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Embedded devices are everywhere now and, unlike personal computers, their systems differ in implementation languages and
behaviors. Interactions of different devices require programmers to master programming paradigms in all related languages. So, a
defect may occur if differences in systems’ behaviors are ignored. In this paper, a heterogeneous system which is composed of two
subsystems is introduced and we point out a potential defect in this system caused by an interface mismatch. Then, a state based
approach is applied to verify our analysis of the system.

1. Introduction

Embedded devices are everywhere from factories to living
rooms and embedded development becomes a new trend
in current startup teams. According to the physical car-
rier of their system, traditional embedded devices can be
divided into different domains such as DSP, FPGA, ARM,
and PLC. Different carriers mean different programming
languages and styles which relate closely to the behavior
of the system on the device. For example, the VHDL
programming language is widely used in the embedded
system’s implementation on FPGA board and the common
behavior of such systems is synchronous reactive and data-
flow oriented [1]. An embedded system on ARM board
mostly adopts the C programming language which exploits
the power of interrupts and threads asynchronously [2].
There are good engineering practices to follow for developers
in such application domains. However, as the rapid evolution
of embedded devices, embedded systems confront more
and more complex usage scenarios with new problems to
be resolved [3]. One of these problems is incompatible
programming paradigms between heterogeneous developing
techniques which today’s embedded systems utilize [4]. A
typical embedded-C programmer does not knowmuch about
how to write a piece of good VHDL program although
he may learn VHDL’s grammar somehow and neither does

a VHDL programmer know much about the embedded-C
stuff. The lack of knowledge in other’s programming domain
leads to misunderstandings of assumptions and guarantees
requirements between interfaces of heterogeneous embedded
systems.A trend in handling this heterogeneous development
work flow is unifying the programming language used by
FPGA, ARM, and DSP developers [5], but it takes efforts
to learn a brand-new language even for an experienced
developer. Another approach is model based development
[6–8]. The developer builds a unified model for the whole
system and automatically generates dedicated code for each
part according to their specific programming paradigm. The
model can be analyzed and verified to guarantee its reliability
and enhance its performance before the code generation
process [9, 10].

Serious defects between interactions may be undiscov-
ered until on-board tests.The longer the defects go unnoticed,
the more time will be spent on them. There are some
testing based methods targeting this problem [11]. However,
they are not sufficient to guarantee the system’s correctness.
Analysis based methods [12, 13] can also alleviate the pain in
embedded system development.

In this paper, we investigate a case of a heterogeneous
embedded system in a real engineering practice and build a
model for the system using Colored Petri Nets (CPN) [14]
modeling language.Then, we reveal how a normal subsystem
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on ARM board and a normal subsystem on FPGA board
together lead to a defective system step by step. Then, the
model checking approach will be applied on the model to
verify our analysis.

2. Preliminaries

2.1. Petri Nets. Petri nets [15] are a simple and expressive
modeling formalism, which allows users to model complex
systems in various paradigms.

Petri nets are a tuple of ⟨𝑃, 𝑇, 𝐴⟩, where𝑃 = 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛

is a finite set of places, 𝑇 = 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
is a finite set of

transitions, and 𝐴 = 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
is a finite set of arcs,

while 𝑃, 𝑇, and 𝐴 are pairwise disjoint. Each place contains
a set of markers called tokens and the number of tokens in
each place can be 0, 1, or more. The distribution of tokens
in all places is called the marking of the Petri net which is
denoted by 𝜇. The marking 𝜇 can be viewed as an 𝑛-vector,
𝜇 = (𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑛
), where 𝑛 = |𝑃| and each 𝜇

𝑖
indicates the

number of tokens in their corresponding place𝑝
𝑖
, 𝑖 = 1, . . . , 𝑛.

The marking of a Petri net defines the net’s state and it can
only be changed by a transition 𝑡 which moves tokens from a
set of places 𝐼(𝑡) to another set of places𝑂(𝑡), where 𝐼(𝑡) ⊂ 𝑃,
𝑂(𝑡) ⊂ 𝑃, and 𝑡 ∈ 𝑇. The transition 𝑡’s transfer of tokens is
called firing. When 𝑡 is fired, it removes a token from each
place of 𝑝

𝑡 in
1

, 𝑝
𝑡 in
2

, . . . , 𝑝
𝑡 in
𝑛

in 𝐼(𝑡) and adds a token to each
place of 𝑝

𝑡 out
1

, 𝑝
𝑡 out
2

, . . . , 𝑝
𝑡 out
𝑚

in𝑂(𝑡), where 𝑛 = |𝐼(𝑡)| and
𝑚 = |𝑂(𝑡)|. For a transition 𝑡, 𝐼(𝑡) is called the input set of 𝑡
and 𝑂(𝑡) is called the output set of 𝑡. A transition 𝑡 is fired
only when every place in its input set has at least one token
which can be removed in the process of firing. If a transition
𝑡’s input set fulfilled this condition under a marking 𝜇 of a
Petri net, 𝑡 is enabled and can be fired. Otherwise, 𝑡 is not
enabled and cannot be fired.The input set 𝐼(𝑡) and output set
𝑂(𝑡) of a transition 𝑡 can be empty and the two sets may have
a nonempty intersection; that is, a placemay exist in the input
set 𝐼(𝑡) and the output set 𝑂(𝑡) at the same time. If the input
set 𝐼(𝑡) is empty, transition 𝑡 can be fired under anymarkings.
If the output set𝑂(𝑡) is empty, transition 𝑡will not add tokens
to any place.

For the need of graphical representation, the mapping
from a place to a transition is defined as an arc. There is an
arc from each place in the input set 𝐼(𝑡) of a transition 𝑡 to 𝑡
and an arc from each place in the output set 𝑂(𝑡). The set of
all arcs in a net is a relation on 𝑃 × 𝑇 and 𝑇 × 𝑃, where, for
every place 𝑝

𝑖
in the input set 𝐼(𝑡) of a transition 𝑡, (𝑝

𝑖
, 𝑡) ∈ 𝐴

and, for every place 𝑝
𝑜
in the output set 𝑂(𝑡), (𝑝

𝑜
, 𝑡) ∈ 𝐴.

A Petri net can be represented in a graphical form by
a bipartite graph. In a Petri net graph, eclipses represent
places, rectangles represent transitions, and connections
between eclipses and rectangles represent arcs. An example
of graphically represented Petri net is shown in Figure 1.
Definitions of 𝑃, 𝑇, and 𝐴 of this net are as follows:

𝑃 = 𝑝
1
, 𝑝
2
, 𝑝
3
,

𝑇 = 𝑡
1
, 𝑡
2
,

𝐴 = (𝑝
1
, 𝑡
1
) , (𝑝
2
, 𝑡
1
) , (𝑡
1
, 𝑝
3
) , (𝑝
3
, 𝑡
2
) .
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Figure 1: The net in initial state.
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Figure 2: Transition 𝑡
1
enabled.
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Figure 3: Transition 𝑡
2
enabled.
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Figure 4: The model in deadlock.

In the initial state of the Petri net, 𝑝
1
and 𝑝

2
both contain

a token, so the initial marking of the net is 1, 1, 0 and
transition 𝑡

1
is enabled according to aforementioned rules,

while transition 𝑡
2
is not enabled due to the fact that place

𝑝
3
in its input set is empty. This state is illustrated in Figure 2

where the enabled transition, that is, 𝑡
1
, is highlighted.

If transition 𝑡
1
fires, it removes a token from place 𝑝

1
and

a token from 𝑝
2
and adds a token to place 𝑝

3
. After transition

𝑡
1
’s firing, the Petri net goes to a new marking as shown

in Figure 3, which is 0, 0, 1. Now, transition 𝑡
2
is enabled

and transition 𝑡
1
is no longer enabled. If transition 𝑡

2
fires, it

removes a token from place 𝑝
3
and does not generate a token

to any place. As shown in Figure 4, all of the Petri net’s places
are empty now and no transition in the net can fire any more.
If no transition is enabled under a given marking of a Petri
net, this net is in a deadlock state.

2.2. Coloured Petri Nets. To enhance the expressiveness of the
pure Petri nets formalism, we have depicted above that many
variants are designed including prioritized Petri nets (PPN)
[16], timed Petri nets (TTN) [17], and probabilistic Petri nets
(PPN) [18]. One of these extensions is coloured Petri nets
(CPN) [14], whose main contribution is to extend the pure
Petri nets’ type system to amore elaborate one. In a pure Petri
net, a token is simply a place holder which means that a place
has a unit of data that can be absorbed by a transition, but
the value of the token is ignored. A place is defined with a
colour which is the type of the place and all tokens residents



Journal of Applied Mathematics 3

ARM

FPGA

Frame data Frame data

Bus

ARM

FPGA

io1,1

io2,1 io3,1

Node1

io1,n

io2,n io3,n

Noden

· · ·

Figure 5: Representation of system.

in this place should be a value of the predefined type. A
detailed explanation of its subtle execution semantics will be
illustrated in the following demonstration and analysis of a
set of CPN models.

3. Modeling of a Heterogeneous
Embedded System

3.1. An Embedded System of Vehicle Protocol. Our system is
an embedded system which implements the vehicle protocol
IEC-61375 [19]. The system consisted of a set of nodes; all
connect to a bus which transfers frame data between these
nodes, as shown in Figure 5. Each node consists of an ARM
board and an FPGA board. An FPGA board may send frame
data to the bus or receive frame data from the bus. It also
communicates with an ARM board through GPIO ports in
order to transfer messages between each other. An ARM
board only interacts with its related FPGA board. There are
three GPIO ports which are as follows.

(i) 𝑖𝑜
1,𝑘

is used by the FPGA system to send a master
frame interrupt to the ARM system in node 𝑘.

(ii) 𝑖𝑜
1,𝑘

is used by the ARM system to notify the FPGA
system of the arrival of a master message in node 𝑘.

(iii) 𝑖𝑜
1,𝑘

is used by the ARM system to send a master
message to the FPGA system in node 𝑘.

Among all nodes, there is a master node who monitors
the whole network and all other left nodes are slave nodes
under the master node’s supervision. During a typical work
flow, the master node polls slave nodes for new status data
according to a predefined order which is stored in the ROM
of the master node’s ARM board part. This process is called a
polling process and a success retrieval of a slave node’s status
by themaster node is called a round of poll. Usually, a number
is used to identify the node in order to decide the source and
destination of each frame. The master node is numbered 1
under the typical configuration of such an embedded system
and slave nodes are numbered from 2. In the system shown in
Figure 5, Node

1
is the master node and Node

2
to Node

𝑛
are

slave nodes.
To illustrate how nodes communicate with each other,

we discuss the polling process of the master node as an
example in Figure 6. In the system introduced above, the
ARM system is responsible for sending poll messages. As a

result, all slave nodes have their FPGA part participated in
the polling process and the master node has both the ARM
part and the FPGA part involving in the polling process. In
the following discussion, only three nodes are involved for
simplification among which Node

1
is the master node while

Node
2
and Node

3
are slave nodes. We let 𝐴

𝑖
(𝑖 = 1, 2, 3)

denote the ARM board of each node and 𝐹
𝑖
(𝑖 = 1, 2, 3) the

FPGA board.The bus is denoted by 𝐵𝑢𝑠 : 𝐿𝑖𝑛𝑒. The messages
sent between the ARM system and the FPGA system are
labeled as follows.

(i) MF INTR is the master frame interrupt from the
FPGA system to the ARM system.

(ii) MF Flag is the notification signal from the ARM
system to the FPGA system.

(iii) MF Data is the poll message from the ARM system
to the FPGA system.

In this demo, Node
1
is the master node, so the polling

process starts from𝐴
1
and 𝐹
1
. 𝐹
1
first triggers a master frame

interruption of 𝐴
1
through 𝑖𝑜

1,1
of the ARM board. 𝐴

1
then

handles this interruption and starts polling the slave nodes in
the network in a predefined order.𝐴

1
sets 𝑖𝑜

2,1
to high level to

notify 𝐹
1
the coming of a polling message, and then 𝐴

1
puts

the content of a pollingmessagewith value 2whichmeans the
message’s target is Node

2
) to 𝑖𝑜

2,1
. 𝐹
1
is triggered by the high

level of 𝑖𝑜
2,1

and encapsulates themessage received from𝐴
1
to

a framewhich has the format of (type: poll/response, source,
and target). This frame is put on the bus in a broadcast way,
meaning that all nodes (including the sender of the frame)
connected to the bus know the existence of this frame. But
only the frame’s target will handle the content of it, and all
other nodes will neglect the frame’s content automatically. So,
𝐹
2
receives this frame from the bus and sends out its response

frame back to the bus which targets Node
1
. When 𝐹

1
gets the

response frame from 𝐹
2
, it triggers 𝐴

1
again to start another

polling which targets Node
3
.

3.2. Details of the System. The GPIO interface between the
ARM board and the FPGA board works as an intermedi-
ate data store for the interaction of a sequential program
written in C and a parallel program written in VHDL.
We demonstrate an abstract version for the C program in
Algorithm 1 and an abstract version for the VHDL program
in Algorithm 2. The C code in Algorithm 1 is an interrupt
handler which sends a master frame numbered from 2 to
SLAVE COUNT in a roll. The VHDL code in Algorithm 2
checks mf flag every cycle and transfers the value from
mf data to target node. The following CPN model is based
on these codes.

Figure 7 shows a CPN model of the ARM system which
receives a master frame interrupt and sends a poll message
to the FPGA system. Figure 8 shows a CPN model of the
FPGA systemwhich interrupts theARMsystem and transfers
the polling information to the bus. Colour sets used in both
models are defined in Table 1 which contains a list of places
of the specified colour set. All related variables are listed in
Table 2.
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3.2.1. The ARM System. In the CPN model of the ARM
system, the meanings of places are as follows.

(i) Places that represent states of the ARM system are
𝑝
𝑎
1

, 𝑝
𝑎
2

, and 𝑝
𝑎
3

, all of which have type State. Because
tokens in these places can only have value e, we call
these tokens unit tokens.

(ii) 𝑝
𝑖
2

and 𝑝
𝑖
4

are places with type Flag. 𝑝
𝑖
2

represents
the master frame interrupt and 𝑝

𝑖
4

the signal for the
coming master frame data.

(iii) Place 𝑝
𝑖
3

with type Target is used to store the master
frame data sent from the ARM system to the FPGA
system.

(iv) Place 𝑝
𝑎
4

with type Targets stores a list of numbers
which represents the order of slave nodes to be polled.

In the initial state of the system, a unit token is located
in 𝑝
𝑎
1

. 𝑡
𝑎
1

is enabled for the unit token in 𝑝
𝑎
1

and the token
with value true in 𝑝

𝑖
4

. When 𝑡
𝑎
1

fires, it removes a unit token
from 𝑝

𝑎
1

and a token from 𝑝
𝑖
4

and generates a unit token to
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void master frame interrupt handle ()

{

node number++;

if (slave node number >= SLAVE COUNT)

{

slave node number = 2;

}

arm set main frame flag (TRUE);

arm send main frame data (node number);

}

Algorithm 1: C code on the ARM system.

place 𝑝
𝑎
2

. Then, 𝑡
𝑎
2

is enabled immediately when 𝑝
𝑎
2

receives
a unit token. 𝑡

𝑎
2

’s firing removes a unit token from place 𝑝
𝑎
2

and then puts a unit token to 𝑝
𝑎
3

and a token with value
true to 𝑝

𝑖
4

. The token with value true in 𝑝
𝑖
4

indicates the
FPGA system of a master frame poll message from the ARM
system. Then, 𝑡

𝑎
3

is enabled due to the unit token in 𝑝
𝑎
3

and
the token in 𝑝

𝑖
3

. 𝑡
𝑎
3

has three input places: 𝑝
𝑎
3

, 𝑝
𝑎
4

, and 𝑝
𝑖
3

.
The firing of 𝑡

𝑎
3

consumes a unit token from 𝑝
𝑎
3

, a token with
type Target from 𝑝

𝑖
3

, and a token with type Targets from 𝑝
𝑎
4

.
The Targets token from 𝑝

𝑎
4

is bound to two variables: target
which corresponds to the number of the slave node being
polled currently and targetswhich corresponded to numbers
of remaining slave nodes waiting to be polled. The firing of
transition 𝑡

𝑎
3

sends a unit token to 𝑝
𝑎
1

indicating the change
of system state, a Target token called target to 𝑝

𝑖
3

indicating
the slave node’s number to be polled and a Targets token to
𝑝
𝑎
4

with numbers of remaining slave nodes to be polled in

process (reset, clk, current state,

mf flag, mf data)

begin

if reset = ‘1’ then
current state <= start;

elsif clk’event and clk = ‘1’ then
if mf flag = ‘1’ then

target node <= mf data;

current state <= next state;

end if;

end if;

end process;

Algorithm 2: VHDL code on the FPGA system.

the coming polls.When 𝑡
𝑎
3

finishes its firing, theARMsystem
waits the master frame interrupt again to start a new poll.

3.2.2. The FPGA System. In the CPN model of the FPGA
system, the meanings of places are as follows.

(i) Places that represent states of the FPGA system are
𝑝
𝑠
1

, 𝑝
𝑠
2

, 𝑝
𝑠
3

, and 𝑝
𝑠
4

all of which have type State.
Tokens in these places are unit tokens just like those
in the ARM system’s state places.

(ii) 𝑝
𝑖
2

, 𝑝
𝑖
3

, and 𝑝
𝑖
4

are the same places in Figure 7.

(iii) 𝑝
𝑖
1

and 𝑝
𝑖
5

simulate the frames sent and received
between the bus and the FPGA board. 𝑝

𝑖
1

represents
frames from the bus and 𝑝

𝑖
5

represents frames to the
bus.
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Table 1: Colour set definitions.

Colour set Definition Places

State Unit withe 𝑝
𝑎1
, 𝑝
𝑎2
, 𝑝
𝑎3
, 𝑝
𝑠1
, 𝑝
𝑠2
,

𝑝
𝑠3
, 𝑝
𝑠4

Flag BOOL 𝑝
𝑖2
, 𝑝
𝑖4

Frame product STRING ×

INT × INT
Target INT 𝑝

𝑠5
, 𝑝
𝑖3

Frames list Frame 𝑝
𝑖1
, 𝑝
𝑖5

Targets list Target 𝑝
𝑎4

Table 2: Variables in model.

Variables Colour set
n, t INT
flag BOOL
f Frame
fl Frames
target INT
targets Targets

(iv) Place 𝑝
𝑠
5

with type Target stores the number of slave
node that will be used to construct a poll frame.

In the initial configuration, 𝑝
𝑠
1

contains a unit token, so
𝑡
𝑠
1

outputs a token with value true to 𝑝
𝑖
2

and a unit token
to 𝑝
𝑠
2

. The system of ARM treats a token with value true in
𝑝
𝑖
2

as a trigger to start its master frame process. 𝑡
𝑠
2

has four
input places: 𝑝

𝑠
2

, 𝑝
𝑖
3

, 𝑝
𝑖
4

, and 𝑝
𝑠
5

. 𝑝
𝑖
3

and 𝑝
𝑠
5

already contain
a token in each of them, so when the ARM system gives 𝑝

𝑖
4

a token with value true, 𝑡
𝑠
2

is enabled. 𝑝
𝑖
3

offers 𝑡
𝑠
2

a Target
token which is bound to variable n indicating the number
of slave node to be polled next. 𝑝

𝑠
5

is updated in 𝑡
𝑠
2

’s firing
and a Target token with value n replaces the old value in this
place. 𝑝

𝑠
3

gets a unit token, meaning the change of the FPGA
system’s state. 𝑡

𝑠
3

retrieves aTarget token t from𝑝
𝑠
5

, composes
a poll frame in the form of (poll, 1, t), then appends this
frame to the Frames token from 𝑝

𝑖
5

, and sends an updated
token back to this place. A unit token is sent to 𝑝

𝑠
4

by 𝑡
𝑠
3

and
the FPGA system goes to the monitoring state. When 𝑝

𝑖
3

has
tokens, 𝑡

𝑠
4

fires to remove the head of the Frames token in 𝑝
𝑖
1

and sends a unit token to 𝑝
𝑠
1

. The FPGA system goes back to
its initial state and starts another master frame poll process of
the ARM system.

4. Analysis of the Model

4.1. Review of the Model. The FPGA system cyclically checks
the state of master frame flag on the port between the ARM
system and itself and once the value of the flag becomes true
in a cycle, the FPGA system tries to retrieve newmaster frame
data from the corresponding port immediately. As shown in
Algorithm 2, the FPGA system gets master frame data and
sends the data to a signal called target node that represents
the current number of the slave node to be polled. Then, the
value of target node is used to construct a poll frame sent to
the bus.

According to the designer’s intention, the value in tar-
get node should be updated every time the FPGA system
retrieves master frame data. But 𝑡

𝑠
2

in Figure 8 updates the
token in 𝑡

𝑠
5

according to the token in 𝑡
𝑖
2

. However, the process
of updatingmay be ineffective and, as a result, the token in 𝑡

𝑠
5

contains a stale value. To explore this scenario in detail, we
focus on the interaction between the ARM system and the
FPGA system. There are five transitions which participate in
the interaction:

(i) 𝑡
𝑠
1

and 𝑡
𝑠
2

of the FPGA system,
(ii) 𝑡
𝑎
1

, 𝑡
𝑎
2

, and 𝑡
𝑎
3

of the ARM system.

𝑡
𝑠
1

, 𝑡
𝑎
1

, and 𝑡
𝑎
2

always execute in an order according
to the strict dependency caused by tokens’ generation and
consumption in 𝑝

𝑖
2

and 𝑝
𝑖
4

. So, the execution trace of the
three transitions is decidable.The other two transitionswhich
are involved in the interaction act in a different manner.
After 𝑡

𝑎
2

fires, a token with value true appears in 𝑝
𝑖
2

and
a unit token appears in 𝑝

𝑎
3

, which activates 𝑡
𝑠
2

and 𝑡
𝑎
3

,
respectively. Normally, 𝑡

𝑠
2

should fire after 𝑡
𝑎
3

, so that the
FPGA system can construct a right frame which is sent to
a slave node. However, the nature of C programs running
on an ARM platform is asynchronous sequential execution,
while the nature of VHDL programs running on an FPGA
platform is synchronous concurrent execution. Usually, the
FPGA systemwill complete the check of themaster frame flag
and retrieval of the master frame data in the same cycle. So,
possibility exists that the FPGA system retrieves the value of
the master frame data before its value is updated by the ARM
system and thus gets a token with a stale value. We cannot
predicate when will the ARM system updates the value of the
master frame data after the value of the master frame flag is
set to true for the undecidability of the operating system’s
scheduling scheme. So, if the FPGA system’s new execution
cycle starts before the value of master frame data is set by
the ARM system, a timing mismatch happens. To verify the
analysis of the data inconsistency in the CPNmodel, we apply
the approach ofmodel checking on it in the following section.

4.2. Property Analysis. To analyze the behavior of a modeled
system, a state-space based approach can be used to dive into
the details of models and get a thoroughly understanding
of the system. A state of a CPN model is the marking of
the model, that is, the number and value of tokens in each
place in the whole model, and the initial marking of a model
is its initial state. A CPN model changes its state when a
transition of the model fires. All the states that a CPN model
possibly accesses through a series of transition firing are
called the state space of the model which may be finite or
infinite. A property formula is an assertion about the state
space of a model that whether the property holds in all states
of the model and is usually called property for short. Model
checking is an approach that checks whether a property
about a model is fulfilled. If the property is not fulfilled, the
model checking algorithm gives a counter example which
violates the property. There are many description formalisms
for properties, such as 𝐶𝑇𝐿, 𝐿𝑇𝐿, and 𝐶𝑇𝐿

⋆ (add some
refers) and many model checking algorithms target these



Journal of Applied Mathematics 7

Table 3: Property related functions.

Function Type
isStale 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 → 𝐵𝑂𝑂𝐿

myASKCTLformula 𝑁𝑜𝑑𝑒 → 𝐵𝑂𝑂𝐿

eval node (𝑁𝑜𝑑𝑒 → 𝐵𝑂𝑂𝐿) → 𝐵𝑂𝑂𝐿

formalisms. In the field of CPN,𝐴𝑆𝐾-𝐶𝑇𝐿 is used to describe
the property of a CPN model. CPN tools implement the
representation of𝐴𝑆𝐾-𝐶𝑇𝐿 formulas and its model checking
algorithms in SML language. A state is also called a node
because the state space is represented as a state graph in
which an edge represents a firing of a transition and a
node represents a marking of the model. In the following
statements, we will refer to states as nodes when needed.

Let 𝐴 be the abstract 𝐴𝑆𝐾-𝐶𝑇𝐿 formula type; then the
following formulas with type 𝐴 → 𝐴 are considered.

(i) 𝑃𝑂𝑆 is a node formula which is true if it is possible,
from the current node, to reach a node where 𝐴 is
true.

(ii) 𝐼𝑁𝑉 is a node formula which is true if𝐴 is true for all
reachable nodes from the current node.

(iii) 𝐸𝑉 is a node formula which is true if 𝐴 eventually
becomes true from the current node.

(iv) 𝐴𝐿𝑂𝑁𝐺 is a node formula which is true if there is a
path for which 𝐴 is true for every node.

The CPN model of the master node system has the
potential to enter a node in which there is a data mismatch
caused by interface incompatibility. This kind of defect can
be expressed as:

“when transition 𝑡
𝑎
2

fires, 𝑡 and 𝑛 which bind to the
transition are equal in value.”

So, if this property is true in a node, that is, the value of
master frame data read by the FPGA system is equal to the
value of target node got in previous cycles, a data mismatch
appears. This property can be coded as 𝐴𝑆𝐾-𝐶𝑇𝐿 formula in
SML form.

The types of these variables/functions are listed in Table 3.
isStale is a transition function which returns true when

the parameter is a transition equal to 𝑡
𝑎
2

bound with 𝑛 =

𝑡 where 𝑛 = 2, 3 in this case.myASKCTL-formula is a
node function which takes a node as the only parameter
and returns true when there is a node in which isStale is
evaluated to be true. eval node is a function which takes
a node function as the property formula and a node as
the starting node and returns true when the application
of the formula on the node returns true. In this case, we
evaluate the property written in SML code above and get
the following result: var it = true: BOOL, which means the
property holds with respect to the initial state in state space
(see Algorithm 3); that is, there is a node in which 𝑝

𝑠
5

gets a
token with a stale value.

fun isStale a =

(Bind.FPGA’Receive MF Data

(1, {n = 3, t = 3})

= ArcToBE a) orelse

(Bind.FPGA’Receive MF Data

(1, {n = 2, t = 2})

= ArcToBE a);

val myASKCTLformula =

POS(MODAL(AF(“stale value”, isStale)));

eval node myASKCTLformula InitNode;

Algorithm 3: Propery formula in SML code.

5. Conclusion

We will not blame a C programmer or a VHDL programmer
for writing the code shown in Algorithms 1 and 2, since they
both obey the common paradigm in their respective domain.
However, in development of a heterogeneous system, a
programmer should bemore alert and pay special attention to
the situation when a normal assumption is not fulfilled by the
guarantee of other domains in which a defect in the resulted
system may occur. Many approaches can be used to reduce
this potential risk and one of them ismodel checkingmethod.
In this paper, we demonstrate a heterogeneous system which
is composed of two subsystems: an ARM system and an
FPGA system. One of the subsystems behaves synchronously
and the other asynchronously.Through a state based analysis
way, we find defect in the design of the systemwhichmay lead
to data inconsistency between the two subsystems.Then, our
analysis is verified by constructing a property formula which
is computed by a model checking program.
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