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This paper studies Volterra integral evolution equations of convolution type from the point of view of complex inversion formula
and the admissibility in the Salamon-Weiss sens. We first present results on the validity of the inverse formula of the Laplace
transform for the resolvent families associated with scalar Volterra integral equations of convolution type in Banach spaces, which
extends and improves the results in Hille and Philllips (1957) and Cioranescu and Lizama (2003, Lemma 5), respectively, including
the stronger version for a class of scalar Volterra integrodifferential equations of convolution type on unconditional martingale
differences UMD spaces, provided that the leading operator generates a 𝐶

0
-semigroup. Next, a necessary and sufficient condition

for 𝐿𝑝-admissibility (𝑝 ∈ [1,∞[) of the system’s control operator is given in terms of the UMD-property of its underlying control
space for a wider class of Volterra integrodifferential equations when the leading operator is not necessarily a generator, which
provides a generalization of a result known to hold for the standard Cauchy problem (Bounit et al., 2010, Proposition 3.2).

1. Introduction

The purpose of this paper is to analyze conditions for
the inversion formula and the 𝐿

𝑝-admissibility for control
operators for the solution of the following integrodifferential
equation:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + ∫

𝑡

0

𝑘 (𝑡 − 𝑠) 𝐴𝑥 (𝑠) 𝑑𝑠 + 𝐵𝑢 (𝑡) , 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
∈ 𝑋,

(1)

which has a “big” intersection with the class of scalar Volterra
integral equations. Here we assume that 𝐴 is a closed linear
densely defined operator in a Banach space 𝑋, and the
kernel 𝑘 belonging to 𝐿

1

loc(R
+
) is real-valued and of at

most exponential growth. 𝐵 is a (possibly unbounded) linear
operator on another Banach space𝑈 and the control function
𝑢 ∈ 𝐿

𝑝

loc(R
+
; 𝑈).

It is further assumed that the uncontrolled system, that is,

�̇� (𝑡) = 𝐴𝑥 (𝑡) + ∫

𝑡

0

𝑘 (𝑡 − 𝑠) 𝐴𝑥 (𝑠) 𝑑𝑠, 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
,

(2)

is well-posed, which is equivalent to the existence of a unique
family of bounded linear operators (𝑆(𝑡))

𝑡≥0
on 𝑋 called the

resolvent or solution family for (2), where wewrite (𝑆(𝑡))
𝑡≥0

⊂

L(𝑋)) (see Section 2) and that (𝑆(𝑡))
𝑡≥0

is exponentially
bounded.

Many authors have studied this class of Volterra integral
equations by the classical approach and for different reasons,
using the Laplace transform (see, e.g., Da Prato and Iannelli
[1, 2], Grimmer and Pritchard [3], Lunardi [4], and Prüss [5,
6]). Maximal-𝐿𝑝 regularity results are due to Clément andDa
Prato [7] and Prüss [6]. In addition to the classical approach,
there is a semigroup approach which was used in, for exam-
ple, Miller [8], Chen and Grimmer [9, 10], Desch and Grim-
mer [11], Desch and Schappacher [12], Di Blasio et al. [13],
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Nagel and Sinestrari [14], and Engel and Nagel [15]. It was
the main objection against the semigroup approach for many
years that it is not possible to obtain regularity of the
solutions. This is not true, as it was proved recently in [16].

From the point of view of complex inversion formula,
earlyHille and Philllips have proved in [17, p. 349] the validity
of the complex inversion formula of the Laplace transform
for 𝐶

0
-semigroups (i.e., (2) with 𝑘(𝑡) = 0) on the domain

𝐷(𝐴). In 1995, Yao has proved [18], in Hilbert spaces, the
validity of the complex inversion formula of the Laplace
transform for𝐶

0
-semigroups on𝑋. In 1999, Driouich and El-

Mennaoui have proved [19] (see also [20, Proposition 3.12.2])
that this inversion result remains true on UMD spaces.These
results have been extended to strongly continuous cosine
families by Cioranescu and Keyantuo in [21] and to strongly
continuous resolvent families by Cioranescu and Lizama in
[22]. Recently, Haase has improved some results in [23]
based on Fourier analysis and left as an open problem the
corresponding result for convoluted semigroups, which has
been solved affirmatively very recently in [24].

Several authors have been investigating the Cauchy prob-
lem from the point of view of admissibility of control opera-
tors (i.e., (2) with 𝑘(𝑡) = 0) in the past and the present [25–32]
et al. But the first studies on 𝐿

2-admissibility of control oper-
ator for Volterra integral scalar systems began with the paper
of Jung [33].The idea of treating 𝐿

2-admissibility for Volterra
integral equations has been exploited in the past years by
several authors, for example, [34–36]. In [33], the notion of
finite-time𝐿2-admissibility forVolterra integral scalar system
is linked with finite-time admissibility of the well-studied
semigroups’ (i.e., 𝑘(𝑡) = 0) case for completely positive kernel.
Likewise, in [34] infinite-time admissibility for a Volterra
scalar system is linked with infinite-time admissibility for
semigroups (i.e., 𝑘(𝑡) = 0) for a large class of kernels and the
result subsumes that of [33]. Other results are related to the
case where the generator of the underlying semigroup has a
Riesz basis of eigenvectors in [36]. In [35], the authors have
given necessary and sufficient conditions for finite-time 𝐿

2-
admissibility of linear Volterra integrodifferential systems (2)
when the underlying semigroup is equivalent to a contraction
semigroup, which generalizes an analogous result known
to hold for the standard Cauchy problem and it subsumes
the result in [33]. Recently, the authors in [37] have intro-
duced the notion of Favard spaces with respect to resolvent
families and have established a relationship between 𝐿

𝑝-
admissibilities to these Favard spaces.This extends the results
obtained for the semigroups’ case in [32]. Furthermore, it
was proved in [37] that, for scalar Volterra integral systems
with a creep kernel, finite- and infinite-time 𝐿1-admissibility
are equivalent to exponentially stable resolvent family, and if
the state space 𝑋 is reflexive then finite-time and uniformly
finite-time 𝐿

1-admissibility are equivalent, extending well-
known results for semigroups.

We proceed as follows. In Section 2, we review some well-
known properties of resolvent families for scalar Volterra
integral equations and their properties. Section 3 contains
the definition of the UMD space and recalls some results on
the complex inversion formula for wide classes of families

of bounded linear operators on UMD spaces and prove the
analogue of [17,Theorem 11.6.2] which is applied in Sections
4 and 5. Our hypotheses on the kernel differ from those
considered by [22, 23] and can contain a class of completely
positive functions (see [35, Example 4.5]). In Section 4, we are
concerned with a class of scalar integrodifferential Volterra
equations. First we embed this class in a larger Cauchy
system, a technique originating in Engel and Nagel [15, VI.7],
in order to prove some results concerning the validity of
the complex inversion formula. In Section 5, we go back
to the study of the admissibility of control operators for
Volterra integrodifferential equations (1) in the same spirit
of semigroups and we get a new criterion to judge 𝐿

𝑝-
admissibility (𝑝 ∈ [1,∞[) of control operators in terms of
UMDproperty of its underlying control space. If we set 𝑘(𝑡) =
0 then we recover the result in [38] for the semigroups. Note
that this paper involves in particular a nonscalar kernel of the
form “𝐾(𝑡) = 𝑘(𝑡)𝐴” and so a natural question is whether
the situation extends when 𝐾(𝑡) is a nonscalar kernel. In
a forthcoming work, we will consider a class of nonscalar
kernels.

2. Review on Resolvent Families

In this subsection, we collect some elementary facts about
scalar Volterra integral equations and resolvent families.
These topics have been covered in detail in [6]. We refer to
these works for reference to the literature and further results.

Let (𝑋, ‖ ⋅ ‖
𝑋
) be a Banach space; let 𝐴 be a linear closed

densely defined operator in𝑋; 𝑎 ∈ 𝐿
1

loc(R
+
) is a scalar kernel.

We consider the linear Volterra integral equation

𝑥 (𝑡) = 𝑥
0
+ ∫

𝑡

0

𝑎 (𝑡 − 𝑠) 𝐴𝑥 (𝑠) 𝑑𝑠, 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
∈ 𝑋.

(3)

We denote by [𝐷(𝐴)] the domain of 𝐴 equipped with the
graph norm.

We define the convolution product of the scalar function
𝑎 with a vector-valued function 𝑓 by

(𝑎 ∗ 𝑓) (𝑡) := ∫

𝑡

0

𝑎 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (4)

Definition 1. A function 𝑥 ∈ 𝐶(R+
, 𝑋) is called

(i) strong solution of (3) if 𝑥 ∈ 𝐶(R+
, [𝐷(𝐴)]) and (3) is

satisfied,
(ii) mild solution of (3) if 𝑎 ∗ 𝑥 ∈ 𝐶(R+

, [𝐷(𝐴)]) and

𝑥 = 𝑥
0
+ 𝐴 [𝑎 ∗ 𝑥] (𝑡) , 𝑡 ≥ 0. (5)

Obviously, every strong solution of (3) is a mild solution.
Conditions under which mild solutions are strong solutions
are studied in [6].

Definition 2. Equation (3) is called well-posed if, for each V ∈

𝐷(𝐴), there is a unique strong solution 𝑥(𝑡, V) on R+ of

𝑥 (𝑡, V) = V + (𝑎 ∗ 𝐴𝑥) (𝑡) , 𝑡 ≥ 0, (6)
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and, for a sequence (𝑥
𝑛
) ⊂ 𝐷(𝐴), 𝑥

𝑛
→ 0 implies 𝑥(𝑡, 𝑥

𝑛
) →

0 in𝑋, uniformly on compact intervals.

Definition 3. Let 𝑎 ∈ 𝐿
1

loc(R
+
). A strongly continuous family

(𝑆(𝑡))
𝑡≥0

⊂ L(𝑋) is called resolvent family for (3), if the
following three conditions are satisfied:

(S1) 𝑆(0) = 𝐼;
(S2) 𝑆(𝑡) commutes with 𝐴, which means that 𝑆(𝑡)

(𝐷(𝐴)) ⊂ 𝐷(𝐴), for all 𝑡 ≥ 0, and 𝐴𝑆(𝑡)𝑥 = 𝑆(𝑡)𝐴𝑥

for all 𝑥 ∈ 𝐷(𝐴) and 𝑡 ≥ 0;
(S3) for each 𝑥 ∈ 𝐷(𝐴) and all 𝑡 ≥ 0 the resolvent

equations hold:

𝑆 (𝑡) 𝑥 = 𝑥 + ∫

𝑡

0

𝑎 (𝑡 − 𝑠) 𝑆 (𝑠) 𝐴𝑥𝑑𝑠. (7)

Note that the resolvent for (3) is uniquely determined. The
proofs of these results and further information on resolvent
can be found in the monograph by Prüss [6]. We also
notice that the choice of the kernel 𝑎 classifies different
families of strongly continuous solution operators in L(𝑋).
For instance, when 𝑎(𝑡) = 1, then 𝑆(𝑡) corresponds to a 𝐶

0
-

semigroup andwhen 𝑎(𝑡) = 𝑡, then 𝑆(𝑡) corresponds to cosine
operator function. In particular, when 𝑎(𝑡) = 𝑡

𝛼−1
/Γ(𝛼)

with 0 < 𝛼 ≤ 2, they are the 𝛼-times resolvent families
studied by [39] and correspond to the solution families for
fractional evolution equations, that is, evolution equations
where the integer derivative with respect to time is replaced
by a derivative of fractional order.

The existence of a resolvent family allows one to find the
solution for (3). Several properties of resolvent families have
been discussed in [6, 40].

The following well-known result [6, Proposition 1.1]
establishes the relation betweenwell-posedness and existence
of a resolvent family.

Theorem4. Equation (3) is well-posed if and only if (3) admits
a resolvent family (𝑆(𝑡))

𝑡≥0
. If this is the case one has in addition

Range (𝑎 ∗ 𝑆)(𝑡) ⊂ 𝐷(𝐴), for all 𝑡 ≥ 0, and

𝑆 (𝑡) 𝑥 = 𝑥 + 𝐴∫

𝑡

0

𝑎 (𝑡 − 𝑠) 𝑆 (𝑠) 𝑥𝑑𝑠, (8)

for each 𝑥 ∈ 𝑋, 𝑡 ≥ 0.

From this, we obtain that if (𝑆(𝑡))
𝑡≥0

is a resolvent family
of (3), we have 𝐴(𝑎 ∗ 𝑆)(⋅) which is strongly continuous and
the so-called mild solution 𝑥(𝑡) = 𝑆(𝑡)𝑥

0
solves (3).

A resolvent family (𝑆(𝑡))
𝑡≥0

is called exponentially
bounded, if there exist 𝑀 > 0 and 𝜔 ∈ R such that ‖𝑆(𝑡)‖ ≤

𝑀𝑒
𝜔𝑡 for all 𝑡 ≥ 0, and the pair (𝑀, 𝜔) is called type of

(𝑆(𝑡))
𝑡≥0

. The growth bound of (𝑆(𝑡))
𝑡≥0

is 𝜔
0
(𝑆) := inf{𝜔 ∈

R, ‖𝑆(𝑡)‖ ≤ 𝑀𝑒
𝜔𝑡
, 𝑡 ≥ 0,𝑀 > 0}.The resolvent family is called

exponentially stable if 𝜔
0
(𝑆) < 0.

Note that, contrary to the case of 𝐶
0
-semigroup, the

resolvent for (3) needs not to be exponentially bounded;
a counterexample can be found in [6, 41]. However, there

are checkable conditions guaranteeing that (3) possesses an
exponentially bounded resolvent operator.

We will use the Laplace transform at times. Suppose 𝑔 :

R+
→ 𝑋 is measurable and there exist 𝑀 > 0 and 𝜔 ∈ R,

such that ‖𝑔(𝑡)‖ ≤ 𝑀𝑒
𝜔𝑡 for almost 𝑡 ≥ 0. Then, the Laplace

transform

𝑔 (𝜆) = ∫

∞

0

𝑒
−𝜆𝑡

𝑔 (𝑡) 𝑑𝑡 (9)

exists for all 𝜆 ∈ C with Re 𝜆 > 𝜔.
The following well-known generation result, stated in [6],

is quite important in this paper. It establishes the relation
between resolvent family and Laplace transform.

Proposition 5. Let 𝑎 ∈ 𝐿
1

loc(R
+
) be 𝜔-exponentially bounded.

Then, (3) admits a resolvent family (𝑆(𝑡))
𝑡≥0

of type (𝑀, 𝜔) if
and only if the following conditions hold:

(i) 𝑎(𝜆) ̸= 0 and 1/𝑎(𝜆) ∈ 𝜌(𝐴) (the resolvent set of𝐴), for
all 𝜆 > 𝜔;

(ii) 𝐻(𝜆) := (1/𝜆𝑎(𝜆))((1/𝑎(𝜆))𝐼 − 𝐴)
−1 called the resol-

vent associated with (𝑆(𝑡))
𝑡≥0

satisfies

𝐻

(𝑛)
(𝜆)


≤ 𝑀𝑛!(𝜆 − 𝜔)

−(𝑛+1)
∀𝜆 > 𝜔, 𝑛 ∈ N. (10)

Under these assumptions the Laplace transform of 𝑆(⋅) is
well-defined and it is given by 𝑆(𝜆) = 𝐻(𝜆) for all Re(𝜆) >

𝜔. Note that, for 𝑎(𝑡) = 1, Proposition 5 becomes the well-
known Hille-Yosida theorem.

3. The Complex Inversion Formula and
UMD Spaces

In this section, we review some results on the complex
inversion formula of the Laplace transform, in the strong
sense, for wide classes of families of bounded linear operators
on UMD spaces. There are several equivalent definitions of
a UMD space, one of which involves the so-called uncon-
ditional Martingale differences, but we will use a different
characterization, due to [42–44] involving the vector-valued
Hilbert transform (see [45]) for more about UMD spaces.

Let 𝑝 ∈ ]1,∞[, and define the operator H
𝜀
on 𝐿

𝑝
(R; 𝑋)

by

H
𝜀
𝑓 (𝑡) :=

1

𝜋
∫
|𝑡−𝑠|≥𝜀

𝑓 (𝑠)

𝑡 − 𝑠
𝑑𝑠 ∀𝑡 ∈ R. (11)

A Banach space 𝑋 is called a UMD space (or said to have
the UMD-property) if for some (and hence all) 𝑝 ∈]1,∞[

(see [44, 46]) H𝑓 := lim
𝜀↘0

H
𝜀
𝑓 exists in 𝐿

𝑝
(R; 𝑋) and

defines a bounded operator H on 𝐿
𝑝
(R; 𝑋). The operator

H is called the Hilbert transform on 𝐿
𝑝
(R; 𝑋). Every UMD

space is reflexive and its dual is also a UMD space. Typical
examples of UMD spaces are 𝐿

𝑝
(Ω)-spaces, Sobolev spaces

𝑊
𝑠

𝑝
(Ω), and Besov spaces 𝐵

𝑠

𝑝,𝑞
for 𝑝, 𝑞 ∈]1,∞[ and their

closed subspaces.
The natural question that comes in mind is the following:

let 𝑆(𝑡)
𝑡≥0

be the (exponentially bounded) resolvent family
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for (3) on a Banach space𝑋, under what conditions does the
complex inversion formula

lim
𝑁→∞

[𝑆
𝑁
(𝑡) 𝑥 :=

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝐻(𝜆) 𝑥𝑑𝜆] = 𝑆 (𝑡) 𝑥

(𝛼 > 𝜔
0 (𝑆) , 𝑡 ≥ 0)

(12)

holds true?
For the 𝐶

0
-semigroups’ case (i.e., 𝑎(𝑡) = 1) the classical

result [17, p. 349] is that one always has the strong con-
vergence (12) if 𝑥 ∈ 𝐷(𝐴). Recently, the authors in [38,
Proposition 4.8] have used the notion of the admissibility
and proved in [38, Proposition 4.8] that this inversion takes
place on larger spaces than 𝐷(𝐴). In Hilbert setting, the
inversion (12) has been generalized to all 𝑥 ∈ 𝑋 in [18]
using Plancherel’s Theorem. In the paper [19] Driouich and
El-Mennaoui have extended the result in [18] in the case
where 𝑋 has the UMD-property and it has been proved that
the UMD property is essential by exhibiting an example for
which the inverse Laplace transform does not always con-
verge.This was subsequently generalized from semigroups to
solution families for scalar type Volterra integral equations
(3) by Cioranescu and Lizama in [22] under some regularity
assumptions on the kernel 𝑎(𝑡). In particular, it has been
proved in [22, Proposition 2] that for 𝑎 ∈ 𝐶

1
(R+

) the
inversion for solution families forVolterra equations (3) holds
on 𝐷(𝐴). On UMD spaces, Haase in [23] has presented
new and much shorter proofs of these results (under less
strong assumptions on 𝑎(𝑡)), eventually, even generalizing
them. His approach uses some elementary Fourier analysis.
Recently, this was generalized from resolvent families to
convoluted semigroups in [24]. This inversion problem will
be studied for a class of integrodifferential Volterra equations
in the next section. Note that the class of integrodifferential
Volterra equations has a “big” intersection with the class
of Volterra integral one (partial results had been obtained
earlier). Let us signalize that early, and in Hilbert setting,
the first result to our knowledge on the inversion formula
on 𝐷(𝐴) for scalar Volterra integrodifferential equations (3)
under the conditions that 𝑘 ∈ 𝐶

1
(R+

) and both 𝑘 and 𝑘
 are

exponentially bounded is implicitly contained in [8].
Wewill have the occasion to use the following observation

which is the exact generalization of the corresponding well-
known case 𝑘(𝑡) = 0 (i.e., the semigroups) proved in
[17, Theorem 11.6.1]. We sketch the proof for the reader’s
convenience.

Proposition 6. Let 𝑎 ∈ 𝐿
1

loc(𝑅
+
) be exponentially bounded

and let (𝑆(𝑡))
𝑡≥0

be the exponentially bounded resolvent family
for (3). Then, for each 𝑥 ∈ 𝐷(𝐴) and 𝛼 > max(𝜔

0
(𝑎), 𝜔

0
(𝑆)),

we have

lim
𝑁→∞

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝐻(𝜆) 𝑥𝑑𝜆 =

{

{

{

𝑆 (𝑡) 𝑥 ∀𝑡 > 0,

𝑥

2
𝑓𝑜𝑟 𝑡 = 0

(13)

in𝑋, uniformly in 𝑡 from compact subsets of [0,∞[.

Proof. Let 𝑥 ∈ 𝐷(𝐴) and 𝛼 > max(𝑤
0
(𝑎), 𝑤

0
(𝑆)) then by the

resolvent equation (S3), we have 𝑆(𝑡)𝑥−𝑥 = (𝑎∗𝑆)(𝑡)𝐴𝑥, and
by virtue of Proposition 5 we obtain

(̂𝑎 ∗ 𝑆) (𝜆) 𝐴𝑥 = 𝑆 (𝜆) 𝑥 − 1̂ (𝜆) 𝑥

= 𝐻 (𝜆) 𝑥 −
1

𝜆
𝑥

(14)

for Re 𝜆 > 𝛼.
Thanks to [23, Proposition 2.1], for all 𝑡 ≥ 0 we have

(𝑎 ∗ 𝑆) (𝑡) 𝐴𝑥 = lim
𝑁→∞

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
(̂𝑎 ∗ 𝑆) (𝜆) 𝐴𝑥𝑑𝜆,

= lim
𝑁→∞

1

2𝑖𝜋
(∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝐻(𝜆) 𝑥𝑑𝜆

−∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡

𝜆
𝑥𝑑𝜆) ,

(15)

where the limit exists uniformly with respect to 𝑡 in [0,∞[.
On the other hand, we have

(𝑎 ∗ 𝑆) (𝑡) 𝐴𝑥 = lim
𝑁→∞

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝐻(𝜆) 𝑥𝑑𝜆

− lim
𝑁→∞

1

2𝑖𝜋
∫
𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡

𝜆
𝑥𝑑𝜆.

(16)

It is well-known that the second limit is 𝑥 if 𝑡 > 0 but 𝑥/2 if
𝑡 = 0 (see, e.g., [17]).

Indeed, we known for all 𝑥 ∈ 𝐷(𝐴) and 𝛼 > 𝑤
0
(𝐴) that

lim
𝑁→∞

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝑅 (𝜆, 𝐴) 𝑥𝑑𝜆 =

{

{

{

𝑇 (𝑡) 𝑥 ∀𝑡 > 0,

𝑥

2
for 𝑡 = 0,

(17)

in 𝑋, uniformly in 𝑡 from compact subsets of [0,∞[ where
𝑅(𝜆, 𝐴) := (𝜆𝐼 − 𝐴)

−1 is the resolvent of the semigroup
(𝑇(𝑡))

𝑡≥0
.

In particular, for 𝑇(𝑡) = 𝐼, the generator is 𝐴 = 0 and
𝑅(𝜆, 0) = 1/𝜆, thus we obtain

lim
𝑁→∞

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡

𝜆
𝑥𝑑𝜆 =

{

{

{

𝑥 ∀𝑡 > 0,

𝑥

2
for 𝑡 = 0,

(18)

in𝑋, uniformly in 𝑡 from compact subsets of [0,∞[.
Then according to the resolvent equation (S1) and (S3) in

Definition 3, for all 𝑥 ∈ 𝐷(𝐴) and 𝛼 > max(𝑤
0
(𝑎), 𝑤

0
(𝑆)) we

obtain

𝑆 (𝑡) 𝑥 − 𝑥 = lim
𝑁→∞

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝐻(𝜆) 𝑥𝑑𝜆

−
{

{

{

𝑥 ∀𝑡 > 0,

𝑥

2
for 𝑡 = 0.

(19)
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Hence we deduce that for all 𝑥 ∈ 𝐷(𝐴) and 𝛼 >

max(𝑤
0
(𝑎), 𝑤

0
(𝑆)), we have

lim
𝑁→∞

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝐻(𝜆) 𝑥𝑑𝜆 −

{

{

{

𝑆 (𝑡) 𝑥 ∀𝑡 > 0,

𝑥

2
for 𝑡 = 0,

(20)

in𝑋, uniformly in 𝑡 from compact subsets of [0,∞[.

4. Integrodifferential Equation with
Bounded Variation Kernels

The purpose here is to prove some complex inversion of
Laplace transform for the resolvent families of the integrod-
ifferential Volterra equations (2). Although our hypotheses
on kernel and the approach differ from the one considered
by [22, 23], there is a big overlap in the fundamental results.
For this class, it is known that the integrodifferential equation
(2) can be converted to an abstract Cauchy problem on a
product space (see, e.g., [15, VI.7]). This technique has been
widely used (see, e.g., [9, 10, 12, 16, 35]). In the following,
we restate some notations and related results for the sake of
convenience.

This idea in the following will be applied to the case
of the complex inversion formula for (2). Although it is a
special case of the situation considered in the above section,
it is worthwhile to deal with the partial inverse formula case
first, which generalizes the result from semigroups to solution
families for scalar Volterra equations (2) and constitutes
an extension of a result in [8]. Next, we prove the strong
convergence of the complex inversion formula for this class
on UMD spaces.

It is easy to see that (2) is equivalent to

𝑥 (𝑡) = 𝑥
0
+ ∫

𝑡

0

(1 + 1 ∗ 𝑘) (𝑡 − 𝑠) 𝐴𝑥 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (21)

In what follows, we assume that 𝑘 ∈ 𝑊
1,𝑝

(R+
) and 𝐴

generates a 𝐶
0
-semigroup (𝑇(𝑡))

𝑡≥0
on 𝑋. Recall that with

𝑘 ∈ 𝐵𝑉loc(R
+
) (the space of functions locally of bounded

variation) only, the operator 𝐴 has to be a generator of 𝐶
0
-

semigroups to obtain the well-posedness of (2), but this
condition is not much restrictive, since generation of 𝐴 is a
necessary and sufficient condition for the well-posedness of
(21) (which is equivalent to (2)) (see [6, Corollary 1.4]).

From now on, we denote by (𝑆(𝑡)
𝑡≥0

) the resolvent family
associated with (21). As in [15, VI.7, Part C], we first introduce
the product spaceX := 𝑋 × 𝐿

𝑝
(R+

; 𝑋)1 ≤ 𝑝 < ∞, which is a
Banach space with the norm



(
𝑥

𝑓
)



2

= ‖𝑥‖
2

𝑋
+
𝑓



2

𝐿
𝑝
(R+ ,𝑋)

, 𝑥 ∈ 𝑋, 𝑓 ∈ 𝐿
𝑝
(R

+
; 𝑋) .

(22)

Next, we define onX the operator matrices

T (𝑡) := (
𝑇 (𝑡) 𝑅 (𝑡)

0 𝑆
𝑙
(𝑡)

) , 𝑡 ≥ 0, (23)

where (𝑆
𝑙
(𝑡))

𝑡≥0
(the left shift semigroup) and𝑅(𝑡) are defined

on 𝐿
𝑝
(R+

; 𝑋):

(𝑆
𝑙 (𝑡) 𝑓) (𝜏) := 𝑓 (𝑡 + 𝜏) , 𝜏 ≥ 0

𝑅 (𝑡) 𝑓 := ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑓 ∈ 𝐿
𝑝
(R

+
; 𝑋) .

(24)

Then (T(𝑡))
𝑡≥0

forms a 𝐶
0
-semigroup onX with the genera-

tor given by

A := (

𝐴 𝛿
0

0
𝑑

𝑑𝑠

) , 𝐷 (A) := 𝐷 (𝐴) × 𝑊
1,𝑝

(R
+
; 𝑋) ,

(25)

where 𝑑/𝑑𝑠 denotes the generator of the semigroup (𝑆
𝑙
(𝑡))

𝑡≥0

with domain 𝐷(𝑑/𝑑𝑠) = 𝑊
1,𝑝

(R+
; 𝑋), the vector-valued

Sobolev space, and 𝛿
0
the Dirac distribution, that is, 𝛿

0
(𝑓) =

𝑓(0) for each 𝑓 ∈ 𝑊
1,𝑝

(R+
; 𝑋). Finally, define 𝑀 ∈

L(𝐷(𝐴);𝑊
1,𝑝

(R+
; 𝑋)) as follows:

𝑀𝑥 := 𝑘 (⋅) 𝐴𝑥, 𝑥 ∈ 𝐷 (𝐴) ,

M(
𝑥

𝑓
) := (

0 0

𝑀 0
)(

𝑥

𝑓
) = (

0

𝑀𝑥
) ,

(
𝑥

𝑓
) ∈ 𝐷 (M) := 𝐷 (A) ,

(26)

and denote

A
𝑉
:= A +M, 𝐷 (A

𝑉
) := 𝐷 (A) . (27)

In [15, VI.7], it is shown that A𝑉 generates a 𝐶
0
-semigroup

(T𝑉
(𝑡)) onX. In the sequel, we denote

T
𝑉
(𝑡) = (

𝑇
11

(𝑡) 𝑇
12

(𝑡)

𝑇
21

(𝑡) 𝑇
22

(𝑡)
) . (28)

We now rewrite the Volterra system (2) into an equivalent
Cauchy system as follows:

Ż (𝑡) = A
𝑉
Z (𝑡) , 𝑡 ≥ 0,

Z (0) = Z
0
∈ X.

(29)

Note that it was early observed in [6] (see also [35]) that the
solutions of (21) are given by 𝑥(𝑡) = 𝜋

1
T𝑉

(𝑡)𝑥
0
, where 𝜋

1
:

X → 𝑋 is the projection mapping (𝑥, 𝑓) to 𝑥 (see [15, VI.7])
for the 𝐿𝑝 case and [12] for𝑌 = 𝐶

𝑢𝑏
, the space of bounded and

uniformly continuous functions. That is, 𝑇
11
(𝑡) = 𝑆(𝑡) for all

𝑡 ≥ 0.
Observe that the resolvent (𝑆(𝑡))

𝑡≥0
of (21) is exponen-

tially bounded; this extends the result in [35, when 𝑝 = 2]
which has been obtained by a direct method. Indeed, the
semigroup (T𝑉

(𝑡))
𝑡≥0

is always exponentially bounded (see,
e.g., [15, Proposition 5.5, p.39]); thus there exist constants
𝑀 > 0 and 𝛼 ∈ R such that ‖T𝑉

(𝑡)‖ ≤ 𝑀𝑒
𝛼𝑡. Making use

of the fact that 𝑇
11
(𝑡) = 𝑆(𝑡), we deduce that (𝑆(𝑡))

𝑡≥0
is also

exponentially bounded and that 𝜔
0
(𝑆) ≤ 𝜔

0
(A𝑉

). Thus it is
permissible to consider its Laplace transform.
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By virtue of Proposition 5, the Laplace transform of 𝑆(⋅)𝑥
0

is well defined and it is given by

∫

∞

0

𝑒
−𝜆𝑡

𝑆 (𝑡) 𝑥
0
𝑑𝑡 = 𝐻 (𝜆) 𝑥

0
:= (𝜆𝐼 − (1 + �̂� (𝜆))𝐴)

−1

𝑥
0
,

(30)

for all Re 𝜆 > max(𝜔
0
(𝑘), 𝜔

0
(𝑆)) and 𝑥

0
∈ 𝑋.

The following lemma is quite useful.

Lemma 7. (i) For Re 𝜆 > 𝜔
∗
:= max(0, 𝜔

0
(𝑆)) and 𝑥 ∈ 𝑋, we

have

𝑅 (𝜆,A
𝑉
) (

𝑥

0
) = (

𝐻 (𝜆) 𝑥

𝑅(𝜆,
𝑑

𝑑𝑠
)𝑀𝐻(𝜆) 𝑥

) . (31)

(ii) For 𝜆 ∈ C
0
∩ 𝜌(A𝑉

) ∩ 𝜌(A), we have

𝑅 (𝜆,A
𝑉
) = (

𝐻(𝜆) 𝐻 (𝜆) 𝛿
0
𝑅(𝜆,

𝑑

𝑑𝑠
)

𝑅(𝜆,
𝑑

𝑑𝑠
)𝑀𝐻(𝜆) 𝑅(𝜆,

𝑑

𝑑𝑠
)𝑀𝐻(𝜆) 𝛿

0
𝑅(𝜆,

𝑑

𝑑𝑠
) + 𝑅(𝜆,

𝑑

𝑑𝑠
)

) , (32)

where 𝑅(𝜆, 𝑑/𝑑𝑠) is the resolvent of (𝑆
𝑙
(𝑡))

𝑡≥0
.

Proof. (i) Invoking (28) (see [6, page 339] for more informa-
tion on (T𝑉

(𝑡))
𝑡≥0

) we have

𝑇
21

(𝑡) = 𝐴∫

𝑡

0

𝑘 (𝑡 − 𝜏 + ⋅) 𝑆 (𝜏) 𝑑𝜏 ∀𝑡 > 0. (33)

Thus, using (28) for all Re 𝜆 > 𝜔
∗
:= max(0, 𝜔

0
(𝑆)), we have

∫

∞

0

𝑒
−𝜆𝑡

T
𝑉
(𝑡) (

𝑥

0
)𝑑𝑡

= (

∫

∞

0

𝑒
−𝜆𝑡

𝑆 (𝑡) 𝑥𝑑𝑡

∫

∞

0

𝑒
−𝜆𝑡

(𝐴∫

𝑡

0

𝑘 (𝑡 − 𝜏 + ⋅) 𝑆 (𝜏) 𝑥𝑑𝜏)𝑑𝑡

)

= (

𝐻(𝜆) 𝑥

∫

∞

0

𝑒
−𝜆𝑡

(𝐴∫

𝑡

0

𝑘 (𝑡 − 𝜏 + ⋅) 𝑆 (𝜏) 𝑥𝑑𝜏)𝑑𝑡
)

= (

𝐻(𝜆) 𝑥

∫

∞

0

𝑒
−𝜆𝑡

𝐴∫

𝑡

0

(𝑆
𝑙
(𝑡 − 𝜏) 𝑘) (⋅) 𝑆 (𝜏) 𝑥𝑑𝜏 𝑑𝑡

)

= (

𝐻(𝜆) 𝑥

𝑒
𝜆⋅
∫

∞

⋅

𝑒
−𝜆𝑡

((𝑆
𝑙
(⋅)𝑀) (⋅) ∗ 𝑆) (𝑡) 𝑥𝑑𝑡

)

= (

𝐻(𝜆) 𝑥

𝑅(𝜆,
𝑑

𝑑𝑠
)𝑀𝐻(𝜆) 𝑥

) ,

(34)

which implies (31).

(ii) For each 𝜆 ∈ 𝜌(𝐴) with Re(𝜆) > 0, from [15, Lemmas
VI.7.23-24], we know that

𝑅 (𝜆,A) = (

𝑅 (𝜆, 𝐴) 𝑅 (𝜆, 𝐴) 𝛿
0
𝑅(𝜆,

𝑑

𝑑𝑠
)

0 𝑅(𝜆,
𝑑

𝑑𝑠
)

) ,

𝐼 − 𝑅 (𝜆,A)M = (

𝐼 − �̂� (𝜆) 𝑅 (𝜆, 𝐴)𝐴 0

−𝑅(𝜆,
𝑑

𝑑𝑠
)𝑀 𝐼

) .

(35)

Using

𝜆𝐼 −A
𝑉
= 𝜆𝐼 −A −M,

= (𝜆𝐼 −A) (𝐼 − 𝑅 (𝜆,A)M) ,

(36)

we get, since 𝜆 ∈ 𝜌(A) ∩ 𝜌(A𝑉
), that [𝐼 − 𝑅(𝜆,A)M] is

invertible in L(𝑋) and by, for example, [31, Lemma A.4.2],
we have

[𝐼 − 𝑅 (𝜆,A)M]
−1

=
[
[

[

(𝐼 − �̂� (𝜆) 𝑅 (𝜆, 𝐴)𝐴)
−1

0

𝑅(𝜆,
𝑑

𝑑𝑠
)𝑀(𝐼 − �̂� (𝜆) 𝑅 (𝜆, 𝐴)𝐴)

−1

𝐼

]
]

]

.

(37)

Finally, a direct computation yields
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𝑅 (𝜆,A
𝑉
) = (𝐼 − 𝑅 (𝜆,A)M)

−1
𝑅 (𝜆,A)

= (

𝐻(𝜆) 𝐻 (𝜆) 𝛿
0
𝑅(𝜆,

𝑑

𝑑𝑠
)

𝑅(𝜆,
𝑑

𝑑𝑠
)𝑀𝐻(𝜆) 𝑅(𝜆,

𝑑

𝑑𝑠
)𝑀𝐻(𝜆) 𝛿

0
𝑅(𝜆,

𝑑

𝑑𝑠
) + 𝑅(𝜆,

𝑑

𝑑𝑠
)

) .

(38)

Here is finally the result about strong convergence of the
complex inversion formula.

Proposition 8. Let (𝑆(𝑡))
𝑡≥0

be the exponentially bounded
resolvent family for (2) on 𝑋. Suppose that 𝑋 is a UMD space.
Then there exists �̃� ≥ 𝜔

0
(𝑆), such that for all 𝑥 ∈ 𝑋 and 𝛼 > �̃�

one has

lim
𝑁→∞

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝐻(𝜆) 𝑥𝑑𝜆 = 𝑆 (𝑡) 𝑥, (39)

in𝑋, uniformly in 𝑡 from compact subsets of ]0,∞[.

Proof. Since 𝑋 is a UMD, the product space X is a UMD
(see [45, 46]). Applying [19, Theorem 1] to the semigroup
(T𝑉

(𝑡))
𝑡≥0

, we obtain

lim
𝑁→∞

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝑅 (𝜆,A

𝑉
) (

𝑥

𝑓
)𝑑𝜆 = T

𝑉
(𝑡) (

𝑥

𝑓
) ,

(40)

for all ( 𝑥

𝑓 ) ∈ X and 𝛼 > 𝜔
0
(A𝑉

), where the limit exists
uniformly with respect to 𝑡 in ]0,∞[. Taking 𝑓 = 0 in (40)
and by virtue of Lemma 7(i), a straightforward computation
shows that for all 𝛼 > �̃� := max(0, 𝜔

0
(A𝑉

)) ≥ 𝜔
∗ we have

lim
𝑁→∞

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝐻(𝜆) 𝑥𝑑𝜆 = 𝑆 (𝑡) 𝑥, (41)

for all 𝑥 ∈ 𝑋, uniformly for 𝑡 ∈]0,∞[.

We see that the results in [22, Theorem 1], [23, Theorem
4.2], and Proposition 8 assert only strong convergence and
uniformity in 𝑡 from compact subsets of ]0,∞[. As for the
semigroups’ case, it would be of interest to see whether, for
scalar Volterra integral systems, this convergence holds true
for 𝑡 = 0 (it does not for 𝑥 ∈ 𝐷(𝐴), (see Proposition 6)). For
the semigroups, which are the special cases of scalar Volterra
integral equations, an affirmative answer was given in [38,
Proposition 2.3].

The next result is a version of [38, Proposition 2.3] for
resolvent family.

Proposition 9. Let 𝑎 ∈ 𝐿
1

loc(𝑅
+
) be exponentially bounded

and let (𝑆(𝑡))
𝑡≥0

be the exponentially bounded resolvent family
for (3). If 𝐴 generates an analytic 𝐶

0
-semigroup in 𝑋, then

for all 𝑥 ∈ 𝑋, and 𝛼 > max(𝜔
0
(𝑆), 𝜔

0
(𝑎)) the integral

∫
𝛼+𝑖𝑁

𝛼−𝑖𝑁
𝐻(𝜆)𝑥𝑑𝜆 converges in 𝑋 as 𝑁 → ∞, hence, in 𝐷(𝐴)

for all 𝑥 ∈ 𝐷(𝐴).

Proof. The proof is more or less the same for the semigroups’
case. Assume first that 𝑥 ∈ 𝐷(𝐴). Then for all 0 ̸= 𝜆 > 𝜔 and
using the resolvent identity we obtain

𝐻(𝜆) 𝑥 =
𝑥

𝜆
+ 𝑎 (𝜆)𝐻 (𝜆)𝐴𝑥. (42)

Let 𝜕C+

𝑁
be the boundary of the half-disc C+

𝑁
defined by

C+

𝑁
= {𝜆 ∈ C : |𝜆| ≤ 𝑁, | arg 𝜆| ≤ 𝜋/2}. Then Cauchy’s

theorem yields

∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝐻(𝜆) 𝑥𝑑𝜆 = −𝑖 ∫
𝜕C+
𝑁

𝐻(𝜆) 𝑥𝑑𝑧

= ∫

𝜋/2

−(𝜋/2)

𝑁𝑒
𝑖𝜃
𝐻(𝑁𝑒

𝑖𝜃
) 𝑥𝑑𝜃.

(43)

Since 𝐴 generates an analytic semigroup on 𝑋, the set
{(1/𝑎(𝑁𝑒

𝑖𝜃
))𝑅((1/𝑎(𝑁𝑒

𝑖𝜃
)), 𝐴)} is uniformly bounded in C+

𝑁

(see [47]) and, hence, {𝑁𝑒
𝑖𝜃
𝐻(𝑁𝑒

𝑖𝜃
)} is uniformly bounded

in C+

𝑁
. It follows that ∫𝛼+𝑖𝑁

𝛼−𝑖𝑁
𝐻(𝜆)𝑥𝑑𝜆 is uniformly bounded

inC+

𝑁
. Using once again the resolvent identity we obtain

∫
𝜕C+
𝑁

𝐻(𝜆) 𝑥𝑑𝑧

= ∫
𝜕C+
𝑁

𝑑𝜆

𝜆
𝑥 + ∫

𝜕C+
𝑁

𝑎 (𝜆)𝐻 (𝜆)𝐴𝑥𝑑𝜆

= 𝜋𝑖𝑥 + 𝑖 ∫

𝜋/2

−(𝜋/2)

𝑎 (𝑁𝑒
𝑖𝜃
)𝑁𝑒

𝑖𝜃
𝐻(𝑁𝑒

𝑖𝜃
)𝐴𝑥𝑑𝜃,

(44)

for all 𝑥 ∈ 𝐷(𝐴). By the fact that 𝐴 generates an analytic
semigroup and by virtue of Riemann-Lebesgue’s theorem
(see [20, Theorem 1.8.1.c]), the integral on the right-hand
side of the above equality converges to zero as 𝑁 → ∞.
Using the last equality, the density of 𝐷(𝐴) in 𝑋, and the
fact that the integral ∫𝛼+𝑖𝑁

𝛼−𝑖𝑁
𝐻(𝜆)𝑥𝑑𝜆 is uniformly bounded in

C+

𝑁
, an elementary equicontinuity argument guarantees the

convergence in 𝑋 for every 𝑥 ∈ 𝑋 thanks to Proposition 6.
Now, let 𝑥 ∈ 𝐷(𝐴) and 𝑦

0
:= (𝜆

0
𝐼 − 𝐴)𝑥 for some 𝜆

0
∈ 𝜌(𝐴).

Then we get

∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝐻(𝜆) 𝑥𝑑𝜆 = 𝑅 (𝜆
0
, 𝐴) ∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝐻(𝜆) 𝑦
0
𝑑𝜆. (45)

Since 𝐴𝑅(𝜆
0
, 𝐴) ∈ L(𝑋), we conclude that ∫𝛼+𝑖𝑁

𝛼−𝑖𝑁
𝐻(𝜆)𝑥𝑑𝜆

converges in𝐷(𝐴).
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Finally, combining Propositions 8 and 9 leads to the
following corollary.

Corollary 10. Let 𝐴 be the generator of an analytic 𝐶
0
-

semigroup in𝑋 and let (𝑆(𝑡))
𝑡≥0

be the resolvent family for (2).
Suppose that 𝑋 is a UMD space. Then, for all 𝑥 ∈ 𝑋 (resp.,
𝑥 ∈ 𝐷(𝐴)) and 𝛼 > 𝜔

∗, one has

lim
𝑁→∞

1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝐻(𝜆) 𝑥𝑑𝜆 =

{

{

{

𝑆 (𝑡) 𝑥 ∀𝑡 > 0,

𝑥

2
for 𝑡 = 0,

(46)

in 𝑋 (resp., in 𝐷(𝐴)), which is uniform on 𝑡 for any compact
interval of [0,∞[.

5. Characterization of Admissibility

Wenow turn our attention back to the notion of admissibility.
In this section we present sufficient and necessary conditions
for the 𝐿

𝑝-admissibility of control operators for integrodif-
ferential Volterra control systems (1) which has the following
equivalent form:

𝑥 (𝑡) = 𝑥
0
+ ∫

𝑡

0

(1 + 1 ∗ 𝑘) (𝑡 − 𝑠) 𝐴𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝐵𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
∈ 𝑋,

(47)

extending the result for the semigroups [38, Proposition 3.2].
Here we assume that the control operator 𝐵 ∈ L(𝑈;𝑋

−1
)

where 𝑋
−1

is the extrapolation space with respect to 𝐴

(see, e.g., [15]) and 𝑈 is another Banach space. It is further
assumed that 𝑘 ∈ 𝐿

1

loc(R
+
) is exponentially bounded and that

the uncontrolled system (i.e., (21)) admits an exponentially
bounded resolvent family (𝑆(𝑡))

𝑡≥0
.

Since the resolvent of (21) commutes with the operator
𝐴, then it can be easily seen that the restriction (𝑆

1
(𝑡))

𝑡≥0
to

𝑋
1
of (𝑆(𝑡))

𝑡≥0
, the solution of (21), is strongly continuous.

Moreover, since 𝜌(𝐴) ̸=⌀ (see Proposition 5) (𝑆
1
(𝑡))

𝑡≥0
solves

for each 𝑥
0

∈ 𝑋 and 𝐴
1
replacing 𝐴. Likewise, 𝑆(𝑡) has a

unique bounded extension to 𝑋
−1

for each 𝑡 ≥ 0 and 𝑡 →

𝑆
−1
(𝑡) is also strongly continuous, and it solves (21) in 𝑋

−1

with 𝐴
−1

replacing 𝐴.
The mild solution of (47) is formally given by the

variation of the constant formula

𝑥 (𝑡) = 𝑆 (𝑡) 𝑥
0
+ ∫

𝑡

0

𝑆
−1

(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠, (48)

which is actually the classical solution if 𝐵 ∈ L(𝑈,𝑋), 𝑥
0
∈

𝐷(𝐴), and 𝑢 is sufficiently smooth. In general however, 𝐵 is
not a bounded operator from 𝑈 into 𝑋 and so an additional
assumption on 𝐵 will be needed to ensure that 𝑥(𝑡) ∈ 𝑋 for
every 𝑥

0
∈ 𝑋 and every 𝑢 ∈ 𝐿

𝑝
(R+

; 𝑈) or 𝐿𝑝

loc(R
+
; 𝑈).

In the same spirit of the semigroups’ case, the following
are the most natural definitions of the 𝐿

𝑝-admissibility for
resolvent families.

Definition 11. Let 𝐵 ∈ L(𝑈;𝑋
−1
) and 𝑝 ∈ [1,∞[.

(i) 𝐵 is called (infinite-time) an 𝐿
𝑝-admissible operator

for (𝑆(𝑡)
𝑡≥0

), if there exists a constant 𝑀 > 0, such
that

𝑆−1 ∗ 𝐵𝑢 (𝑡)
𝑋 ≤ 𝑀‖𝑢‖𝐿𝑝([0,∞[;𝑈)

∀𝑢 ∈ 𝐿
𝑝
([0,∞[ ; 𝑈) , 𝑡 > 0.

(49)

(ii) 𝐵 is called a finite-time 𝐿
𝑝-admissible operator for

(𝑆(𝑡))
𝑡≥0

if there exist 𝑡
0
> 0 and a constant𝑀(𝑡

0
) > 0,

such that
𝑆−1 ∗ 𝐵𝑢 (𝑡

0
)
𝑋 ≤ 𝑀(𝑡

0
) ‖𝑢‖𝐿𝑝([0,𝑡0];𝑈)

∀𝑢 ∈ 𝐿
𝑝
([0, 𝑡

0
] ; 𝑈) .

(50)

Note that the definition of (infinite-time) 𝐿𝑝-admissible
control operator for (𝑆(𝑡)

𝑡≥0
) was introduced in [34] when

𝑝 = 2 and implies the finite-time 𝐿
2-admissibility condition

considered in [33]. Our definitions of finite- and infinite-
time 𝐿

𝑝-admissible control operator for (𝑆(𝑡)
𝑡≥0

) correspond
to that of the semigroups and also imply that of [33] when
𝑝 = 2. It is well known that (𝑃

1
): finite-time 𝐿

𝑝-admissibility
and the uniform finite-time 𝐿

𝑝-admissibility, which means
that for all 𝑡 > 0 there exists a constant 𝑀(𝑡) > 0, such that
‖𝑆

−1
∗ 𝐵𝑢(𝑡)‖

𝑋
≤ 𝑀(𝑡)‖𝑢‖

𝐿
𝑝
([0,𝑡];𝑈)

for all 𝑢 ∈ 𝐿
𝑝
([0, 𝑡]; 𝑈),

are equivalent for semigroups and (𝑃
2
): finite-time 𝐿

𝑝-
admissibility and the infinite-time𝐿𝑝-admissibility are equiv-
alent for exponentially stable semigroups.We emphasize that,
in [35], the authors have found an example (i.e., (2) with 𝐴

generator of exponentially stable semigroup) for which finite-
time 𝐿

2-admissibility and infinite-time 𝐿
2-admissibility are

not equivalent, but, in their example, we can see that the
associated resolvent family is not exponentially stable. Thus,
a question that remains open to our knowledge is, whether
for Volterra integral systems, these problems (i.e., (𝑃

1
)-(𝑃

2
))

are still true for resolvent families. In [37, Corollary 5.4
and Proposition 5.6], partial answers were given to these
problems when 𝑝 = 1.

It has been observed in [36, for 𝑝 = 2] (resp., [37, for
𝑝 ≥ 1]) that 𝐿2- (resp., 𝐿𝑝) admissibility of 𝐵 ∈ L(𝑈;𝑋

−1
)

is equivalent to the fact that there exists a constant 𝑀 > 0,
such that



∫

∞

0

𝑆
−1

(𝑡) 𝐵𝑢 (𝑡) 𝑑𝑡

𝑋

≤ 𝑀‖𝑢‖𝐿𝑝(R+ ;𝑈)
, (51)

for all 𝑢 ∈ 𝐿
𝑝

𝑐
(R+

; 𝑈) (the space of functions in 𝐿
𝑝
(R+

; 𝑈)

with compact support).
Of course, 𝐿

𝑝-admissibility of 𝐵 guarantees that the
operatorB

∞
: 𝐿

𝑝

𝑐
(R+

; 𝑈) → 𝑋, given by

B
∞
𝑢 := ∫

∞

0

𝑆
−1

(𝑡) 𝐵𝑢 (𝑡) 𝑑𝑡 (52)

possesses an extension to a linear bounded operator from
𝐿
𝑝
(R+

; 𝑈) to𝑋. We denote this extension again byB
∞
.

As for 𝑝 = 2 (see [36]), it is easy to verify that under
𝜔

0
(𝑆) < 0 formula (52) holds for every 𝑢 ∈ 𝐿

2
(R+

; 𝑈).
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Thanks to Proposition 5, the Laplace-transform of 𝑆
−1
(⋅)

is well defined and it is given by

𝑆
−1

(𝜆) = (𝜆𝐼 − (1 + �̂� (𝜆))𝐴
−1
)
−1

=: 𝐻
−1

(𝜆)

∀Re (𝜆) > max (𝜔
0
(𝑘) , 𝜔

0
(𝑆)) .

(53)

In the sequel we use the following notations.
For 𝑁 ≥ 0, 𝐵 ∈ L(𝑈;𝑋

−1
), 𝑢 ∈ 𝐿

𝑝
([0, 𝜏]; 𝑈), and 𝜏 ∈

[0,∞] we set

𝜑
𝜏

𝑁
(𝑢) = ∫

𝜏

0

𝑆
−𝑁 (𝜎) 𝐵𝑢 (𝜎) 𝑑𝜎, 𝜑

𝑁 (𝑢) := 𝜑
∞

𝑁
(𝑢) ,

𝜑
𝜏
(𝑢) = ∫

𝜏

0

𝑆
−1

(𝜎) 𝐵𝑢 (𝜎) 𝑑𝜎, 𝜑 (𝑢) := 𝜑
∞

(𝑢) ,

(54)

with

𝑆
−𝑁

(𝑡) 𝑥 :=
1

2𝑖𝜋
∫

𝛼+𝑖𝑁

𝛼−𝑖𝑁

𝑒
𝜆𝑡
𝐻

−1
(𝜆) 𝑥𝑑𝜆 ∀𝑥 ∈ 𝑋

−1
. (55)

We may now formulate and prove the main result of this
section by giving a necessary or/and sufficient condition
for finite- (or infinite-) time 𝐿

𝑝-admissibility of 𝐵. The
necessary condition here is essentially based on a geometric
property of the underlying control space 𝑈 that is the UMD-
property. The result encompasses Hilbert control spaces, but
the proposition below yields the criterion’s necessity.

Theorem 12. Let 𝐵 ∈ L(𝑈;𝑋
−1
). Then the following

assertions hold.

(i) If 𝜑𝜏0

𝑁
is uniformly bounded onL(𝐿

𝑝
([0, 𝜏

0
]; 𝑈); 𝑋) for

some 𝜏
0

> 0 then 𝐵 is finite-time 𝐿
𝑝-admissible for

(𝑆(𝑡))
𝑡≥0

.
(ii) Assume that 𝑈 is a UMD space, 𝑝 > 1, and 𝜔

0
(𝑆) < 0.

Then 𝐵 is 𝐿𝑝-admissible for (𝑆(𝑡))
𝑡≥0

if and only if 𝜑
𝑁

is uniformly bounded onL(𝐿
𝑝

𝑐
(R+

; 𝑈); 𝑋).

Proof. Part (i). The proof of this is similar to that of [38,
Proposition 3.2]. Notice that, for any 𝜇 ∈ 𝜌(𝐴) and constant
input 𝑢

0
∈ 𝑈, we have 𝜇

2
𝑅

2
(𝜇, 𝐴)𝐵𝑢

0
∈ 𝐷(𝐴). By

Proposition 6, we have

𝑋 − lim
𝑁→∞

𝑆
𝑁
(𝜏

0
) 𝜇

2
𝑅

2
(𝜇, 𝐴) 𝐵𝑢

0
= 𝑆 (𝜏

0
) 𝜇

2
𝑅

2
(𝜇, 𝐴) 𝐵𝑢

0
.

(56)

Thanks to [48, Lemma 1] the integral ∫𝜏0

𝜀
𝑆
−1
(𝜏)𝐵𝑢(𝜏)𝑑𝜏 takes

value in 𝑋 due to the fact that the considered input 𝑢(𝑡) is a
step function. Thus by a density argument, to prove that 𝐵 is
finite-time 𝐿𝑝-admissible (for time 𝜏

0
) for (𝑆(𝑡))

𝑡≥0
, it suffices

to prove that for any step function 𝑢 : [0, 𝜏
0
] → 𝑈 with

compact support that does not contain zero, the following
uniform estimate



∫

𝜏0

0

𝑆
−1

(𝜏) 𝐵𝑢 (𝜏) 𝑑𝜏

𝑋

≤ 𝑀
𝜏0
‖𝑢‖𝐿𝑝([0,𝜏0];𝑈)

, (57)

holds for some𝑀
𝜏0

> 0.

So, consider a step function 𝑢 with compact support that
does not contain zero. Then there exists 𝜀 > 0 such that

𝜑
𝜏0

𝑁
(𝑢) := ∫

𝜏0

0

𝑆
−𝑁

(𝜎) 𝐵𝑢 (𝜎) 𝑑𝜎,

= ∫

𝜏0

𝜀

𝑆
−𝑁 (𝜎) 𝐵𝑢 (𝜎) 𝑑𝜎.

(58)

Since (𝜑𝜏0

𝑁
)
𝑁
is uniformly bounded with ‖𝜑

𝜏0

𝑁
‖ ≤ 𝐾

𝜏0
for some

𝐾
𝜏0

> 0 and for all 𝑁 > 0, then 𝜇
2
𝑅

2
(𝜇, 𝐴)𝜑

𝜏0

𝑁
is uniformly

bounded as 𝜇 → ∞ (see [48, Corollary 3]) and we have for
some𝐾, 𝜇

0
> 0 and for all 𝜇 > 𝜇

0


𝜇
2
𝑅

2
(𝜇, 𝐴) 𝜑

𝜏0

𝑁
(𝑢)

𝑋
=



∫

𝜏0

𝜀

𝑆
𝑁 (𝜎) 𝜇

2
𝑅

2
(𝜇, 𝐴)𝐵𝑢 (𝜎) 𝑑𝜎

𝑋

,

≤ 𝐾
𝜏0
𝐾‖𝑢‖𝐿𝑝([0,𝜏0];𝑈)

.

(59)

Invoking (56), an elementary equicontinuity argument, and
vector-valued dominated convergence theorem in𝑋, respec-
tively, we obtain

𝑋 − lim
𝑁→∞

∫

𝜏0

𝜀

𝑆
𝑁 (𝜎) 𝜇

2
𝑅

2
(𝜇, 𝐴) 𝐵𝑢 (𝜎) 𝑑𝜎

= ∫

𝜏0

𝜀

𝑆 (𝜎) 𝜇
2
𝑅

2
(𝜇, 𝐴) 𝐵𝑢 (𝜎) 𝑑𝜎,

(60)

which implies via (59) that for all 𝜇 > 𝜇
0



∫

𝜏0

𝜀

𝑆 (𝜎) 𝜇
2
𝑅

2
(𝜇, 𝐴) 𝐵𝑢 (𝜎) 𝑑𝜎

𝑋

≤ sup
𝑁≥0



∫

𝜏0

𝜀

𝑆
𝑁
(𝜎) 𝜇

2
𝑅

2
(𝜇, 𝐴) 𝐵𝑢 (𝜎) 𝑑𝜏

𝑋

,

≤ 𝐾
𝜏0
𝐾‖𝑢‖𝐿𝑝([0,𝜏0];𝑈)

.

(61)

In other words, we have



∫

𝜏0

𝜀

𝑆 (𝜎) 𝜇
2
𝑅

2
(𝜇, 𝐴) 𝐵𝑢 (𝜎) 𝑑𝜎

𝑋

=



𝜇
2
𝑅

2
(𝜇, 𝐴)∫

𝜏0

𝜀

𝑆
−1

(𝜎) 𝐵𝑢 (𝜎) 𝑑𝜎

𝑋

,

(62)
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due to the fact that 𝑆(𝑡) commute with 𝑅(𝜇, 𝐴) (see [48,
Theorem 7]).

Passing to the limit (i.e., 𝜇 → ∞) in the above inequality,
we deduce



∫

𝜏0

𝜀

𝑆
−1

(𝜎) 𝐵𝑢 (𝜎) 𝑑

𝑋

≤ 𝐾
𝜏0
𝐾‖𝑢‖𝐿𝑝([0,𝜏0];𝑈)

. (63)

The same argument also shows that



∫

𝜀


𝜀

𝑆
−1

(𝜎) 𝐵𝑢 (𝜎) 𝑑𝜎

𝑋

≤ 𝐾
𝜏0
𝐾
𝑢𝜒[𝜀,𝜀


]

𝐿𝑝([0,𝜏0];𝑈)
(64)

which implies that the sequence (∫
𝜏0

𝜀
𝑆
−1
(𝜎)𝐵𝑢(𝜎)𝑑𝜎)

𝜀
is a

Cauchy sequence in𝑋. Moreover,

𝑋
−1

− lim
𝜀→0

∫

𝜏0

𝜀

𝑆
−1

(𝜎) 𝐵𝑢 (𝜎) 𝑑𝜎 = ∫

𝜏0

0

𝑆
−1

(𝜎) 𝐵𝑢 (𝜎) 𝑑𝜎 ∈ 𝑋.

(65)

By virtue of 𝑋 → 𝑋
−1
, and the fact that ∫𝜏0

𝜀
𝑆
−1
(𝜎)𝐵𝑢(𝜎)𝑑𝜎

satisfies (63), we find



∫

𝜏0

0

𝑆
−1

(𝜎) 𝐵𝑢 (𝜎) 𝑑𝜎

𝑋

≤ 𝑀(𝜏
0
) ‖𝑢‖𝐿𝑝([0,𝜏0];𝑈)

, (66)

which completes the proof of (i).
Part (ii): (⇒)Assume that𝐵 is 𝐿𝑝-admissible for (𝑆(𝑡))

𝑡≥0
.

Let𝑢 ∈ 𝐿
𝑝

𝑐
(R+

; 𝑈), with Supp(𝑢) = [𝑎, 𝑏]. By Fubini’s theorem
we have

𝜑
𝑁
(𝑢)

= ∫

𝑏

𝑎

𝑆
−𝑁

(𝜎) 𝐵𝑢 (𝜎) 𝑑𝜎

=
1

2𝜋
∫

𝑏

𝑎

∫

𝑁

−𝑁

𝑒
(𝛼+𝑖𝜆)𝜎

𝐻
−1

(𝛼 + 𝑖𝜆) 𝐵𝑢 (𝜎) 𝑑𝜆 𝑑𝜎

=
1

2𝜋
∫

+𝑁

−𝑁

∫

𝑏

𝑎

𝑒
(𝛼+𝑖𝜆)𝜎

𝐻
−1

(𝛼 + 𝑖𝜆) 𝐵𝑢 (𝜎) 𝑑𝜎 𝑑𝜆

=
1

2𝜋
∫

+𝑁

−𝑁

∫

𝑏

𝑎

∫

∞

0

𝑒
−(𝛼+𝑖𝜆)𝑡

𝑆
−1

(𝑡) 𝑒
(𝛼+𝑖𝜆)𝜎

𝐵𝑢 (𝜎) 𝑑𝑡 𝑑𝜎 𝑑𝜆

=
1

2𝜋
∫

𝑏

𝑎

∫

∞

0

∫

𝑁

−𝑁

𝑒
(𝛼+𝑖𝜆)(𝜎−𝑡)

𝑆
−1

(𝑡) 𝐵𝑢 (𝜎) 𝑑𝜆 𝑑𝑡 𝑑𝜎

=
1

2𝜋
∫

𝑏

𝑎

∫

∞

0

[∫

+𝑁

−𝑁

𝑒
(𝛼+𝑖𝜆)(𝜎−𝑡)

𝑑𝜆] 𝑆
−1

(𝑡) 𝐵𝑢 (𝜎) 𝑑𝑡 𝑑𝜎

=
1

2𝑖𝜋
∫

∞

0

𝑒
−𝛼𝑡

. ∫

𝑏

𝑎

𝑒
𝛼𝜎

.
𝑒
𝑖𝑁(𝜎−𝑡)

− 𝑒
−𝑖𝑁(𝜎−𝑡)

𝑡 − 𝜎
𝑆
−1

(𝑡) 𝐵𝑢 (𝜎) 𝑑𝜎 𝑑𝑡

= ∫

∞

0

𝑆
−1 (𝑡) 𝐵𝑒

−𝛼𝑡

× ∫
R+

𝑒
𝛼𝜎

.
sin𝑁(𝜎 − 𝑡)

𝜋 (𝜎 − 𝑡)
𝜒
[𝑎,𝑏]

𝑢 (𝜎) (𝜎) 𝑑𝜎 𝑑𝑡,

= ∫

∞

0

𝑆
−1 (t) 𝐵𝑒

−𝛼𝑡
𝑢
𝛼

𝑁
(t) 𝑑𝑡.

(67)

The use of Fubini theorem in this chain of equalities is
justified by the fact that the maps (𝜎, 𝜆) → 𝑒

𝜆𝜎
𝐻

−1
(𝜆)𝐵𝑢(𝜎)

and (𝑡, 𝜎, 𝜆) → 𝑒
𝜆(𝜎−𝑡)

𝑆
−1
(𝑡)𝐵𝑢(𝜎) belong to 𝐿

1
([𝑎, 𝑏] × [𝛼 −

𝑖𝑁, 𝛼+ 𝑖𝑁];𝑋), and to 𝐿
1
(R+

× [𝑎, 𝑏]× [𝛼− 𝑖𝑁, 𝛼+ 𝑖𝑁];𝑋
−1
),

respectively.
Here the new input 𝑢𝛼

𝑁
is given by

𝑢
𝛼

𝑁
(𝑡)

:= ∫

∞

0

sin𝑁(𝜎 − 𝑡)

𝜋 (𝜎 − 𝑡)
(𝑒

𝛼.
𝜒
[𝑎,𝑏]

) (𝜎) 𝑢 (𝜎) 𝑑𝜎

= (𝐷
𝑁

∗ 𝑓
𝛼
) (𝑡) , with 𝑓

𝛼
(⋅) = 𝑒

𝛼⋅
𝜒
[𝑎,𝑏]

(⋅) 𝑢 ∈ 𝐿
𝑝
(R

+
; 𝑈) ,

(68)

and𝐷
𝑁
denotes the Dirichlet kernel given by

𝐷
𝑁 (𝑡) =

sin (𝑁𝑡)

𝜋𝑡
(𝑡 ∈ R) . (69)

Following the lines of the proof of [23, Lemma 3.2], one
establishes that for a UMD space 𝑍 and 𝑝 ∈]1,∞[ we have

𝐷
𝑁

∗ 𝑔 → 𝑔 in 𝐿
𝑝
(R

+
; 𝑍)

as 𝑁 → ∞ ∀𝑔 ∈ 𝐿
𝑝
(R

+
; 𝑍) .

(70)

Thus,making use of the fact that𝑈 is a UMD space, appealing
(70), we obtain

𝐷
𝑁

∗ 𝑓
𝛼
→ 𝑓

𝛼
in 𝐿

𝑝
(R

+
; 𝑈) , as 𝑁 → ∞. (71)

Then, using the 𝐿𝑝-admissibility of𝐵 and the fact that𝜔
0
(𝑆) <

0, we obtain

𝜑
𝑁1

(𝑢) − 𝜑
𝑁2

(𝑢)
𝑋

=



∫

∞

0

𝑆
−1

(𝑡) 𝐵𝑒
−𝛼𝑡

[𝑢
𝛼

𝑁1
(𝑡) − 𝑢

𝛼

𝑁2
(𝑡)] 𝑑𝑡

𝑋

=

B

∞
(𝑒

−𝛼⋅
(𝑢

𝛼

𝑁1
− 𝑢

𝛼

𝑁2
))

𝑋

≤ 𝑀

𝑢
𝛼

𝑁1
− 𝑢

𝛼

𝑁2

𝐿𝑝(R+ ;𝑈)
,

(72)

for 𝑁
1
> 𝑁

2
> 0, which implies that (𝜑

𝑁
(𝑢))

𝑁≥0
is a Cauchy

sequence in𝑋. Thus (𝜑
𝑁
(𝑢))

𝑁≥0
converges in𝑋 as𝑁 → ∞,
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for all 𝑢 ∈ 𝐿
𝑝

𝑐
(R+

; 𝑈) and that (𝜑
𝑁
)
𝑁≥0

is uniformly bounded
in L(𝐿

𝑝

𝑐
(R+

; 𝑈), 𝑋) according to Banach-Steinhaus’s theo-
rem. Furthermore, using once again 𝑒

−𝛼⋅
𝑢
𝛼

𝑁
→ 𝑒

−𝛼.
𝑓
𝛼

= 𝑢

in 𝐿
𝑝
(R+

; 𝑈), we obtain ∫
∞

0
𝑆
−1
(𝑡)𝐵𝑒

−𝛼𝑡
𝑢
𝛼

𝑁
(𝑡)𝑑𝑡 converges to

∫
∞

0
𝑆
−1
(𝑡)𝐵𝑢(𝑡)𝑑𝑡(= 𝜑(𝑢)) in 𝑋

−1
as 𝑁 → ∞. By virtue

of 𝑋 → 𝑋
−1

with continuous injection and the fact that
(𝜑

𝑁
(𝑢))

𝑁≥0
converges in 𝑋 as 𝑁 → ∞, we deduce that

𝜑
𝑁
(𝑢) converges to 𝜑(𝑢) in 𝑋 as 𝑁 → ∞, for all 𝑢 ∈

𝐿
𝑝

𝑐
(R+

; 𝑈).
(⇐) Assume that 𝜑

𝑁
is uniformly bounded on

L(𝐿
𝑝

𝑐
(R+

; 𝑈); 𝑋). For 𝜏
0

> 0 and 𝑢 ∈ 𝐿
𝑝
(R+

; 𝑈) we
have V := 𝑢 ⋅ 𝜒

[0,𝜏0]
∈ 𝐿

𝑝

𝑐
(R+

; 𝑈) and

𝜑𝑁 (V)𝑋 =
𝜑

𝜏0

𝑁
(𝑢)

𝑋
≤ 𝜅‖𝑢‖𝐿𝑝([0,𝜏0];𝑈)

, (73)

for some 𝜅 > 0.
Thanks to (i) we deduce that 𝐵 is finite-time 𝐿

𝑝-
admissible (for time 𝜏

0
) for (𝑆(𝑡))

𝑡≥0
. By examining the proof

of (i) we deduce that𝐵 is𝐿𝑝-admissible for (𝑆(𝑡))
𝑡≥0

.This ends
the proof.

Remark 13. (1) The result of Theorem 12 may extend to
systems of Volterra integral equations (3) provided that
∫
𝑡

0
𝑆(𝜎)𝑥𝑑𝜎 takes value in 𝐷(𝐴) for all 𝑥 ∈ 𝑋. One may of

course ask whether it is a severe restriction to consider only
𝑎(𝑡) = 1 + (1 ∗ 𝑘)(𝑡). This will be a subject of a forthcoming
work.

(2) We can retrieve the result stated in Proposition 8 by
using [38, Remark 3.5 (ii)]. Indeed, let B = 𝐼𝑑X, then B

is infinite-time 𝐿
𝑝-admissible for (T𝑉,𝜔

(𝑡) := 𝑒
−𝜔𝑡T𝑉

(𝑡))
𝑡≥0

with 𝜔 > 𝜔
0
(A𝑉

). In fact, for 𝑡
0
> 0 and 𝑥 ∈ 𝑋, consider the

input 𝑢
0
(𝑡) := T𝑉,𝜔

(𝑡
0
− 𝑡) (

𝑥

0 ) 𝜒[𝑡0/2, 𝑡0]
, we set:

Φ
𝑁
(𝑢

0
) := ∫

∞

0

T
𝑉,𝜔

𝑁
(𝜎) 𝑢0 (𝜎) 𝑑𝜎, (74)

with

T
𝑉,𝜔

𝑁
(𝑡) (

𝑥

𝑓
) :=

1

2𝜋
∫

𝑁

−𝑁

𝑒
𝑖𝜆𝑡

𝑅 (𝜔 + 𝑖𝜆,A
𝑉
) (

𝑥

𝑓
)𝑑𝜆. (75)

Thanks to [38, Remark 3.5] we have

Φ
𝑁
(𝑢

0
) =

𝑡
0

2
T

𝑉,𝜔

𝑁
(𝑡

0
) (

𝑥

0
) + 𝐿

𝜔

𝑁
(𝑡

0
) (

𝑥

0
) , (76)

with 𝐿
𝜔

𝑁
(𝑡

0
) ∈ L(X) and 𝐿

𝜔

𝑁
(𝑡

0
) (

𝑥

0 ) → 0 as𝑁 → ∞ for
all 𝑥 ∈ 𝑋.

Passing to the limit in (76) as𝑁 → ∞ and invoking [38,
Corollary 4.2] we obtain

Φ
𝑁
(𝑢

0
) → Φ(𝑢

0
) as 𝑁 → ∞ in X, (77)

with

Φ(𝑢
0
) := ∫

∞

0

T
𝑉,𝜔

(𝜎) 𝑢0 (𝜎) 𝑑𝜎

= ∫

∞

0

T
𝑉,𝜔

(𝜎)T
𝑉,𝜔

(𝑡
0
− 𝜎) (

𝑥

0
)𝜒

[𝑡0/2,𝑡0]
𝑑𝜎

= ∫

𝑡0

𝑡0/2

T
𝑉,𝜔

(𝑡
0
) (

𝑥

0
)𝑑𝜎

=
𝑡
0

2
T

𝑉,𝜔
(𝑡

0
) (

𝑥

0
)

=
𝑡
0

2
⋅ 𝑒

−𝜔𝑡0T
𝑉
(𝑡

0
) (

𝑥

0
)

=
𝑡
0

2
⋅ 𝑒

−𝜔𝑡0 (
𝑆 (𝑡

0
) 𝑇

12
(𝑡

0
)

𝑇
21

(𝑡
0
) 𝑇

22
(𝑡

0
)
)(

𝑥

0
)

=
𝑡
0

2
⋅ 𝑒

−𝜔𝑡0 (
𝑆 (𝑡

0
) 𝑥

𝑇
21

(𝑡
0
) 𝑥

) .

(78)

In other words, for 𝜔 > 𝜔
∗
(> 𝜔

0
(A𝑉

)) we have

T
𝑉,𝜔

𝑁
(𝑡

0
) (

𝑥

0
) =

1

2𝜋
∫

𝑁

−𝑁

𝑒
𝑖𝜆𝑡0𝑅 (𝜔 + 𝑖𝜆,A

𝑉
) (

𝑥

0
)𝑑𝜆

=
1

2𝑖𝜋
∫

𝜔+𝑖𝑁

𝜔−𝑖𝑁

𝑒
(𝜇−𝜔)𝑡0𝑅 (𝜇,A

𝑉
) (

𝑥

0
)𝑑𝜇

=
1

2𝑖𝜋
∫

𝜔+𝑖𝑁

𝜔−𝑖𝑁

𝑒
−𝜔𝑡0 ⋅ 𝑒

𝜇𝑡
𝑅 (𝜇,A

𝑉
) (

𝑥

0
)𝑑𝜇.

(79)

Using Lemma 7(i) we obtain

T
𝑉,𝜔

𝑁
(𝑡

0
) (

𝑥

0
)

=
1

2𝑖𝜋
∫

𝜔+𝑖𝑁

𝜔−𝑖𝑁

𝑒
−𝜔𝑡0 ⋅ (

𝐻 (𝜇) 𝑥

𝑅(𝜇,
𝑑

𝑑𝑠
)𝑀𝐻(𝜇) 𝑥

)𝑑𝜇

= (

𝑒
−𝜔𝑡0𝑆

𝑁
(𝑡

0
) 𝑥

1

2𝑖𝜋
∫

𝑁

−𝑁

𝑒
𝑖𝜇𝑡0𝑅(𝜔 + 𝑖𝜇,

𝑑

𝑑𝑠
)𝑀𝐻(𝜔 + 𝑖𝜇) 𝑥𝑑𝜇

) .

(80)

Combining (76), (77), and (80), we deduce that

𝑡
0

2
⋅ 𝑒

−𝜔𝑡0𝑆
𝑁
(𝑡

0
) 𝑥 →

𝑡
0

2
⋅ 𝑒

−𝜔𝑡0𝑆 (𝑡
0
) 𝑥

as 𝑁 → ∞ ∀𝑥 ∈ 𝑋,

(81)

which in turns implies that

lim
𝑁→∞

1

2𝑖𝜋
∫

𝜔+𝑖𝑁

𝜔−𝑖𝑁

𝑒
𝜆𝑡
𝐻(𝜆) 𝑥𝑑𝜆 = 𝑆 (𝑡) 𝑥

as 𝑁 → ∞ ∀𝑥 ∈ 𝑋,

(82)

uniformly in 𝑡 from compact subsets of ]0,∞[.
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