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This study provides a dynamic model and analyzes its process that may plunge the business ecosystem into ToC (the Tragedy of
the Commons). When developing the model, we have in mind some industries where the marketing competition to secure a large
installed base is intense. The social commerce industry is a representative example of this type of industries, but the scope of this
study is not limited to the industry. We first introduce a previous study focusing on the static Nash equilibrium, and then present
an extended version of the basic model in a dynamic perspective. According to our analyses on the dynamic equilibria together
with their stability, there may be a unique interior equilibrium, but it is highly likely unstable. In addition, possible (near) boundary
equilibria are also unstable for a wide range of parameter values. We also conduct some numerical experiments and discover cycles
as solutions to some particular instances. Since those cycles contain the ToC traps, a policy measure or regulation may need to be
employed. Our approach and results will help to figure out a clue to escape from the ToC trap, thereby shedding new light on the
sustainable growth of the business ecosystem, which is prone to excessive marketing competition.

1. Introduction

As the mobile services and SNS (social network service) are
becoming the most common and popular media to access
and use the Internet, they are rapidly replacing PCs and other
types of information devices dedicated to serve a specific pur-
pose. Information flows through socialmedia keep increasing
and will change the way of organizing and leading businesses
and industries. For example, marketing practice has entered
a new horizon, where mobile social media plays a central
role in firms’ marketing campaign and reduces the entry
barrier by expanding the spheres of activities and lowering
the access costs. One can find representative cases in the
social commerce industry which utilizes social media as a
commercial platform. It is not surprising to discover a strong
incentive to construct a business model with Facebook and
Twitter, each of which retains more than 1 billion and 5,000
million users over the globe, respectively.

Despite their tremendous success in creating new service
markets and expanding the business areas, SNS platforms and
other e-commerce providers based on socialmedia facemany
challenges in practice. In particular, the social commerce

providers have experienced rise and fall over a short period of
time right after their beginning (MacMillan [1–3], Reibstein
[4], Webster [5], and Wheeler [6]). Indeed, the number of
providers is decreasing in many countries. Groupon, the first
global social commerce company, went through hardship in
its IPO (initial public offering) and suffered sharp drops of its
stock price right after the IPO.

These problems and challenges are not found only in
the social commerce area. In effect, when innovators and
pioneers plan to monetize eyeballs, they are likely to be
exposed to the risk that arises from those problems. In
that sense, the issue may be generally embedded or innate
property of many business areas, which directly or indirectly
depend on the installed base (Kumar and Rajan [7] and Patel
[8]). Even for Facebook and Twitter, for example, the dream
of advertising revenue has yet to be substantially realized, and
many potential investors are still stuck at the thinking that
if these providers could secure a large number of users, they
would be able to sell new products and services to their users
in the future (Cusumano [9], Kruschwitz [10], and Leber
[11]).
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If this is the case, the entire industry is highly likely
to plunge into a marketing competition, where each player
competes to expand its prospective installed base by rein-
forcing marketing activities in a broad sense. SNS, social
commerce, online/mobile games, telecom services, andmany
ICT business areas experience and suffer from marketing
wars fighting for customers and users.

One of the major backgrounds of the marketing compe-
tition comes from the cost structure of the corresponding
industry. For example, a low entry barrier as in the case of
social commerce (Anderson et al. [12], Reibstein [4],Wheeler
[6], and Urstadt [13]) makes it possible for a great number
of potential players to enter the industry once they observe
a positive gain above the normal profits. Seeking the first
mover’s advantage may be another driver of the marketing
war. In such a case, relatively few competing providers spend
lots of cash on advertising activities. Telecom operators and
pharmaceutical companies are the best example of this case.
We will call this type of industries the “marketing-intensive
industry.”

However, it is not easy to find analytical studies about
the marketing competition of this kind. One major reason
for the meager literature on this inherent weakness of the
marketing-intensive industries can be found in a tradition
of economic studies. That is, firms and providers are typ-
ically assumed to seek for the profit, not for the market
share. But, recent changes occurring across the broad range
of industries defy this tradition. One of them is fusion
or convergence across multiple industries, which conceals
the exact financial gain of a company participating in a
business ecosystem built upon multiple industries. Another
big change is referred to as “servicification,” which empha-
sizes the trend that services are increasingly essential as
both inputs and outputs in many industries including even
traditional manufacturing areas such as automobile and
consumer electronics (Lodefalk [14], Schmitt and Hatfield
[15], and Stephen and Toubia [16]). The ICT industries,
particularly social media services, experience both trends,
thereby exposing themselves to fierce competition for market
share.

This study suggests a modeling framework for and con-
ducts analysis of the marketing-intensive industries vulner-
able to the risk of collapse due to excessive competition to
expand the installed base. Such industries are prone to getting
mired in marketing wars due to inherent properties in the
business model itself (Though we started this section with
mentioning the socialmedia industry as one of representative
instances that fit our model assumptions, the application
scope of our approach will not be confined to social media
and other ICT industries).We first develop a stylized business
model that captures the essential features of the competition
process. Our approach focuses on the relationship between
key decision issues such as marketing inputs and market
value. As more providers join the industry thanks to the low
entry barrier, they are inevitably faced with fierce compe-
tition. This may lead to sharp increase in the expenditure
related to marketing and advertising activities in a broad
sense. This type of competition may lead the industry away
from its optimal development path and, at worst, toward a

collapse of the entire business ecosystem as described in some
ICT business cases above.

Having such a case, the situation that we will deal with in
this study resembles ToC (the tragedy of the commons; Alroy
[17], Hardin [18], Greco and Floridi [19], and Knowledge at
Wharton [20]), where the user market (the commons in our
metaphor) is vulnerable to exploitation by providers’ aggres-
sive marketing to enhance their installed base. Thus, another
goal of this study should be to examine the possibilities and
conditions that ToCmay occur in such a business ecosystem.
In fact, oscillations and/or emergence of ToC are not a
special case but rather common in dynamic formulations.
They have been observed in many different circumstances, in
particular, with a structured population (Perc and Szolnoki
[21], Perc et al. [22], Santos et al. [23], Szolnoki and Perc
[24], Szolnoki and Perc [25], and Szolnoki and Perc [26]).
However, such a dynamic nature not unusual in natural
phenomenonmay also prevail over stable equilibria, particu-
larly in the business areas characterized by severe marketing
competition on the basis of a perfectly mixed population. If
it is true, we should examine the possibility of unintended
consequences of an excessive competition as it is likely to
impinge upon market maturity. For that purpose, we will
analyze the process that plunges the business ecosystem into
ToC and conduct some experiments in order to investigate
the effects of the parameters in our model. Our approach and
expected results will help to discover some clues to escape
from this kind of traps, thereby shedding new light on the
sustainable growth of themarketing-intensive industries such
as the social media businesses. We will also present some
policy implications that could be attained in the course of
implementation of our suggestions to alleviate the risk of
ToC.

In one of the previous researches on this subject, Kim
[27] presents static gamemodels that deal with homogeneous
as well as heterogeneous providers in the social commerce
industry. In this study, we will also build game models with
heterogeneous providers and derive explicit equilibria in a
dynamic setting. This study primarily takes the social media
industries into account but is not confined within a specific
industry as in Kim’s study [27]. In particular, the dynamics
adopted in our model will show sharp contrasts between
static and dynamic approaches in terms of the equilibria,
stability, and their resulting insights.

This paper is organized as follows. The next section
introduces the basic model and static analysis. Section 3
provides our dynamic model and analysis and compares the
results with ones from the static case. In the next section,
we present some experiment outcomes together with their
lessons and policy implications. Our final section concludes
this study and suggests some future works.

2. Basic Model and Analysis

2.1. Basic Model. Let us suppose a player set composed of
𝑁 potential SC providers, where 𝑗 is employed as the index
for an individual (sometimes representative) SC provider. N
denotes the set of SC providers; that is, N = {1, . . . , 𝑁}.



Journal of Applied Mathematics 3

Among 𝑁 providers, some providers may not join the
market. The strategic decision variable of SC provider 𝑗 is
its marketing efforts 𝑒𝑗. Those who do not join the market
exercise 0 marketing efforts.

In our model, SC providers are assumed to be horizon-
tally differentiated according to their marketing capabilities,
which is the major factor characterizing the providers. We
employ 𝑞𝑗 to represent the overall marketing costs of provider
𝑗 and assume that 𝑞𝑗’s are inversely proportional to the char-
acteristic of marketing efficiency. Furthermore, the potential
providers in N are given their index in an ascending order
based on this attribute. Accordingly, the lower the index is, the
more efficient it is inmarketing; for example, the first provider
inN (i.e., 𝑗 = 1) bears the lowest marketing cost 𝑞1.

In each time period, the entire value of the SC market, 𝐺,
is determined by two factors. First, when all the providers in
a subset 𝑃 of N (i.e., 𝑃 ⊆ N) are active in the market, the
total marketing efforts 𝐸 (= ∑𝑗∈𝑃 𝑒𝑗) contribute to the market
value 𝐺 by stimulating consumers and boosting the market.
However, 𝐸 also exhibits a negative effect on 𝐺 since too
much or too little marketing efforts over- or underexploit the
market.Thus, a deviation from the optimal level of marketing
efforts in a certain situation may harm the market conditions
in the following period (refer to (1) below).

Second, the entire value of the SC market is also
affected by environmental factors such as consumer prefer-
ence change and technological development. We abbreviate
these environmental factors into 𝑀 as in (1), which will
be called “the market maturity factor.” However, 𝑀 will
not be assumed to be given exogenously as in Kim’s study
[27]. Instead, we will develop a dynamic model where 𝑀 is
endogenously determined based on the providers’ decisions
(refer to Section 3).

As 𝑀 and 𝐸 change from one period to another, 𝐺 also
experiences a series of changes. We incorporate the following
relationship between the market value and two major factors
explained above:

𝐺 = 𝐺 (𝐸 | 𝑀) = 𝑀 ⋅ 𝐸 ⋅ (2𝐾 − 𝐸) , (1)

where 𝐾 in (1) represents the optimal level of the total
marketing efforts 𝐸∗ embedded (but probably hidden) in the
SC industry. Accordingly, (1) implies that a total marketing
effort lower than𝐾 leaves a room for further expansion of the
market, while a total marketing efforts higher than 𝐾 incurs
an overheating and entails a contraction of the market in the
following periods.

The market value 𝐺 realized in the current period is
distributed over the active SC providers in the corresponding
period. We assume that the allocation of 𝐺 is proportional to
the marketing efforts 𝑒𝑗’s. Therefore, the share of the active
provider 𝑗, 𝑔𝑗, is determined by 𝐺(𝑒𝑗/𝐸) = 𝑀 ⋅ (2𝐾 − 𝐸) ⋅ 𝑒𝑗.
Then, the net benefit of the provider 𝑗, 𝑟𝑗, is as follows:

𝑟𝑗 = 𝑔𝑗 − 𝑞𝑗 ⋅ 𝑒𝑗 = {𝑀 (2𝐾 − 𝐸) − 𝑞𝑗} ⋅ 𝑒𝑗. (2)

Those who decide not to join the market (i.e., 𝑒𝑗 = 0) get 0
payoff. Others who participate in the market try to predict
the total marketing efforts 𝐸 and determine their marketing

efforts 𝑒𝑗’s, each of which maximizes the corresponding 𝑟𝑗.
Unfortunately, however, possible miss predictions result in
losses for some providers, that is, resulting 𝑟𝑗 < 0 for some
providers. In the next period, the providers who experienced
losses in the former period will leave the market or try to
minimize its loss. In our model, once a provider decides to
join the market at 𝑡, it cannot retreat at 𝑡. Therefore, when a
provider experiences a negative payoff, the provider chooses
the marketing level which actually minimizes its loss. Once
the number of active providers 𝑃(𝑡) = 𝑝 is determined,
one can show that providers’ optimal marketing efforts are
explicitly determined as in the following section.

2.2. Static Analysis. This section introduces Nash equilibria
of the static model based on the previous study of Kim [27].
Before presenting some key results in Kim’s study [27], let us
define some notions and terms for ease of explanation and
enhanced readability:
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where Θ𝑛 is (𝑛 × 𝑛) square matrix and 𝜇𝑛 is 𝑛-dimensional
column vector whose elements start with 𝑗 = 1 in the
increasing order. By the property of the symmetric matrix,
the inverse matrix of Θ𝑛, Θ

−1
𝑛 , is also symmetric and derived
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Proposition 1 (see Kim’s study [27]). For readability, one
omits 𝑡 in 𝑀(𝑡) and 𝑃(𝑡). Suppose that there are 𝑃(𝑡) = 𝑝

providers as in the increasing order of 𝑞𝑗’s. That is, 𝑝 providers
whose indices spread from 1 to 𝑝 in N now enter the market
at 𝑡. Let 𝑦(≤ 𝑝) denote the index of the provider with 𝑞𝑦 ≤
(2𝐾𝑀 + 𝑄(𝑝))/(𝑝 + 1) and 𝑞𝑦+1 > (2𝐾𝑀 + 𝑄(𝑝))/(𝑝 + 1).
Then, the marketing effort profile (𝑒1, . . . , 𝑒𝑦, 0, . . . , 0), where
𝑒𝑗’s are determined as follows, constitute a Nash equilibrium:

𝑒𝑗 = {Θ
−1
𝑦 ⋅ 𝜇𝑦}𝑗

= 2 (𝐾 −

𝑞𝑗

2𝑀
) −

2𝑝𝐾

𝑝 + 1
+

𝑄 (𝑝)

𝑀 (𝑝 + 1)
, (5)

where {x}𝑗 represents the 𝑗th element of the vector x.

Proof. Omitted (for proof,see Kim’s study [27]).
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Proposition 1 presents a Nash equilibrium of the basic
staticmodel. Note that there ismarginal provider represented
by 𝑦. Then, those who have lower index than 𝑦 earn positive
profits (i.e., 𝑟𝑗 > 0, for all 𝑗 ≤ 𝑦), while providers whose
indices are larger than 𝑦 do not join the industry, thereby
earning nothing (i.e., 𝑟𝑗 = 0, for all 𝑗 > 𝑦). The size of active
providers is a function of 𝑀(𝑡) and 𝑄(𝑝). Let us call 𝑦 in
Proposition 1 “the efficiency threshold” since 𝑦 sets the upper
bound on the number of active providers, each of which
maintains a positive payoff. FromProposition 1 above,we also
know that 𝐸 = ∑

𝑝

𝑗=1 𝑒𝑗 is described by the following equation:

𝐸 (𝑡) =
2𝑦𝐾

𝑦 + 1
−

𝑄 (𝑦)

(𝑦 + 1)𝑀 (𝑡)
=
2𝑦𝐾𝑀(𝑡) − 𝑄 (𝑦)

(𝑦 + 1)𝑀 (𝑡)
. (6)

When all the potential providers are homogeneous (i.e., 𝑞𝑗 =
𝑞, for all 𝑗), their strategies will be symmetric and result in a
symmetric Nash equilibrium as follows.

Corollary 2 (symmetric equilibrium with homogeneous
players). Let one considers the situationwhere all the providers
are homogeneous in the sense of 𝑞𝑗 = 𝑞, for all j ∈ N. Suppose
that the following inequality holds; that is, 2𝑀(𝑡)𝐾(𝑡) > 𝑞.
Then, at a symmetric equilibrium, all the potential providers
join the market and exercise the same marketing effort 𝑒
determined as follows:

𝑒𝑗 = 𝑒 =
2

𝑁 + 1
(𝐾 −

𝑞

2𝑀 (𝑡)
) ∀𝑗 ∈ N. (7)

Proof. Omitted (for proof, see Kim’s study [27]).

In the case of homogeneous players, we have much
simpler expressions for the equilibrium strategies as above.
First note that all the homogeneous players join themarket or
leave the market at the same time.Thus, 𝑦(𝑡) in Proposition 1
will be either 0 or𝑁, which establishes a key difference from
the case of heterogeneous players.With the same𝐾 and𝑀(𝑡),
the marketing effort of a heterogeneous active player (𝑒𝑗) will
be higher than that of a homogeneous player (𝑒) in general
(Of course, the marketing effort of a heterogeneous player
close to the marginal provider may be lower than 𝑒). The
total marketing efforts in the homogeneous case amount to
𝑁𝑒. Subsequently, if 𝑁𝑞 < 𝑄(𝑦), then the total marketing
efforts in the homogeneous case are larger than those in
the heterogeneous case. If they are not, however, one cannot
uniformly determine the size comparison; it depends on the
distribution of 𝑞𝑗’s.

3. Dynamic Model and Analysis

3.1. Dynamic Model. Now, we will extend the basic model
together with its context from a new dynamic perspective.
The analytical results above have been derived under the
assumption that a certain number of providers (𝑝 providers)
already exist in the industry and the market maturity factor
𝑀 is given and fixed. However, these two parameters (𝑝
and 𝑀) should also change in their turn after the agent
behaviors (here, e.g., the best efforts 𝑒𝑗’s in the Nash equilib-
rium) are determined. Our dynamic model will reflect these

interactions betweenparameters and endogenous variables in
the basic model. In particular, we incorporate the dynamics
described below.

First note that it is natural as well as practical to set up
the circumstances where the (potential) providers know only
the parameter values in the last period. If this is the case, then
the active providers try to predict the totalmarketing efforts𝐸
and adjust their marketing efforts 𝑒𝑗’s, which optimizes their
net benefits and results in nonnegative payoffs. However,
their expectations and decisions do not always succeed, and
some providers may receive negative payoffs at the end of
the corresponding period. Those who experience a negative
payoff in the current period will leave the industry in the
next period. On the other hand, all the active providers enjoy
positive payoffs at 𝑡 and some potential providers inactive at
𝑡 will try to join the market at 𝑡 + 1.

According to Proposition 1 with given 𝐾 and 𝑀(𝑡) at
𝑡, 𝑦 sets the maximum number of the active providers, each
of which earns nonnegative payoff from positive marketing
efforts. Though the relationship between 𝑦 and other param-
eters is implicitly determined, for a particular 𝑞𝑗 distribution
such as 𝑞𝑗 = ℎ⋅𝑗 (i.e.,marketing effort costs linearly increasing
with a positive constant ℎ), we can explicitly determine 𝑦 as a
function of𝑀(𝑡) and 𝑃(𝑡); for example, with the 𝑞𝑗 specified
above, 𝑄(𝑝) = (𝑝(𝑝 + 1)/2)ℎ and 𝑦 = ⌊(2𝐾𝑀/ℎ(𝑝 + 1)) +

(𝑝/2)⌋ = ⌊(4𝐾𝑀+ℎ𝑝(𝑝+1))/2ℎ(𝑝+1)⌋, where ⌊𝑥⌋ rounds 𝑥
down to the nearest integer. Furthermore, by pretending that
𝑦 is continuous rather thandiscrete, one can approximate𝑦(𝑡)
and, by plugging 𝑄(𝑝) into (6), one can approximate 𝐸(𝑡) as
follows:

𝑦 (𝑡) ≅
2𝐾𝑀(𝑡)

ℎ𝑃 (𝑡)
+
𝑃 (𝑡)

2
, (8a)

𝐸 (𝑡) ≅ 2𝐾 −
ℎ
2

4𝐾
{
𝑃 (𝑡)

𝑀 (𝑡)
}

2

. (8b)

We establish a set of dynamics driven by both the market
maturity factor𝑀(𝑡) and the number of active providers𝑃(𝑡).
That is, as a result of individual decisions of whether to join
the market or not, both 𝑀(𝑡) and 𝑃(𝑡) are endogenously
determined by the following systems of difference equations.
We employ a set of adaptive dynamics where 𝛼 and 𝛽

represent the weights associated with the current states of the
active players and themarketmaturity, respectively. Consider
𝑃 (𝑡 + 1) = {𝛼𝑃 (𝑡) + (1 − 𝛼) (𝑦 (𝑡) − 𝑃 (𝑡)) ∧ 𝑁} ∨ 0, (9a)

𝑀(𝑡 + 1) = {𝛽𝑀 (𝑡) + (1 − 𝛽) (𝐾 − 𝐸 (𝑡)) ∧ 𝑀max} ∨ 0,

(9b)
where 𝑥 ∧ 𝑦 = min{𝑥, 𝑦}, 𝑥 ∨ 𝑦 = max{𝑥, 𝑦}, and 𝑀max
represents the maximum level of𝑀(𝑡).

Plugging ((8a) and (8b)) into ((9a) and (9b)) and rear-
ranging the terms, we establish the systems of the following
dynamic equations:

𝑃 (𝑡 + 1) = {𝛼𝑃 (𝑡) + (1 − 𝛼) [
2𝐾𝑀(𝑡)

ℎ𝑃 (𝑡)
−
𝑃 (𝑡)

2
]

∧𝑁} ∨ 0,

(10a)
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𝑀(𝑡 + 1) = {𝛽𝑀(𝑡) + (1 − 𝛽)𝐾[(
ℎ𝑃 (𝑡)

2𝐾𝑀(𝑡)
)

2

− 1]

∧ 𝑀max} ∨ 0.

(10b)

Equation (10a) explains the changes in the number of active
providers. The size of active providers in the next period
𝑃(𝑡+1)will increase if the current𝑃(𝑡) is smaller than𝑦(𝑡), the
efficiency threshold (i.e., the maximum number of efficient
providers). On the other hand, 𝑃(𝑡 + 1) will decrease if the
current number of providers exceeds this threshold since
some providers (most likely the ones with low marketing
capabilities or high marketing costs) will experience a loss,
thereby leaving the industry next time. Lastly, the adaptive
dynamics are completed with 𝛼 as the associated weight.
Equation (10b) also follows the similar reasoning as in (10a).
It represents the adaptive adjustment process of 𝑀(𝑡) (with
𝛽 as its associated weight) when the current total marketing
level 𝐸(𝑡) fails to hit the optimal level of marketing efforts 𝐾.
If the totalmarketing efforts from the current active providers
exceed (in the case of excessive marketing), the market is
overexploited and𝑀(𝑡 + 1) decreases.

According to the systemdynamics described in ((10a) and
(10b)), a change in 𝑀(𝑡) affects the market value 𝐺(𝑡) (refer
to (1)), which in turn influences the gains of the providers.
As a result, some incumbent players exit or some new players
enter the industry in the next period, and eventually the total
marketing efforts are highly likely to vary. Thus, the possible
difference in the speeds of the adjustments may result in a
fluctuation in the number of providers, whichmay hinder the
system from settling down to a steady state in the long-run.
We will investigate this possibility together with the system
performance such as the deviation of the total marketing
efforts from the socially optimal level of the marketing.

3.2. Dynamic Analysis. Let us first define a positive constant
Φ ≡ √𝐾2 + (4/3)ℎ − 𝐾 to simplify the expressions hereafter.
Proposition 3 shows an interior fixed point from the system
dynamics. Proposition 4 provides the conditions that the
interior fixed point (if exists) is stable or unstable.

Proposition 3. Suppose that both 𝛼 and 𝛽 belong to (0, 1).The
following state (𝑃,𝑀) gives an interior fixed point of the system
dynamics in ((10a) and (10b)):

𝑀 =
Φ

2
, 𝑃 = √

2𝐾Φ

3ℎ
. (11)

Proof. The interior equilibrium comes from the solution of
the following simultaneous equation system:

𝑃 = 𝛼𝑃 + (1 − 𝛼) [
2𝐾𝑀

ℎ𝑃
−
𝑃

2
] ,

𝑀 = 𝛽𝑀 + (1 − 𝛽)𝐾[(
ℎ𝑃

2𝐾𝑀
)

2

− 1] .

(12)

By rearranging the two equations in terms of 𝑃 and𝑀, we get

3

2
𝑃
2
−
2𝐾

ℎ
𝑀 = 0, 𝑀

3
+ 𝐾𝑀

2
−
ℎ
2

4𝐾
𝑃
2
= 0. (13)

Plugging the first equation into the second and rearranging
the terms, we get

𝑀(𝑀
2
+ 𝐾𝑀 −

ℎ

3
) = 0. (14)

Thus, either 𝑀 = 0 or 𝑀 = Φ/2 provides the solution
to the equation above. However, the first solution does not
constitute an interior point (refer to Proposition 5). On the
other hand, the second solution is indeed positive (∵ Φ > 0)
and constitutes the interior equilibriumabove.𝑃 in (11) comes
from the relationship (3/2)𝑃2 = (2𝐾/ℎ)𝑀 above.

Proposition 4. Suppose that 9Φ4 − 6Φ
2
− 64ℎ

2
> 0 and

(16/15)ℎ < 𝐾
2. If 𝛼 < (5/3) − ((1 + 𝛽)Φ

2
/4ℎ(1 − 𝛽))

and 𝛽 < (20ℎ − 3Φ
2
)/(20ℎ + 3Φ

2
), then the fixed point in

Proposition 3 is unstable.

Proof. In this proof, we suppress the time index 𝑡 for
enhanced readability. We first consider linear approximation
of the dynamics around the interior equilibrium. Applying
the Taylor approximation to ((10a) and (10b)), we get the
following matrix that governs the dynamics around an
arbitrary point in the state space:

[
[

[

3𝛼 − 1

2
−
2𝐾 (1 − 𝛼)

ℎ
⋅
𝑀

𝑃2

2𝐾 (1 − 𝛼)

ℎ
⋅
1

𝑃

ℎ
2
(1 − 𝛽)

2𝐾
⋅
𝑃

𝑀2
𝛽 −

ℎ
2
(1 − 𝛽)

2𝐾
⋅
𝑃
2

𝑀3

]
]

]

. (15)

In particular, the matrix reduces to the following one around
the interior fixed point (𝑃,𝑀):

[
[
[
[

[

1 (1 − 𝛼)√
6𝐾

ℎΦ

(1 − 𝛽)√
1

3𝐾
⋅ (

2ℎ

Φ
)

3

𝛽 +
4ℎ (1 − 𝛽)

3𝐾Φ − 2ℎ

]
]
]
]

]

. (16)

Note that (3/2)Φ2 = 2ℎ − 3𝐾Φ. Then, the characteristic
equation of the matrix above comes as follows:

𝜆
2
+ (

8ℎ (1 − 𝛽)

3Φ2
− 1 − 𝛽)𝜆 + 𝛽

+
4ℎ (1 − 𝛽) (3𝛼 − 5)

3Φ2

= 𝜆
2
+ Θ𝜆 + Ω = 0,

(17)
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where Θ ≡ (8ℎ(1 − 𝛽)/3Φ
2
) − 1 − 𝛽 and Ω ≡ 𝛽 + (4ℎ(1 −

𝛽)(3𝛼 − 5)/3Φ
2
) denote two constants for simplification of

the following expressions. The condition that the equation
has two distinctive real roots 𝜆1 and 𝜆2 is Θ

2
> 4Ω, which

is summarized as below by a chain of arithmetic operations:

64ℎ
2
(1 − 𝛽)

2
+ 9Φ
4
(1 + 𝛽)

2

> 12Φ
2
{4ℎ (1 − 𝛽) (1 + 𝛽) + 𝛽}

+ 16ℎ (1 − 𝛽) (3𝛼 − 5) .

(18)

Since the second term (the last term) in the right-hand side
is negative, it suffices that 64ℎ2(1 − 𝛽)2 + 9Φ

4
(1 + 𝛽)

2
>

12Φ
2
{4ℎ(1−𝛽)(1+𝛽)+𝛽} holds. Applying another arithmetic

operation and collecting terms reorganize this relation as
follows:

(3Φ
2
+ 8ℎ)

2
𝛽
2
− 2 (64ℎ

2
− 9Φ
4
+ 6Φ
2
) 𝛽 + (3Φ

2
− 8ℎ)

2

> 0.

(19)

Therefore, if 9Φ4 − 6Φ2 − 64ℎ2 > 0, then the inequality above
holds and the characteristic equation has two distinctive real
solutions.

Now, using the facts that 𝜆1 + 𝜆2 = −Θ and 𝜆1𝜆2 = Ω,
we can find sufficient conditions which establish stability or
instability of the interior equilibrium. Indeed, if 𝜆1𝜆2 < −1,
then at least one eigenvalue is larger than 1 or less than −1,
thereby making the system around the interior fixed point
unstable. Since 𝜆1𝜆2 = Ω = 𝛽 + 4ℎ(1 − 𝛽)(3𝛼 − 5)/3Φ

2, the
condition 𝜆1𝜆2 < −1 reduces into the following inequalities:

3𝛽Φ
2
+ 4ℎ (1 − 𝛽) (3𝛼 − 5) < −3Φ

2

or 𝛼 <
5

3
−
(1 + 𝛽)Φ

2

4ℎ (1 − 𝛽)
.

(20)

The right-hand side of the inequality for 𝛼 is positive if
𝛽 < (20ℎ − 3Φ

2
)/(20ℎ + 3Φ

2
). The right-hand side of

the inequality for 𝛽 is also positive under the condition of
(16/15)ℎ < 𝐾

2. Thus, two conditions pertaining to 𝛼 and 𝛽
are well established as a sufficient condition for the interior
equilibrium to be unstable, which completes the proof.

The proof needs to be complemented since Proposition 4
provides only a sufficient condition. We know that if |𝜆1 +
𝜆2| < 1 and 𝜆1𝜆2 > 0 then all the eigenvalues are less than
1, thereby making the system around the interior fixed point
stable. However, one can show in a similar way that there is
no 𝜆𝑖 that satisfies those conditions. Indeed, since 𝜆1 + 𝜆2 =
−Θ = 1 + 𝛽 − (8ℎ(1 − 𝛽)/3Φ

2
), the condition |𝜆1 + 𝜆2| < 1

reduces to (6𝐾Φ/(6ℎ − 3𝐾Φ)) < 𝛽 < (4ℎ/(6ℎ − 3𝐾Φ)).
On the other hand, the condition 𝜆1𝜆2 = Ω > 0 reduces
to 𝛼 > (5/3) − (𝛽Φ

2
/4ℎ(1 − 𝛽)) and 𝛽 > (4ℎ/(6ℎ − 3𝐾Φ)),

which cannot be compatible with the previous condition. A
similar type of incompatibility occurs in the case of 𝜆1𝜆2 >
1. This possibility of instability is also frustrated since the

X

X

1

1

X

X

−1

−1 𝜆1

𝜆2

Figure 1: Regions of the 𝜆1-𝜆2 space: explored and unexplored.

condition 𝜆1𝜆2 > 1 requires either 𝛼 > 1 or 𝛽 > 1, which
is not acceptable. As a result, we have explored the following
regions of the 𝜆1-𝜆2 space in Figure 1. The shaded regions
with “𝑋” mark are the subsets whose (𝜆1, 𝜆2)-tuples cannot
be realized in our model. The two hatched regions depict the
sufficient conditions in this proposition. Thus, Proposition 4
leaves some regions unexplored.

Proposition 3 reveals that there is a unique interior
equilibrium if any one exists. Proposition 4, however, implies
that the interior equilibrium is highly likely unstable.Though
there remain some regions that should be explored in the
𝜆1-𝜆2 space (see Figure 1), it may not be a good strategy to
investigate the stability regions first, with a vague hope to
discover such a case. In fact, it seems hard to find an instance
in which the interior equilibrium is stable (refer to some
experimental results in Section 5). And if this is true, one
needs to analyze another possibility and different aspects of
the dynamics.

Since the 𝑃(𝑡)-𝑀(𝑡) state space is bounded, the system
dynamics may have a boundary equilibrium that needs to
be investigated. Obviously, for example, (0, 0) cannot be a
boundary fixed point which represents a complete collapse
of both market and industry (Also note that the dynamic
equations ((10a) and (10b)) are not defined at (0, 0)).However,
the system state may approach the origin very closely (refer
to the proposition below and the discussions in the next
section). Furthermore, neither (𝑧, 0) with any positive 𝑧 ∈

(0,𝑁] nor (0, 𝑧)with 𝑧 ∈ (0,𝑀max] can be aNash equilibrium
since, at least for a (potential) player, a deviation from the
corresponding state improves its gain. For example, an active
player at (𝑁, 0) will be better off if it leaves the market and
avoids a negative payoff.The following proposition deals with
the other types of possible boundary equilibria.

Proposition 5. The following two states are (near) boundary
fixed point equilibria (compatible with the static model as in
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Proposition 1). However, both are unstable under the certain
conditions (if any) specified below.

(i) For an arbitrary small 𝜀, (𝜀, 𝜀) is a near boundary Nash
equilibrium. However, (𝜀, 𝜀) is unstable if ℎ > 2𝐾.

(ii) (𝑁,𝑀max) is a boundary Nash equilibrium if 𝑞𝑁 ≤

(2𝐾𝑀max/(𝑁 + 1)) + (𝑁/2). However, (𝑁,𝑀max)
is unstable if 4𝐾𝑀max < 3ℎ𝑁

2 and ℎ
2
𝑁
2

<

4𝐾𝑀
2
max(𝐾 +𝑀max).

Proof. It is easy to show that the two states asserted
above become Nash equilibria in the sense compatible with
Proposition 1. For 𝜀 is very close to 0, for example, (𝜀, 𝜀) ≈
(0, 0) implies that any potential provider (even the most
efficient provider) outside of the industry cannot expect
any positive gain from joining the industry. Thus, the best
response of all the providers is to stay out of the industry.
Similarly, in the other extreme cases of (𝑁,𝑀max), where
all the providers join the industry, even the least efficient
provider enjoys a positive gain from performing as much
marketing effort as determined by Proposition 1 if 𝑞𝑁 ≤

(2𝐾𝑀max/(𝑁+ 1)) + (𝑁/2). Therefore, no provider will leave
the industry and𝑀max is sustained.

In order to show the instability of (𝜀, 𝜀), we first apply the
Taylor expansion to 𝑃(𝑡 + 1) − 𝑃(𝑡) and 𝑀(𝑡 + 1) − 𝑀(𝑡) at
(𝜀, 𝜀) and get

𝑃 (𝑡 + 1) − 𝑃 (𝑡)

= (1 − 𝛼) {(
2𝐾

ℎ𝜀
−
3

2
)𝑃 (𝑡) +

2𝐾

ℎ𝜀
𝑀 (𝑡) +

2𝐾

ℎ
} −

𝛼𝜀

2

(21a)

𝑀(𝑡 + 1) −𝑀 (𝑡)

= (1 − 𝛽)

× {
ℎ
2

2𝐾𝜀
𝑃 (𝑡) − (1 +

ℎ
2

2𝐾𝜀
)𝑀(𝑡) +

ℎ
2

4𝐾
− 𝐾} + 𝜀.

(21b)

Now, we incorporate a small perturbation around (𝜀, 𝜀) into
((21a) and (21b)). We will show that, for at least one type of
perturbation, both𝑃(𝑡+1)−𝑃(𝑡) and𝑀(𝑡+1)−𝑀(𝑡) become
positive, which means that the system state grows apart from
the near boundary equilibrium (𝜀, 𝜀). For example, we take
into account a small perturbation in a north-east direction
such as (𝜀 + 𝜀1, 𝜀 + 𝜀2) where both 𝜀1 and 𝜀2 are positive
and sufficiently small. Then, after a series of arranging and
collecting terms, ((21a) and (21b)) reduce as follows:

𝑃 (𝑡 + 1) − 𝑃 (𝑡)

=
2𝐾 (1 − 𝛼)

ℎ
(3 +

𝜀1 + 𝜀2

𝜀
) + (𝛼 −

3

2
) 𝜀 +

3

2
(𝛼 − 1) 𝜀1

(22a)

𝑀(𝑡 + 1) −𝑀 (𝑡)

= (1 − 𝛽){
ℎ
2

2𝐾
(
𝜀1 − 𝜀2

𝜀
+
1

2
) − 𝐾} + 𝛽 (𝜀 + 𝜀2) − 𝜀2.

(22b)

Thefirst term in the right-hand side of (22a) is always positive
and the other two terms are arbitrary small enough for the
overall magnitude of 𝑃(𝑡 + 1) − 𝑃(𝑡) to be positive. If 𝜀1 > 𝜀2

and the condition in (i) holds, then the first two terms in the
right-hand side of (22b) are positive. Thus, there are many
directions in the north-east area of (𝜀, 𝜀) along which both
𝑃(𝑡+1)−𝑃(𝑡) and𝑀(𝑡+1)−𝑀(𝑡) become positive (One can
also prove that both (21a) and (21b) lead to a divergence from
(𝜀, 𝜀) in the other areas, e.g., a south-east direction of (𝜀, 𝜀)).

One can apply a similar procedure to the case of the
boundary equilibrium (𝑁,𝑀max). First, the dynamics around
(𝑁,𝑀max) can be written as follows:

𝑃 (𝑡 + 1) − 𝑃 (𝑡)

= (𝛼 − 1) {(
3

2
+
2𝐾𝑀max
ℎ𝑁2

)𝑃 (𝑡)

−
2𝐾

ℎ𝑁
𝑀(𝑡) −

2𝐾𝑀max
ℎ𝑁

}

(23a)

𝑀(𝑡 + 1) −𝑀 (𝑡)

= (1 − 𝛽){
ℎ
2
𝑁

2𝐾𝑀2max
𝑃 (𝑡) − (1 +

ℎ
2
𝑁
2

2𝐾𝑀3max
)𝑀(𝑡)

+
ℎ
2
𝑁
2

4𝐾𝑀2max
− 𝐾} .

(23b)

To determine its stability, we again evaluate a small pertur-
bation around (𝑁,𝑀max). In this case, however, one needs
to examine only one direction of perturbation, that is, (𝑁 −

𝜀,𝑀max − 𝜀), where 𝜀 is positive and sufficiently small. After a
series of operations, ((23a) and (23b)) reduce as follows:

𝑃 (𝑡 + 1) − 𝑃 (𝑡)

= (1 − 𝛼) {
4𝐾𝑀max − 3ℎ𝑁

2

2ℎ𝑁

+(
2𝐾 (𝑀max − 𝑁)

ℎ𝑁2
+
3

2
) 𝜀}

(24a)

𝑀(𝑡 + 1) −𝑀 (𝑡)

= (1 − 𝛽){
ℎ
2
𝑁
2

4𝐾𝑀2max
−𝑀max − 𝐾

+(
ℎ
2
𝑁(𝑁 −𝑀max)

2𝐾𝑀3max
+ 1) 𝜀} .

(24b)

Note that the last terms in the respective right-hand side of
((24a) and (24b)) are to be arbitrary small. Thus, the signs of
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𝑃(𝑡+1)−𝑃(𝑡) and𝑀(𝑡+1)−𝑀(𝑡) are determined by their first
terms, each of which is negative if the conditions in (ii) hold.
As a result, both 𝑃(𝑡 + 1) − 𝑃(𝑡) and𝑀(𝑡 + 1) −𝑀(𝑡) become
negative, which establishes the instability of (𝑁,𝑀max).

First note that the near boundary equilibrium (𝜀, 𝜀) rep-
resents a virtual collapse of the market as well as the industry.
On the other hand, the boundary equilibrium (𝑁,𝑀max)
represents a perfect prosperity of the business ecosystem.
Thus, the stability analysis about those two boundary states
suggests not only good news but also bad news. The good
news is that as both the market force and the number of
providers approach nil, at least a tiny fraction of providers still
seize the opportunity to earn positive gains, which would in
turn boost the market demand. This mechanism of escaping
from almost complete destruction comes from the structural
property of the dynamics that would not allow nil to be as a
fixed point.

On the other hand, the instability of the complete
prosperity presents a bad news. As shown in the proof, a
small perturbation occurring around the boundary state may
lead the system away from the ideal situation. This system
behavior probably comes from the mechanism around the
saturation state (𝑁,𝑀max). That is, with a shock making the
system deviate from the saturation, some marginal providers
on the limit of positive gain at the saturation now would
experience a loss and leave the industry.This reduction of the
number of providers is highly likely to cut back the market
value, which would in turn disturb more providers on the
verge of leaving the industry.

These results suggest that 𝑃(𝑡) and 𝑀(𝑡) which are
sufficiently small [or close to their respect upper bounds]
may approach the origin [or the saturation] over time but
suddenly explodes near the origin [or shrink back near
the saturation]. Thus, the stability analysis so far hints a
possible cyclic solution to our dynamics. We will check out
this possibility through numerical experiments in the next
section.

Even though it is true that our system behavior has the
property of natural resilience from deterioration, it may stay
at the states near a collapse over a long period of time. Thus,
we need to develop a policy measure that protects the system
from moving toward the collapse and establishes a locally
stable positive equilibrium that attracts system trajectories
generated around it. If it is successful, the market and the
industry will not only be sustained but also stabilized over
time at some desirable states. We will also deal with this issue
in the next section.

4. Experiments and Discussions

We conduct some numerical simulations in order to examine
more thoroughly the system behaviors in various scenarios.
In our simulations, both 𝑃(𝑡) and 𝑀(𝑡) are endogenously
determined according to the system dynamics presented in
the previous section. Subsequently, the totalmarketing efforts
are also changing as the system states vary, which provides a
sharp contrast with the theoretical results in the static model
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Figure 2: Experimental example. Here, 𝛼 = 0.7, 𝛽 = 0.9, 𝐾 = 10,
and ℎ = 1. The initial point is 𝑃0 = 70 and𝑀0 = 50 with 𝑁 = 100

and 𝑀 = 100. Arrows show the directions of the migration of the
system state. The system state moves toward the origin after leaving
the initial point. Interestingly, however, there is a loop starting from
near the origin. The presence of the loops implies a cycle in the
system behavior.

such asKim’s study [27] (This finding (and the followings) can
be captured only in a dynamic setting).

As Propositions 3 to 5 reveal, the outcomes of the dynamic
model are quite different from the ones of the static model
described in Proposition 1. First of all, note that (𝜀, 𝜀), close
to a complete collapse of the market and the industry, is not a
stable equilibrium, but the system is highly likely to approach
the origin.Thus, ToC (the tragedy of the commons) seems to
be inevitable in some situations, particularly when themarket
is not mature (i.e., small𝑀0) with many providers (i.e., large
𝑃0). Figure 2 depicts this possibility.

As raised in the previous section, a cycle or a sequence of
periodic points seems to constitute a solution to our dynamic
equations. In fact, the emergence of the ToC trap and the
oscillation dynamics are neither a new phenomenon nor an
unusual feature in dynamic models, particularly on the basis
of structured interactions among agents (e.g., Perc and Szol-
noki [21], Perc et al. [22], and Santos et al. [23]) (In particular,
the emergence of cycles (or oscillations) has been observed in
the context of adaptive networks (Szolnoki and Perc [24, 25])
and with three competing strategies (Szolnoki et al. [28]), as
well as under a presence of punishment (Szolnoki et al. [29])
or a reward (Szolnoki and Perc [26]). However, our model
does not assume a structured population; it is one of our
future research topics to incorporate organized interactions
amongproviders (see also our comment in the futureworks)).
It is also well known that finding such a cycle is usually a very
difficult task, and our model is no exception. However, our
numerical experiments including the one above confirm (or
at least indicate) that the cyclic solution commonly occurs
for many initial states. For example, the experiment outcome
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Figure 3: A cycle example. Here, all the parameters remain the same as the ones in Figure 2 except the initial states. As starting points,𝑃0 = 40
and𝑀0 = 70 are applied to this example.
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(a) 𝑃0 = 70 and𝑀0 = 50
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(b) 𝑃0 = 40 and𝑀0 = 70

Figure 4: Behaviors of key attributes of system. Here, all the parameters and the initial states remain the same as the ones in Figure 2 for (a)
and Figure 3 for (b). The time series graphs of 𝑃(𝑡) and𝑀(𝑡) also clearly point out the cyclic pattern of the system behavior even though they
look a little different in the first period due to different starting points. In both instances, the total marketing efforts 𝐸(𝑡) are higher than their
optimal level 𝐾most of the time.

depicted in Figure 3 shows a clear cycle of the particular
dynamics specified in Figure 2 (except the initial point). In
this instance, the initial state is deliberately set to (𝑃0,𝑀0) =
(40, 70), which closely lies on the cycle observed in Figure 2.

Moreover, Figure 4 represents the system behavior along
the timeline. They show clear cycles repeating over time. In
most of time, the total marketing efforts remain higher than
the optimal level 𝐾. Thus, the market maturity eventually
drops down to almost zero, which in turn results in deterio-
ration of providers’ gain, that is, the ToC trap. Whenever the
market maturity approaches nil, most efficient few providers
survive and are able to sweep all the gains from the market.
Thanks to the monopolized benefits, they can boost the

market and the maturity rapidly increases. This explosion of
the market opportunity attracts more providers, and the new
cycle starts thereafter.

If this is the most common case then the remaining issue
should be related to the ToC trap which seems inevitable
in the cycle. In particular, we need to develop a remedy
(a policy measure) to cope with ToC. One possible way to
pursue is to introduce a regulation that makes providers
keep themarketing efforts at their reasonable levels (probably
coupled with their cost efficiencies). We may also implement
a policy that puts some barriers to preserve a minimum level
of the market maturity. Figure 5 shows the effect of the latter
approach. One may consider a similar barrier set up for 𝑃(𝑡)
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Figure 5: Experimental example, with a barrier to sustain the
market. Here, all the parameters and the initial states remain
the same as the ones in Figure 2 (but the axes have been scaled
differently). In addition, however, there is a barrier set up for the
market maturity.This barrier keeps the market maturity factor𝑀(𝑡)

above 10. Arrows show the directions of the migration of the system
state, which settles down to a fixed state, of which𝑀(𝑡) corresponds
to the barrier. In this instance, there is no cycle.

and compare the outcomes of two approaches in terms of
social welfare (As a matter of fact, we also tried this approach
but omitted the results here since the outcomes of this policy
do not seem to follow a rule; they produce nonstructured
many small cycles. Thus, apparently (not rigorously), the
policy to sustain at least a certain number of providers fails
in providing better outcomes).

5. Conclusion and Future Works

This study examined the possibilities of a disruption of a
business ecosystem, so-called the ToC trap, which describes
the situation where the total marketing efforts 𝐸 exceed
their socially optimal level 𝐾. Not only the interior but also
the boundary equilibria were found and analyzed for their
stability.We also conducted somenumerical experiments and
discovered cycles as solutions to some particular instances.
Since those cycles contain the ToC traps, we simulated a
policy measure to maintain a minimum level of market
maturity and checked out the effectiveness of the policy. Even
though we had in mind some ICT industries (e.g., the social
commerce industry) with fierce marketing competition, our
approach and results will not be confined to the ICT indus-
tries. And we hope this study helps to find a clue to avoid
the ToC trap, thereby shedding new light on the sustainable
growth of business ecosystems.

However, the analytical results and implications have
been established on the basis of our modeling assumptions,
and they may not be generalized into all the situations. In

particular, our assumption of perfectly mixed (or random-
ized) interactions among the players is not a fully realistic
one. This remains as one of the limitations of our model and
approach. Thus, it will be an obviously interesting direction
of our next research step to extend the proposed game model
with a structured population of providers (for benchmarking
studies, refer to Szolnoki et al. [28], Szolnoki et al. [29], and
Wang et al. [30]).

In our future works, we will also refine policy mea-
sures that were derived in the course of implementing our
suggestions to alleviate the risk of the ToC trap. We will
incorporate various regulatory schemes and other policy
ideas (e.g., Greely [31]) and evaluate their effects on the long-
run equilibrium. Lastly, we will compare the policy outcomes
with one generated from a hypothetical social planner who
determines the total marketing level that optimizes the entire
market value. Case studies together with statistical analysis
will be conducted in order to test these possibilities in practice
and to investigate the effects of the parameters on expected
results.
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