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Using bifurcation techniques, we first prove a global bifurcation theorem for nonlinear second-order semipositone integral
boundary value problems. Then the existence and multiplicity of nodal solutions of the above problems are obtained. Finally, an
example is worked out to illustrate our main results.

1. Introduction

In this paper, we consider the existence and multiplicity of
nodal solutions for the following nonlinear second-order
semipositone integral boundary value problems (BVP for
short):

𝑥
󸀠󸀠

(𝑡) + 𝜆𝑓 (𝑥 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑥 (0) = 0, 𝑥 (1) = ∫

1

0

𝑎 (𝑠) 𝑥 (𝑠) 𝑑𝑠,

(1)

where 𝜆 > 0 is a parameter, 𝑓 ∈ 𝐶(𝑅, 𝑅), and 𝑎 ∈ 𝐿[0, 1] is
nonnegative with 0 < ∫

1

0
𝑎
2
(𝑠)𝑑𝑠 < 1.

Boundary value problems with integral boundary con-
ditions for ordinary differential equations arise in different
areas of applied mathematics and physics. Moreover, they
include two, three, multipoint, and nonlocal boundary value
problems as special cases. For boundary value problems
with integral boundary conditions and comments on their
importance, we refer the reader to [1–12] and the references
therein.

In [1], utilizing the fixed point index and Leray-Schauder
degree theory, Zhang and Sun obtained some existence

results for multiple solutions including sign-changing solu-
tions under some technical hypotheses for the following
integral boundary value problem:

𝑥
󸀠󸀠

(𝑡) + 𝑓 (𝑥 (𝑡)) = 0, 0 < 𝑡 < 1

𝑥 (0) = 0, 𝑥 (1) = ∫

1

0

𝑎 (𝑠) 𝑥 (𝑠) 𝑑𝑠,

(2)

where 𝑓 ∈ 𝐶(𝑅, 𝑅), 𝑓(0) = 0, 𝑎 ∈ 𝐿[0, 1] is nonnegative with
∫

1

0
𝑎
2
(𝑠)𝑑𝑠 < 1.

The purpose of this paper is to investigate the existence
andmultiplicity of sign-changing solutions of BVP (1), having
a given number of zeros (so-called “nodal solution”). The
existence of such solutions has been investigated for many
types of nonlinear Sturm-Liouville problems with separated
boundary conditions and multipoint boundary conditions
in many recent papers; see [13–18]. Recently, Sun et al. [16]
studied for the following𝑚-point boundary value problems:

𝑢
󸀠󸀠

(𝑡) + 𝑓 (𝑢 (𝑡)) = 0, 0 < 𝑡 < 1

𝑢 (0) = 0, 𝑢 (1) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑢 (𝜂
𝑖
) ,

(3)

where 𝜆 > 0 is a parameter, 𝑓 ∈ 𝐶(𝑅, 𝑅), 𝑓(0) = 0,
𝛼
𝑖

∈ (0, 1), 𝑖 = 1, 2, . . . , 𝑚 − 2, 0 < ∑
𝑚−2

𝑖=1
𝛼
𝑖

< 1,
0 < 𝜂

1
< 𝜂
2

< ⋅ ⋅ ⋅ < 𝜂
𝑚−2

< 1. By using Rabinowitz’s
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global bifurcation theorem, they obtained the existence and
multiplicity of nodal solutions when 𝑓

0
∈ (0, +∞), where

𝑓
0
= lim
𝑡→0

𝑓 (𝑡)

𝑡

. (4)

To the authors’ knowledge, there are fewpapers that have con-
sidered the existence of nodal solutions for integral boundary
value problems. In [1], Zhang and Sun have obtained sign-
changing solutions of BVP (2), but no information is obtained
regarding the number of zeros of the solution.

Motivated by [1, 15, 16], in this paper we investigate the
existence and multiplicity of nodal solutions for BVP (1). The
main features of this paper are as follows. First, the nonlinear
term𝑓 is semipositone, and𝑓

0
∈ (0, +∞), where𝑓

0
is defined

as in (4). Next, the methods used here are Rabinowitz’s global
bifurcation theorem and some of the techniques used in
[16], which are entirely different from [1, 7, 8]. Finally, the
results we obtained are the existence of at least any given even
number of nodal solutions.

Now we give some notations and a global bifurcation
theorem which will be used in Section 3. Let 𝐸 be a real
Banach space; Rabinowitz studied a nonlinear eigenvalue
problem of the form

𝑢 = 𝜆𝐿𝑢 + 𝐻 (𝜆, 𝑢) , (5)
where 𝜆 > 0 is a parameter, 𝐿 : 𝐸 → 𝐸 is a compact
linear map, 𝐻 : 𝜀 ≡ 𝑅 × 𝐸 → 𝐸 is completely continuous,
and 𝐻(𝜆, 𝑢) = 𝑜(‖𝑢‖) for 𝑢 near 0 uniformly on bounded 𝜆

intervals. A solution of (5) is a pair (𝜆, 𝑢) ∈ 𝜀 which satisfies
(5). The closure of the set of nontrivial solutions of (5) is
denoted by ∑. If there exist 𝜇 ∈ 𝑅

+
= [0, +∞) and 0 ̸= V ∈ 𝐸

such that V = 𝜇𝐿V, 𝜇 is said to be a positive eigenvalue of 𝐿
and V is said to be an eigenfunction corresponding to 𝜇. The
set of positive eigenvalues of 𝐿 will be denoted by 𝑟(𝐿). The
algebraic multiplicity of 𝜇 ∈ 𝑟(𝐿) is dim∪

∞

𝑗=1
𝑁((𝐼 − 𝜇𝐿)

𝑗
),

where 𝑁(𝐴) denotes the null space of 𝐴. The following was
shown in Theorem 1.3 and Theorem 1.25 of Rabinowitz [19]
andTheorem 2 of Dancer [20].

Theorem A. If 𝜇 ∈ 𝑟(𝐿) is simple, then ∑ possess a
maximal subcontinuum 𝜁

𝜇
which can be decomposed into two

subcontinua 𝐶
+

𝜇
and 𝐶

−

𝜇
such that, for some neighborhood 𝐵 of

(𝜇, 0), (𝜆, 𝑢) ∈ 𝐶
+

𝜇
(𝐶
−

𝜇
) ∩ 𝐵, and (𝜆, 𝑢) ̸= (𝜇, 0) imply (𝜆, 𝑢) =

(𝜆, 𝛼V + 𝑤), where 𝛼 > 0 (𝛼 < 0) and |𝜆 − 𝜇| = 𝑜(1),
‖𝑤‖ = 𝑜(|𝛼|) for 𝛼 near 0. Moreover, either 𝐶

+

𝜇
and 𝐶

−

𝜇
are

both unbounded or 𝐶+
𝜇
∩ 𝐶
−

𝜇
̸= {(𝜇, 0)}.

This paper is arranged as the follows: some preliminaries
and some lemmas are given including the study of the
eigenvalues and eigenfunctions of the linearization of BVP (1)
in Section 2. The main results are proved by using Theorem
A in Section 3. A concrete example is given to illustrate the
application of the main results in Section 4.

2. Some Preliminaries and Lemmas

Let 𝑋 = 𝐶[0, 1] with the norm ‖𝑥‖ = max
𝑡∈[0,1]

|𝑥(𝑡)|, 𝑌 =

{𝑥 ∈ 𝐶
1
[0, 1], 𝑥(0) = 0, 𝑥(1) = ∫

1

0
𝑎(𝑠)𝑥(𝑠)𝑑𝑠} with the norm

‖𝑥‖
1
= max{‖𝑥‖, ‖𝑥󸀠‖}, 𝑍 = {𝑥 ∈ 𝐶

2
[0, 1], 𝑥(0) = 0, 𝑥(1) =

∫

1

0
𝑎(𝑠)𝑥(𝑠)𝑑𝑠} with the norm ‖𝑥‖

2
= max{‖𝑥‖, ‖𝑥󸀠‖, ‖𝑥󸀠󸀠‖}.

Then𝑋, 𝑌, 𝑍 are Banach spaces.
For any 𝐶

1 function 𝑥, if 𝑥(𝑡
0
) = 0, then 𝑡

0
is said to be a

simple zero of 𝑥 if 𝑥󸀠(𝑡
0
) ̸= 0. For any integer 𝑘 ≥ 1 and any

] ∈ {±}, as in [15], we define sets 𝑇]
𝑘
⊂ 𝑍 consisting of the set

of functions 𝑥 ∈ 𝑍 satisfying the following conditions:

(i) 𝑥(0) = 0, ]𝑥󸀠(0) > 0, and 𝑥
󸀠
(1) ̸= 0;

(ii) 𝑥
󸀠 has only simple zeros in (0, 1) and has exactly 𝑘

such zeros;
(iii) 𝑥 has a zero strictly between each two consecutive

zeros of 𝑥󸀠.

Note that 𝑇−
𝑘

= −𝑇
+

𝑘
and let 𝑇

𝑘
= 𝑇
+

𝑘
∪ 𝑇
−

𝑘
. It is easy to see

that the sets 𝑇
+

𝑘
and 𝑇

−

𝑘
are disjoint and open in 𝑍. Let 𝐸 =

𝑅×𝑌 under the product topology,Φ+
𝑘
= 𝑅×𝑇

+

𝑘
,Φ−
𝑘
= 𝑅×𝑇

−

𝑘
,

and Φ
𝑘
= 𝑅 × 𝑇

𝑘
.

In the following, we give some information on the
spectrum structure of the linear integral boundary value
problem corresponding to BVP (1):

𝑥
󸀠󸀠

(𝑡) + 𝜆𝑥 (𝑡) = 0, 0 < 𝑡 < 1

𝑥 (0) = 0, 𝑥 (1) = ∫

1

0

𝑎 (𝑠) 𝑥 (𝑠) 𝑑𝑠.

(6)

Define the operators𝐾 on 𝑌 by

(𝐾𝑥) (𝑡) = ∫

1

0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠, (7)

where

𝑘 (𝑡, 𝑠) = 𝐺 (𝑡, 𝑠) +

𝑡 ∫

1

0
𝐺 (𝜏, 𝑠) 𝑎 (𝜏) 𝑑𝜏

1 − ∫

1

0
𝑠𝑎 (𝑠) 𝑑𝑠

,

𝐺 (𝑡, 𝑠) = {

𝑡 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1

𝑠 (1 − 𝑡) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(8)

It is easy to prove the following lemma.

Lemma 1. The linear operator 𝐾 : 𝑌 → 𝑌 is completely
continuous. Moreover, (𝜆, 𝑥) ∈ (0,∞) × 𝐶

2
[0, 1] is a solution

of (6) if and only if (𝜆, 𝑥) ∈ 𝐸 is a solution of the operator
equation 𝑥 = 𝜆𝐾𝑥.

We now define a function 𝐺 : (0, +∞) → 𝑅 by

𝐺 (𝜂) = sin 𝜂 − ∫

1

0

𝑎 (𝑠) sin (𝜂𝑠) 𝑑𝑠, 𝜂 ∈ (0, +∞) . (9)

Lemma 2. All the zeros of 𝐺(𝜂) are simple.

Proof. Suppose that 𝜂 is a double zero of 𝐺(𝜂); that is,

sin 𝜂 = ∫

1

0

𝑎 (𝑠) sin (𝜂𝑠) 𝑑𝑠, cos 𝜂 = ∫

1

0

𝑠𝑎 (𝑠) cos (𝜂𝑠) 𝑑𝑠.

(10)
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Hence,

1 = (∫

1

0

𝑎 (𝑠) sin (𝜂𝑠) 𝑑𝑠)

2

+ (∫

1

0

𝑠𝑎 (𝑠) cos (𝜂𝑠) 𝑑𝑠)
2

≤ ∫

1

0

𝑎
2

(𝑠) 𝑑𝑠 ∫

1

0

sin2 (𝜂𝑠) 𝑑𝑠

+ ∫

1

0

𝑠
2
𝑎
2

(𝑠) 𝑑𝑠 ∫

1

0

cos2 (𝜂𝑠) 𝑑𝑠

≤ ∫

1

0

𝑎
2

(𝑠) 𝑑𝑠 < 1,

(11)

which shows that (10) cannot hold, and so 𝐺(𝜂) has only
simple zeros.

Lemma 3. Suppose that 𝑎(𝑠) is symmetrical in [0, 1]. Then
𝐺(𝜂) has no zero on [0, 𝜋/2] and, for each 𝑖 ≥ 1, 𝐺(𝜂) has
exactly one zero 𝜂

𝑖
= 2𝑖𝜋 on 𝐼

2𝑖
:= ((2𝑖−(1/2))𝜋, (2𝑖+(1/2))𝜋).

Proof. Since 0 < ∫

1

0
𝑎
2
(𝑠)𝑑𝑠 < 1 and ∫

1

0
𝑎(𝑠)𝑑𝑠 ≤

(∫

1

0
𝑎
2
(𝑠)𝑑𝑠)

1/2, we have

0 < ∫

1

0

𝑎 (𝑠) 𝑑𝑠 < 1. (12)

Now, (12) implies that 𝐺(𝜂) > 0 on (0, 𝜋/2]; that is, 𝐺(𝜂)

has no zero in this interval, and also

𝐺((2𝑖 −

1

2

)𝜋) < 0, 𝐺 ((2𝑖 +

1

2

) 𝜋) > 0, 𝑖 ≥ 1. (13)

For each integer 𝑖 ≥ 1, by the symmetry of 𝑎(𝑠) in [0, 1],
we have

∫

1

0

𝑎 (𝑠) sin (2𝑖𝜋𝑠) 𝑑𝑠

= ∫

1

0

𝑎 (1 − 𝑡) sin [2𝑖𝜋 (1 − 𝑡)] 𝑑𝑡

= −∫

1

0

𝑎 (1 − 𝑡) sin 2𝑖𝜋𝑡 𝑑𝑡

= −∫

1

0

𝑎 (𝑡) sin 2𝑖𝜋𝑡 𝑑𝑡.

(14)

So, 2 ∫

1

0
𝑎(𝑠) sin(2𝑖𝜋𝑠)𝑑𝑠 = 0; that is, ∫1

0
𝑎(𝑠) sin(2𝑖𝜋𝑠)𝑑𝑠 = 0.

Thus, 𝐺(2𝑖𝜋) = 0. That is, 𝐺(𝜂) has one zero 𝜂
𝑖
= 2𝑖𝜋 on

each interval 𝐼
2𝑖

:= ((2𝑖 − (1/2))𝜋, (2𝑖 + (1/2))𝜋).
For any fixed integer 𝑖 ≥ 1, suppose that𝐺(𝜂) has another

zero 𝜂
𝑖
on 𝐼
2𝑖
. In view of the continuity of 𝐺(𝜂) and (13), then

𝐺(𝜂) has the third zero 𝜂
𝑖
on 𝐼
2𝑖
.Without loss of generality, we

may assume that 𝜂
𝑖
< 𝜂
𝑖
. We have the following three cases to

consider.

(i) Consider 𝜂
𝑖
< 𝜂
𝑖
< 𝜂
𝑖
. By (9) and (12), we have

𝐺
󸀠
(𝜂
𝑖
) = 𝐺
󸀠

(2𝑖𝜋) = cos (2𝑖𝜋) − ∫

1

0

𝑠𝑎 (𝑠) cos (2𝑖𝜋𝑠) 𝑑𝑠

= 1 − ∫

1

0

𝑠𝑎 (𝑠) cos (2𝑖𝜋𝑠) 𝑑𝑠

> 0.

(15)

From (13) and Lemma 2, it is easy to see that𝐺󸀠(𝜂
𝑖
) < 0, which

contradicts to (15).
(ii) Consider 𝜂

𝑖
< 𝜂
𝑖
< 𝜂
𝑖
. From (13) and Lemma 2, it is

easy to see that 𝐺󸀠(𝜂
𝑖
) < 0. So, we have

sin (𝜂
𝑖
) = ∫

1

0

𝑎 (𝑠) sin (𝜂
𝑖
𝑠) 𝑑𝑠,

0 < cos (𝜂
𝑖
) < ∫

1

0

𝑠𝑎 (𝑠) cos (𝜂
𝑖
𝑠) 𝑑𝑠.

(16)

Hence,

1 < (∫

1

0

𝑎 (𝑠) sin (𝜂
𝑖
𝑠) 𝑑𝑠)

2

+ (∫

1

0

𝑠𝑎 (𝑠) cos (𝜂
𝑖
𝑠) 𝑑𝑠)

2

≤ ∫

1

0

𝑎
2

(𝑠) 𝑑𝑠 ∫

1

0

sin2 (𝜂
𝑖
𝑠) 𝑑𝑠

+ ∫

1

0

𝑠
2
𝑎
2

(𝑠) 𝑑𝑠 ∫

1

0

cos2 (𝜂
𝑖
𝑠) 𝑑𝑠

≤ ∫

1

0

𝑎
2

(𝑠) 𝑑𝑠 < 1,

(17)

which is a contradiction.
(iii) Consider 𝜂

𝑖
< 𝜂
𝑖
< 𝜂
𝑖
. Similar to the proof of Case (ii),

we can also lead to a contradiction.
Therefore, 𝐺(𝜂) has exactly one zero 𝜂

𝑖
= 2𝑖𝜋 on 𝐼

2𝑖
:=

((2𝑖 − (1/2))𝜋, (2𝑖 + (1/2))𝜋) for each 𝑖 ≥ 1.

As the proof of Lemma 4 in [1], it is easy to obtain the
following lemma.

Lemma 4. (1) For each 𝑘 ≥ 1, 𝜂
𝑘
∈ 𝐼
𝑘
:= ((𝑘 − (1/2))𝜋, (𝑘 +

(1/2))𝜋) is one zero of 𝐺(𝜂) if and only if 𝜆
𝑘

= 𝜂
2

𝑘
is

an eigenvalue of 𝐾. In addition, 𝜑
𝑘
(𝑡) = sin(𝜂

𝑘
𝑡) is an

eigenfunction corresponding to 𝜆
𝑘
and 𝜑

𝑘
(𝑡) ∈ 𝑇

+

𝑘
.

(2) The algebraic multiplicity of each positive eigenvalue
𝜆
𝑛
(𝑛 = 1, 2, . . .) of 𝐾 is 1.

Lemma 5. Suppose that 𝑎(𝑠) is symmetrical in [0, 1]. Then
(1) there exists a subsequence {𝜆

𝑛𝑖
} of the eigenvalue

sequence {𝜆
𝑛
} of 𝐾 such that 𝜆

𝑛𝑖
= (2𝑖𝜋)

2
(𝑖 =

1, 2, . . .), and the eigenfunction𝜑
𝑛𝑖
corresponding to 𝜆

𝑛𝑖

is 𝜑
𝑛𝑖
(𝑡) = sin(2𝑖𝜋𝑡);

(2) 𝜑
𝑛𝑖
(𝑡) ∈ 𝑇

+

2𝑖
for 𝑖 = 1, 2, . . ..
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Proof. From Lemmas 3 and 4, conclusion (1) can be obtained
immediately. Noticing that 𝜑

𝑛𝑖
(𝑡) = sin(2𝑖𝜋𝑡), 𝑖 = 1, 2, . . ., it

is easy to check that 𝜑
𝑛𝑖
(𝑡) ∈ 𝑇

+

2𝑖
for 𝑖 = 1, 2, . . ..

Define the operators 𝐹 and 𝐴 on 𝑌 by
(𝐹𝑥)(𝑡) = 𝑓(𝑥(𝑡)) and 𝐴𝑥(𝑡) = (𝐾𝐹𝑢)(𝑡) for 𝑡 ∈ [0, 1],

respectively, where the operator𝐾 is defined as in (7).
It is easy to see that𝐴 : 𝑌 → 𝑌 is completely continuous.

By direct computation, we can easily get the following lemma.

Lemma 6. (𝜆, 𝑥) ∈ (0,∞) × 𝐶
2
[0, 1] is a solution of BVP (1)

if and only if (𝜆, 𝑥) ∈ 𝐸 is a solution of equation
𝑥 = 𝜆𝐴𝑥. (18)

For 𝑦 ∈ 𝑌, by the mean-value theorem for the integral,
there exists a point 𝜉 ∈ (0, 1) such that

𝑦 (1) = ∫

1

0

𝑎 (𝑠) 𝑦 (𝑠) 𝑑𝑠 = 𝑦 (𝜉) ∫

1

0

𝑎 (𝑠) 𝑑𝑠. (19)

Let 𝑥
0
(𝑡) = 1, 𝜔

0
(𝑡) = 𝐾(𝑥

0
(𝑡)) for each 𝑡 ∈ [0, 1] and 𝑒(𝑡) =

𝜉(1 − 𝜉)𝑡 ∫

1

0
𝑎(𝑠)𝑑𝑠/(1 − 𝜉 ∫

1

0
𝑎(𝑠)𝑑𝑠). Let 𝜔(𝑡) = 𝑀

0
𝜔
0
(𝑡) for

each 𝑡 ∈ [0, 1], where𝑀
0
> 0 is a constant to be defined later.

The set𝑊 is defined by

𝑊 = {𝑥 ∈ 𝑋 | 𝑥 (𝑡) + 𝜔 (𝑡)

≥ ‖𝑥 (𝑡) + 𝜔 (𝑡)‖ 𝑒 (𝑡) , 𝑡 ∈ [0, 1]} .

(20)

Obviously𝑊 ∈ 𝑋 is a closed convex set, and, for each 𝜏 > 0,

𝜏𝑊 = {𝑦 = 𝜏𝑥 | 𝑥 ∈ 𝑊}

= {𝑦 ∈ 𝑋 |

1

𝜏

𝑦 (𝑡) + 𝜔 (𝑡)

≥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝜏

𝑦 (𝑡) + 𝜔 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒 (𝑡) , 𝑡 ∈ [0, 1]}

= {𝑦 ∈ 𝑋 | 𝑦 (𝑡) + 𝜏𝜔 (𝑡)

≥
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) + 𝜏𝜔 (𝑡)

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) , 𝑡 ∈ [0, 1]} .

(21)

Lemma 7. Let 𝑀
0
be a positive number such that 𝑓(𝑥) ≥

−𝑀
0
, for each 𝑥 ∈ 𝑅. Then
(1) 𝐴 : 𝑌 → 𝑊;
(2) for each 0 < 𝜏

1
< 𝜏
2
< ∞, 𝜏

1
𝑊 ⊂ 𝜏

2
𝑊.

Proof. (1) For each 𝑥 ∈ 𝑌, let 𝑦 = 𝐴𝑥 + 𝜔 = 𝐿(𝐹𝑥 + 𝑀
0
𝑥
0
).

By direct computation we have

𝑦
󸀠󸀠

(𝑡) + (𝑓 (𝑥 (𝑡)) + 𝑀
0
) = 0, 0 < 𝑡 < 1

𝑦 (0) = 0, 𝑦 (1) = ∫

1

0

𝑎 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(22)

Since 𝑓(𝑥(𝑡)) +𝑀
0
≥ 0, then 𝑦

󸀠󸀠
(𝑡) ≤ 0, and so 𝑦 is a concave

function on [0, 1]. From (7), it is easy to see that

𝑦 (1) =

1

1 − ∫

1

0
𝑠𝑎 (𝑠) 𝑑𝑠

× ∬

1

0

𝐺 (𝜏, 𝑠) 𝑎 (𝜏) [𝑓 (𝑥 (𝑠)) + 𝑀
0
] 𝑑𝜏 𝑑𝑠 ≥ 0.

(23)

Using the concavity of 𝑦 and the boundary condition 𝑦(0) =

0, 𝑦(1) ≥ 0, we can see that 𝑦(𝑡) ≥ 0 for each 𝑡 ∈ [0, 1] and
‖𝑦‖ = max

𝑡∈[0,1]
𝑦(𝑡); we have from the concavity of 𝑦 that

𝑦 (𝑡) ≤

𝑦 (1) − 𝑦 (𝜉)

1 − 𝜉

(𝑡 − 1) + 𝑦 (1) , 𝑡 ∈ [0, 𝜉] . (24)

By (19), we have 𝑦(𝜉) = 𝑦(1)/ ∫

1

0
𝑎(𝑠)𝑑𝑠. Hence,

𝑦 (𝑡)

≤ 𝑦 (1)

∫

1

0
𝑎 (𝑠) (1 − 𝜉) 𝑑𝑠 + (1 − 𝑡) (1 − ∫

1

0
𝑎 (𝑠) 𝑑𝑠)

∫

1

0
𝑎 (𝑠) (1 − 𝜉) 𝑑𝑠

≤ 𝑦 (1)

∫

1

0
𝑎 (𝑠) (1 − 𝜉) 𝑑𝑠 + (1 − ∫

1

0
𝑎 (𝑠) 𝑑𝑠)

∫

1

0
𝑎 (𝑠) (1 − 𝜉) 𝑑𝑠

= 𝑦 (1)

1 − 𝜉 ∫

1

0
𝑎 (𝑠) 𝑑𝑠

∫

1

0
𝑎 (𝑠) (1 − 𝜉) 𝑑𝑠

, 𝑡 ∈ [0, 𝜉] .

(25)

From the concavity of 𝑦, we have for each 𝑡 ∈ [𝜉, 1] that

𝑦 (𝑡) ≤

𝑦 (𝜉)

𝜉

𝑡 ≤

𝑦 (𝜉)

𝜉

≤ 𝑦 (1)

1 − 𝜉 ∫

1

0
𝑎 (𝑠) 𝑑𝑠

∫

1

0
𝑎 (𝑠) 𝜉 (1 − 𝜉) 𝑑𝑠

.

(26)

It follows from (25) and (26) that

𝑦 (1) ≥

𝜉 (1 − 𝜉) ∫

1

0
𝑎 (𝑠) 𝑑𝑠

1 − 𝜉 ∫

1

0
𝑎 (𝑠) 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
. (27)

Then we have from the concavity of 𝑦 that

𝑦 (𝑡) ≥ (𝑦 (1) − 𝑦 (0)) 𝑡 = 𝑦 (1) 𝑡

≥

𝜉 (1 − 𝜉) ∫

1

0
𝑎 (𝑠) 𝑑𝑠

1 − 𝜉 ∫

1

0
𝑎 (𝑠) 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
𝑡 =

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) ;

(28)

that is,

𝐴𝑥 (𝑡) + 𝜔 (𝑡) ≥ ‖𝐴𝑥 (𝑡) + 𝜔 (𝑡)‖ 𝑒 (𝑡) , 𝑡 ∈ [0, 1] . (29)

This implies that 𝐴 : 𝑌 → 𝑊, and, therefore, conclusion (1)
holds.

(2) Since 𝐴𝜃 = 𝜃, from (1), we see that

𝜔 (𝑡) = 𝐴𝜃 (𝑡) + 𝜔 (𝑡) ≥ ‖𝐴𝜃 (𝑡) + 𝜔 (𝑡)‖ 𝑒 (𝑡)

= ‖𝜔 (𝑡)‖ 𝑒 (𝑡) , 𝑡 ∈ [0, 1] .

(30)

For each 𝑥 ∈ 𝜏
1
𝑊, we have

𝑥 (𝑡) + 𝜏
1
𝜔 (𝑡) ≥

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) + 𝜏

1
𝜔 (𝑡)

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) , 𝑡 ∈ [0, 1] . (31)
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Then by (30) and (31), we have

𝑥 (𝑡) + 𝜏
2
𝜔 (𝑡) = 𝑥 (𝑡) + 𝜏

1
𝜔 (𝑡) + (𝜏

2
− 𝜏
1
) 𝜔 (𝑡)

≥ [
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) + 𝜏

1
𝜔 (𝑡)

󵄩
󵄩
󵄩
󵄩

+ (𝜏
2
− 𝜏
1
) ‖𝜔 (𝑡)‖] 𝑒 (𝑡)

≥
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) + 𝜏

2
𝜔 (𝑡)

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) , 𝑡 ∈ [0, 1] .

(32)

This implies that 𝑥 ∈ 𝜏
2
𝑊. Thus, 𝜏

1
𝑊 ⊂ 𝜏

2
𝑊.

3. Main Results

Theorem 8. Suppose that 𝑎(𝑠) is symmetrical in [0, 1], 𝑓
0

∈

(0,∞), and there exists𝑀
0
> 0 such that𝑓(𝑥) ≥ −𝑀

0
for each

𝑥 ∈ 𝑅. Then for each integer 𝑖 > 0 and each ] = +, or −, there
exists an unboundedmaximal subcontinuum𝐶

]
𝑛𝑖
of solutions of

BVP (1) in Φ
]
2𝑖
∪ {((2𝑖𝜋)

2
/𝑓
0
, 0)}, which meets {((2𝑖𝜋)2/𝑓

0
, 0)}

in Σ and satisfies

(1) 𝐶
+

𝑛𝑖
∩ ({𝜆} × 𝑌) ̸= 0 for each 𝑖 ≥ 1, 𝜆 ≥ (2𝑖𝜋)

2
/𝑓
0
;

(2) 𝐶
−

𝑛𝑖
∩ ({𝜆} × 𝑌) ̸= 0 for each 𝑖 ≥ 1, 𝜆 ≥ (2𝑖𝜋)

2
/𝑓
0
.

Proof. Since 𝑓
0

∈ (0,∞), the operator equation (18) can be
rewritten as

𝑥 = 𝜆𝑓
0
𝐾𝑥 + 𝐻 (𝜆, 𝑥) . (33)

Here 𝐻(𝜆, 𝑥) = 𝜆𝐴𝑥 − 𝜆𝑓
0
𝐾𝑥 and 𝐾 is defined as in (7).

Obviously, it is easy to see that𝐻(𝜆, 𝑢) = 𝑜(‖𝑢‖
1
) for 𝑢 near 0

uniformly on bounded 𝜆 intervals. Notice that𝐾 is a compact
linear map on 𝑌. A solution of BVP (1) is a pair (𝜆, 𝑥) ∈ 𝐸. By
𝑓
0
∈ (0,∞), the known curve of solutions {(𝜆, 0) | 𝜆 ∈ 𝑅

+
}

will henceforth be referred to as the trivial solutions. The
closure of the set on nontrivial solutions of BVP (1) will be
denoted by Σ as inTheorem A.

If 𝐻(𝜆, 𝑥) ≡ 0, then (33) becomes a linear system

𝑥 = 𝜆𝑓
0
𝐾𝑥. (34)

By Lemmas 3, 4, and 5, (34) possesses an increasing sub-
sequence {𝜆

𝑛𝑖
/𝑓
0
} = {(2𝑖𝜋)

2
/𝑓
0
} of simple eigenvalues

sequence {𝜆
𝑛
/𝑓
0
} and (2𝑖𝜋)

2
/𝑓
0

→ +∞ as 𝑖 → +∞. Any
eigenfunction 𝜑

𝑘
(𝑡) = sin(𝜂

𝑘
𝑡) corresponding to 𝜆

𝑘
/𝑓
0
is in

𝑇
+

𝑘
. Moreover, 𝜑

𝑛𝑖
(𝑡) ∈ 𝑇

+

2𝑖
for 𝑖 = 1, 2, . . . and 𝜑

𝑘
(𝑡) ∉ 𝑇

+

2𝑖
for

𝑘 ̸= 𝑛
𝑖
.

Consider (33) as a bifurcation problem from the trivial
solution. FromTheoremAand𝑓

0
∈ (0,∞), it follows that, for

each integer 𝑖 ≥ 1,∑ possess a maximal subcontinuum 𝐶
𝑛𝑖

⊆

𝐸 which can be decomposed into two subcontinua 𝐶
+

𝑛𝑖
, 𝐶
−

𝑛𝑖

such that, for some neighborhood 𝐵 of ((2𝑖𝜋)2/𝑓
0
, 0),

(𝜆, 𝑥) ∈ 𝐶
+

𝑛𝑖
(𝐶
−

𝑛𝑖
) ∩ 𝐵, (𝜆, 𝑥) ̸= (

(2𝑖𝜋)
2

𝑓
0

, 0) , (35)

implying (𝜆, 𝑥) = (𝜆, 𝛼𝜑
𝑛𝑖

+ 𝑤), where 𝛼 > 0 (𝛼 < 0) and
|𝜆 − ((2𝑖𝜋)

2
/𝑓
0)
| = 𝑜(1), ‖𝑤‖

1
= 𝑜(|𝛼|) for 𝛼 near 0.

By (18) and the continuity of the operator 𝐴 : 𝑌 → 𝑍,
the set 𝐶]

𝑛𝑖
lies in 𝑅 × 𝑍 and the injection 𝐶

]
𝑛𝑖

→ 𝑅 × 𝑍 is
continuous. Moreover, note that 𝐶]

𝑛𝑖
∩ ({0} ×𝑍) = 0. So, 𝐶]

𝑛𝑖
is

also a continuum in 𝑅 × 𝑍, and the above properties hold in
𝑅 × 𝑍.

Since 𝑇
2𝑖
is open in 𝑍 and 𝜑

𝑛𝑖
(𝑡) ∈ 𝑇

+

2𝑖
, we know that

𝑥

𝛼

= 𝜑
𝑛𝑖

+

𝑤

𝛼

∈ 𝑇
+

2𝑖
(36)

for 0 ̸= 𝛼 sufficiently small. Then there exists 𝜖
0
> 0 such that,

for 𝜖 ∈ (0, 𝜖
0
), we have

(𝜆, 𝑥) ∈ Φ
2𝑖
, (𝐶

𝑛𝑖
\ {(

(2𝑖𝜋)
2

𝑓
0

, 0)}) ∩ 𝐵
𝜖
⊂ Φ
2𝑖
,

(37)

where 𝐵
𝜖
is an open ball in 𝑅 × 𝑍 of radius 𝜖 centered at

((2𝑖𝜋)
2
/𝑓
0
, 0). Since 𝑇

]
2𝑖
is open in 𝑍, it can follow, similar to

the proof of Proposition 4.1 in [15], that

(𝜆, 𝑥) ∈ 𝐶
𝑛𝑖

∩ (𝑅 × 𝜕𝑇
2𝑖
) 󳨐⇒ 𝑥 = 0, (38)

which means 𝐶
𝑛𝑖
\ {((2𝑖𝜋)

2
/𝑓
0
, 0)} ∩ 𝜕Φ

2𝑖
= 0. Consequently,

𝐶
𝑛𝑖
lies in Φ

2𝑖
∪ {((2𝑖𝜋)

2
/𝑓
0
, 0)}.

Similarly we can obtain that 𝐶
]
𝑛𝑖

lies in Φ
]
2𝑖

∪

{((2𝑖𝜋)
2
/𝑓
0
, 0)} (] = + or −). Noticing that𝑇+

𝑘
∩𝑇
−

𝑘
= 0, it can

be obtained that 𝐶+
𝑛𝑖

∩ 𝐶
−

𝑛𝑖
= ((2𝑖𝜋)

2
/𝑓
0
, 0). From Theorem

A, we know that 𝐶+
𝑛𝑖
and 𝐶

−

𝑛𝑖
are unbounded in 𝑅 × 𝑍.

Let 𝜆 ≥ (2𝑖𝜋)
2
/𝑓
0
be fixed. For each 0 < 𝜏 < 𝜆 and 𝑥 ∈ 𝑍,

(𝜏, 𝑥) is a solution of (18), and by Lemma 7, 𝑥 = 𝜏𝐴𝑥 ∈ 𝜏𝑊 ⊂

𝜆𝑊. Thus,

𝑥 (𝑡) + 𝜆𝜔 (𝑡) ≥ ‖𝑥 (𝑡) + 𝜆𝜔 (𝑡)‖ 𝑒 (𝑡) , 𝑡 ∈ [0, 1] , (39)

since

𝜔 (𝑡) = 𝑀
0
𝜔
0
(𝑡) ≤ 𝑀

0

𝑡

1 − 𝜉 ∫

1

0
𝑎 (𝑠) 𝑑𝑠

∫

1

0

(1 − 𝑠) 𝑑𝑠

<

(𝑀
0
+ 1) 𝑡

2 (1 − 𝜉 ∫

1

0
𝑎 (𝑠) 𝑑𝑠)

≤ 𝑐
1
𝑒 (𝑡) , 𝑡 ∈ [0, 1] ,

(40)

where 𝑐
1
≥ (𝑀
0
+ 1)/2𝜉 ∫

1

0
𝑎(𝑠)(1 − 𝜉)𝑑𝑠, and so

𝑥 (𝑡) ≥ (‖𝑥‖ − 𝜆 ‖𝜔‖ − 𝜆𝑐
1
) 𝑒 (𝑡) , 𝑡 ∈ [0, 1] . (41)

Let 𝑅(𝜆) = 2(𝜆‖𝜔‖ + 𝜆𝑐
1
). Then for each (𝜏, 𝑥) ∈ Σ, 𝜏 ̸= 0,

‖𝑥‖ ≥ 𝑅(𝜆), we have 𝑥(𝑡) ≥ 0 for 𝑡 ∈ [0, 1]. This implies that

𝐶
+

𝑛𝑖
∩ ([0, 𝜆] × {𝑥 ∈ 𝑌 | ‖𝑥‖ = 𝑅 (𝜆)}) = 0 (𝑖 ≥ 1) ,

𝐶
−

𝑛𝑖
∩ ([0, 𝜆] × {𝑥 ∈ 𝑌 | ‖𝑥‖ = 𝑅 (𝜆)}) = 0 (𝑖 ≥ 1) .

(42)

Thus, the conclusion holds and the proof is complete.

Immediately, from Theorem 8, we have the following
result.
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Theorem9. Suppose that all the conditions ofTheorem 8 hold.
Then, for each 𝜆 > (2𝑖𝜋)

2
/𝑓
0
, BVP (1) has at least 2𝑖 nodal

solutions 𝑢
+

𝑛1
, 𝑢
−

𝑛1
, 𝑢
+

𝑛2
, 𝑢
−

𝑛2
, . . . , 𝑢

+

𝑛𝑖
, 𝑢
−

𝑛𝑖
in 𝑌 such that 𝑢

+

𝑛𝑖
has

(2𝑖 − 1) zeros in (0, 1) and is positive near 𝑡 = 0 and 𝑢
−

𝑛𝑖
has

(2𝑖 − 1) zeros in (0, 1) and is negative near 𝑡 = 0.

4. An Example

Consider the following nonlinear second-order integral
boundary value problem:

𝑥
󸀠󸀠

(𝑡) + 𝑓 (𝑥 (𝑡)) = 0, 0 < 𝑡 < 1

𝑥 (0) = 0, 𝑥 (1) = ∫

1

0

(𝑠 − 𝑠
2
) 𝑥 (𝑠) 𝑑𝑠,

(43)

where 𝑓(𝑥) = 104𝜋
2 sin(𝑥).

By direct computation, it is easy to see that 𝑓
0

=

lim
𝑥→0

(104𝜋
2 sin(𝑥)/ sin(𝑥)) = 104𝜋

2, so, (2𝑖𝜋)
2
/𝑓
0

=

4𝑖
2
𝜋
2
/104 𝜋

2
= 𝑖
2
/26.

Next, we check that all the conditions ofTheorem 9 hold.
Take 𝑎(𝑠) = 𝑠 − 𝑠

2. It is clear that 0 < ∫

1

0
𝑎
2
(𝑠)𝑑𝑠 = 1/30 <

1, and 𝑎(𝑠) is symmetrical in [0, 1], and 𝑎(𝑠) ∈ 𝐿[0, 1] is
nonnegative. Since 𝑓(𝑥) = 104𝜋

2 sin(𝑥) ≥ 104𝜋
2, 𝑓
0

=

104𝜋
2
∈ (0,∞), and 𝜆 = 1. It follows fromTheorem 9, when

𝑖
2
/26 < 1, we have 𝑖 = 1, 2, 3, 4, 5, so the boundary value

problem (43) has at least 10 nodal solutions in 𝐶
1
[0, 1].
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