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The main objective of the paper is to study new integral inequality on time scales which is used for the study of some partial dynamic

equations. Some applications of our results are also given.

1. Introduction

During past few decades many authors have established
various dynamic inequalities useful in the development of
differential and integral equations. Mathematical inequalities
on time scales play an important role in the theory of dynamic
equations. The study of time scale was initiated by Hilger
(1] in 1990 in his Ph.D. thesis which unifies continuous and
discrete calculus. Since then, many authors have studied
various properties of dynamic equations on time scales [2-
9].

In what follows, let R denotes the set of real numbers
and let T denote the arbitrary time scales. Let R, = [0, 0c0),
T, = [0,a],and T, = [0, b] be subsets of R and Q = T, x T,.
Let C,4 denote the set of rd-continuous function. The partial
delta derivative of v(x, y) for (x, y) € Q with respect to x, ,
and xy is denoted by VA (x, ¥), VA2 (x, y), and VA 182 (x, y) =
v*2%1(x, y). We assume here understanding of time scales
calculus and notations. Further information about time scales
calculus can be found in [1, 5, 10].

We require the following lemmas given in [5, 6].

Lemma 1 (see [5], Theorem 2.6). Letu € C4(T,R,),a € R,,
and

ut () <a®)u(), )
for all t € T; then
u(t) <ul(ty)e,(t,ty), (2)
forallt € TF,

Lemma 2 (see [6], Lemma 2.1). Let u,a,b € C,4(Q,R,) and
a(x, y) is nondecreasing in (x, y) € Q and

X [y
u(x,y)Sa(x,y)+J J b(s,t)u(s,t)AtAs, (3)

Xo “Yo

for (x, y) € Q; then
u(xy) <a(xy)equy (%%). (4)

where

y
Qxy) = | bxoas (5)

Yo

for (x, y) € Q.

2. Main Results

Now in this section we give our main results.

Theorem 3. Let u(x, y), w(x, y), p(x, y), q(x, ), r(x, y) €
C.4(Q,R,) and suppose that

X N y
u(x,y)gc+j w(s,y)u(s,y)As+J J p(s.t)

X0 So 7YYo

X [u (s,t) + r Jt q@&ur)ATAE  (6)

So Jto

a b
+J J r(E,T)u(E,T)ATAE] At As,

a, b
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or (x, y) € Q, where ¢ > 0 is a constant. I
y

a b
9= J- J r&1t)AE 1) €H(x,y) (&,7,) AT AE, )

by
where

H(x,y) = JT A(x,t) [p(x,1) +q(x,1)] At, (8)

‘l(’lc’ }’) ew(x,y) (':C”ICO) > (9)
or (x, y) € Q, then
Y

c
l-g

u(xy) < T— A% y) ey (X0 X)s (1)

for (x,y) € Q.

Proof. Define a function z(x, y) by
x (y
> = ( > t)
z(x,y) C+LO J-yop s
s t
X [u(s, t) x J L q&nuE 1) AT AE (1)

+ r r r&ul ) At A&] At As.
Then (6) is

u(x,y)<z(x,y)+ Jx w(s,y)u(s, y)As. (12)

Xo

Itis easy to see that z(x, y) is nonnegative, rd-continuous, and
nondecreasing function for (x, y) € Q. Treating y fixed and
using Lemma 1 we get

u(x,y)<A(xy)z(xy), 13)

for (x, y) € Q, where A(x, y) is defined by (9). From (11), (12),
and the fact that A(x, y) > 1, we have

z(x,y)éc+£; J}:P(S,f)

X [A (s,t) z (s, 1)

s t
+[ [ a@nagy
x z (&, 1) AT A&

yﬁgr@ﬂA@ﬂ

x z (& 1) ATAE] At As

<c+ Jj Jyp(s,t)A(S,t)

Yo
X [z(s,t)+J J-t q&1)AE,T)
x z (&, 1) AT AE
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yﬁgh@ﬂA@ﬂ

x z (& 1) ATAE] At As.

(14)
Define a function v(x, y) by right hand side of (14). Then
v(0, y) = v(x,0) = ¢, z(x, ¥) < v(x, ). One has
VA8 = p(x, ) A(x y)

x oy
x[z(x,y)+J I q&1)AE 1)z (& 1) AT AE

Xo *Yo

a b
+J J r(f,,T)A(E,T)z(E,T)ATAE]

0 bO

<p(ey)Axy)
x
X [v(x,y) + L L q& T AET)V(E T)ATAE

a b
+J J T(f,T)A(E,T)v(E,T)ATAE] .
ay Jb,

(15)

Define a function f(x, y) by
x (y
Fen=ve)+| [ a@nacovEnarag
X0 *Yo

a b
+J J r& 1) A& ) v(E 1) AT AL
ay Jby (16)

then v(x, y) < f(x, ), V%1 (x, ) < plx, ) ACx, y) f(x, ),
f (x5 ) = f (5 3)
a b
:C+J J rEDAEDVEDATAE (17)
ay Jby
= M (say),

fAR () = v (x,9)
+q(x ) A(xy)v(xy)
<p(xy)A(sy) f(xy) (18)
+q(xy)A(xy) f (%)
=A(xy) [p(xy) +a(xy)] f(x ).
By keeping x fixed in (18), taking y = t and delta integrating
with second variable from y, to y. Using the fact that

f21(x, 5,) = 0and f(x, y) is nondecreasing in (x, y) € €,
we have

y
Ar(xy) < J A1) [p(xt)+q(x0)] f (x,t) At
Yo (19)

< f(xy) Jyy A(x,t) [p(x, 1) +q(x,1)] At.

Let

— y
Q(x,y):J A(xt)[p(x,t) +q(xt)] At (20)

Yo
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then (20) gives

A (09) < f(2)Qxy). (2D
Now treating y fixed in (21) and applying Lemma 1, we have
fxy) < Meg..y) (%, %) - (22)

From (18), (22), and (7), it is easy to see that

c
M < .
- 1_ g (23)
Using (23) in (22) and the fact that z(x, y) < v(x, y) and
z(x, y) < A(x, y)v(x, y) we get the inequality in (10).
This completes the proof. O

3. Applications

Now we give some application of theorem to study properties
of solutions of initial value problem:

Ut (x, y) = (w(x, y) u (x, )™
+ G<x,y;u(x’J’)’

r Jbo h(x, y,&1,u&71)) ATAE),

ay b,
u(x y) = a(x),

u(xe,y) = B(¥),
a(x) = (%) =0,

(24)
where « € C4(T;,R), f € Cy(T,,R)for0 <& < x,0< 7 <
y,h e Cy(Q* xR,R), G € Cry(Q x R%ER), p € Cq(Q,R) is
delta differentiable with respect to y.

We observe that (24) is equivalent to

u(x,y)
:F(x,y)+J w(s, y)u(s, y)As

Xo

x ry
+J J G(s,t,u(s,t),
X0 “ Yo

a b
J J his,t,&,1,u (&, 1)) ATAE)AtAs,

ay 7%

(25)

where

Fxy)=a@+B0)- |

Xo

X

p(syo)als)As.  (26)
The following theorem deals with estimate on solution (24).

Theorem 4. Suppose
|F (x,y) <c,
|h(x, y,s,t,u)| <k(x,y)r(s,t)|ul, (27)
|G (x, you, )| < p (x, p) (lul + [al),

where p, r, ¢ which are as in Theorem 3 and k(x, y) is rd-
continuous function defined on Q such that k(x, y) > 1. Let

a rb
9o ZJ J rG 1) AG T g, (§7) ATAE,  (28)

ay Jby
where
H(x,y) :J A(x,t) p(x,t)k(x,1) At, (29)
to
Ax,y) = Cu(ry) (x, %) (30)
for (x, y) € Q. Ifu(x, y) is any solution of (24), then
c —
uley) <o p A(x,y) egs, ) (%, %0) » 31)
o

where (x, y) € Q.

Proof. The solution u(x, y) of (24) satisfies (25). Using (27) in
(25) we have

. )
<ot [l luts )l as

+ j j:op(s,t)

X [ (s, 1)
a b
+ LO Lﬂk(s, Hr& 1)

X |u (& 1) ATAE] At As (32)

<ot [ i)l luts )l as

+ Jx Jy p(s,t)k(s,t)

X0 7o

X [IM(SJ)I

[ L

x |u (&, 7)| AT AE | At As.

Now an application of Theorem 3 (with g = 0) to (32) yields
(30).
This completes the proof. O

Now we establish the uniqueness of solutions of (24).

Theorem 5. Suppose that
|h(x, y, s, t,u) —h(x, y,s,t,0)| < k(x, y)r(s,t) lu—1ul,
|G (x, y,u, ) = G (x, y, v, 9)| < p (%, ¥) (Ju = v| + [u = 7]),
(33)

wherek, p, and r are as in Theorem 4. Let g, and A(x, y) be as
in (28) and (30). Then (24) has at most one solution on G.



Proof. Let u(x, y) and v(x, y) be two solutions of (24) on Q;
then we have

u(xy)=v(xy)
:j w(xy) fu(sy) - v(sy)} s

X0

+ [ G| s, t,u(st),
[ ] oot

a b
J L h(s,t,E,r,u(E,r))ArAE>

)

(34)

—G(s,t,v(s,t),

a b
J J h(s,t,f,r,v(&,r))ATAf)}AtAs.

ay Jb

From (34) and (33) we obtain
|u(x y) = v(x,9)|
< [ et y) - vis s

+ J:; J'}: p(s,t)

X ( (s, t) —v(s,t)| + k(s t)

[ L

xuE 1) -v(ET)| ATAE) At As.

(35)

Applying Theorem 3 (with ¢ = 0, g = 0) yields
Ju(x,y) - v(x y)| <0. (36)
Therefore u(x, y) < v(x, y); there is at most one solution of
(24) in Q. O
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