩󵄩

2

2

− 𝜇 [1 −
𝜇

2
𝜆max (𝐶𝐶

𝑇
) 𝜆max (𝐷

𝑇
𝐷)]

󵄩󵄩󵄩󵄩𝛿𝑘 + 𝜁𝑘
󵄩󵄩󵄩󵄩

2

≤

󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩

2

2𝑘

− 𝜇 [1 −
𝜇

2
𝜆max (𝐴𝐴

𝑇
) 𝜆max (𝐵

𝑇
𝐵)]

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩𝜉𝑖 + 𝜂𝑖
󵄩󵄩󵄩󵄩

2

+

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑘−𝑖

󵄩󵄩󵄩󵄩󵄩

2

2𝑖

− 𝜇 [1 −
𝜇

2
𝜆max (𝐶𝐶

𝑇
) 𝜆max (𝐷

𝑇
𝐷)]

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩𝛿𝑖 + 𝜁𝑖
󵄩󵄩󵄩󵄩

2
.

(13)

Obviously, ∑𝑘
𝑖=1
(‖𝐸
𝑘−𝑖
‖
2

/2
𝑖
) < ∞. In fact, the iterative

sequence 𝑋
𝑘
, 𝑘 = 0, 1, . . . generated by Algorithm 2 can

also be viewed as the sequence generated by the double-
side iteration in [3], so lim

𝑘→∞
𝑋
𝑘
= 0. As 0 < 𝜇 <

min{2/[𝜆max(𝐴𝐴
𝑇
)𝜆max(𝐵

𝑇
𝐵)], 2/[𝜆max(𝐶𝐶

𝑇
)𝜆max(𝐷

𝑇
𝐷)]},

we have
∞

∑

𝑖=1

󵄩󵄩󵄩󵄩𝜉𝑖 + 𝜂𝑖
󵄩󵄩󵄩󵄩

2
< ∞,

∞

∑

𝑖=1

󵄩󵄩󵄩󵄩𝛿𝑖 + 𝜁𝑖
󵄩󵄩󵄩󵄩

2
< ∞. (14)

It follows that

𝜉
𝑘
+ 𝜂
𝑘
󳨀→ 0, as 𝑘 󳨀→ ∞, (15)

or

𝐴𝐸
𝑘−1
𝐵 + 𝐶𝐸

𝑇

𝑘−1
𝐷 󳨀→ 0, as 𝑘 󳨀→ ∞. (16)

According to Lemma 3, we have 𝐸
𝑘−1

→ 0 as 𝑘 → ∞.

4. Numerical Experiments

Example 5. Consider the matrix equation𝐴𝑋𝐵+𝐶𝑋𝑇𝐷 = 𝐹
with

𝐴 = (
2 5

4 −7
) , 𝐵 = (

6 −3

1 2
) , 𝐶 = (

1 2

−1 3
) ,

𝐷 = (
4 3

2 1
) , 𝐹 = (

317 9

41 27
) .

(17)
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Figure 1: Comparison of convergence curves.

From (8), the exact solution is

𝑋 = (
7 5

4 3
) . (18)

The coefficient matrices used in this example are
taken from [3]. Taking 𝑋

0
= 10

−6
𝐼
2
, we apply the GBI

algorithm and MGBI algorithm to compute 𝑋
𝑘
; the

convergence factor 𝜇 is set to be 2/[𝜆max(𝐴𝐴
𝑇
)𝜆max(𝐵𝐵

𝑇
) +

𝜆max(𝐶𝐶
𝑇
)𝜆max(𝐷𝐷

𝑇
)] = 1/1983.1 in GBI algorithm and to

be min{2/[𝜆max(𝐴𝐴
𝑇
)𝜆max(𝐵𝐵

𝑇
)], 2/[𝜆max(𝐶𝐶

𝑇
)𝜆max(𝐷

𝐷
𝑇
)]} = 1/1787.6 in MGBI algorithm. The relative error

𝛿 := ‖𝑋
𝑘
− 𝑋‖/‖𝑋‖ is recorded and plotted in Figure 1 by

MATLAB command semilogy. From the figure, we can see
that the MGBI algorithm converges faster than the GBI
algorithm.

Remark. The choice of the convergence factor 𝜇 is an
important issue. We experimentally study its influence on
the convergence. The effect of changing of the convergence
factor 𝜇 for MGBI algorithms in Example ?? is illustrated in
Figure 2. We see that

𝜇 = min{ 2

[𝜆max (𝐴𝐴
𝑇) 𝜆max (𝐵𝐵

𝑇)]
,

2

[𝜆max (𝐶𝐶
𝑇) 𝜆max (𝐷𝐷

𝑇)]
}

=
1

1787.6

(19)

is a better convergence factor. However, the convergence
factor is problem dependent, so seeking a best convergence
factor is still a difficult task.
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Example 6. Suppose that 𝐴𝑋 + 𝑋𝑇𝐵 = 𝐹, where

𝐴 = (
1 1

2 −1
) , 𝐵 = (

1 −1

1 1
) , 𝐹 = (

8 8

5 2
) . (20)

Then, the solution of𝑋 from (8) is

𝑋 = (
1 2

3 4
) . (21)

The coefficient matrices used in this example are taken from
[4]. Taking 𝑋

0
= 10
−6
𝐼
2
, we apply the GBI algorithm and

MGBI algorithm to compute 𝑋
𝑘
, the convergence factor 𝜇 is

set to be 2/[𝜆max(𝐴𝐴
𝑇
)+𝜆max(𝐵𝐵

𝑇
)] = 0.27 in GBI algorithm
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and to be min{2/𝜆max(𝐴𝐴
𝑇
), 2/𝜆max(𝐵𝐵

𝑇
)} = 0.377 in MGBI

algorithm. The relative error 𝛿 := ‖𝑋
𝑘
− 𝑋‖/‖𝑋‖ is recorded

in Figure 3. From the figure, we can also see that the MGBI
algorithm converges faster than the GBI algorithm.

The effect of changing of the convergence factor 𝜇 for
MGBI algorithms in Example 6 is illustrated in Figure 4.

5. Conclusions

In this paper, a modified gradient based iteration (MGBI)
method is proposed for linear matrix equation. The conver-
gence of MGBI is analyzed. The choice of parameter 𝜇 is an
important issue, and its influence is experimentally studied.
The principle idea of this paper can be extended to the more
general setting like generalized (coupled) Sylvester matrix
equations.
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