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The paper presents a method for optimising the wireless optical network that carries elastic packet traffic.The particular focus is on
modelling the effect of elastic traffic flows slowing down in response to the decrease of the optical transmission systems’ capacity
at bad weather conditions. A mathematical programming model of the network design problem is presented that assumes that
the packet rates of elastic traffic flows decrease fairly. While practically any subset of network links can be simultaneously affected
by unfavourable transmission conditions, a particular challenge of solving the problem results from a huge number of network
states considered in the model. Therefore, how the problem can be solved by generating the most unfavourable network states is
presented.Moreover, it is proved that it is entirely sufficient to consider only the states that correspond to the decrease of capacity on
a single link. Finally, as the general problem is nonlinear, it is shown that the problem can be transformed to a linear MIP problem
and solved effectively when single-path routing of traffic flows is assumed.

1. Problem Definition

The paper considers the problem of designing a wireless
optical network that carries elastic packet traffic. Each node
of the considered network is a packet router, while each
link connecting a pair of nodes is a packet link composed
of a number of optical wireless transmission systems (cf.
Figure 1).

Employing optical wireless transmission systems has
many advantages, the major one being that little network
infrastructure is required. Thus, the network can be installed
or expanded quickly and the installation process is com-
paratively inexpensive. The network is also very flexible as
far as reconfiguration is concerned—a node can be easily
reconnected to a different set of nodes and the transmission
equipment can be deinstalled and moved to another location
quickly. However, there are also disadvantages. For example,
the transmission systems are line-of-sight systems, which
means that the optical transmitter must see the optical
receiver. That limits the feasible network configurations and
may heavily influence the network design as shown in [1].

Themost important issue, however, is that the transmitted
signal is vulnerable to atmospheric conditions (smoke, fog,
smog, etc.) as the systems are wireless and no transmission

medium is used (cf. [2]). The worsening of atmospheric
conditions may heavily influence the quality of the received
optical signal. With that in mind, the optical wireless trans-
mission systems are designed to operate in a number of trans-
mission modes. Based on a specific scheme of signal coding
and modulation, each mode provides particular capacity of
the transmission system and particular robustness of the
optical signal to unfavourable transmission conditions—in
general, the higher the system’s bit-rate the lower the signal’s
robustness. Thus, using multiple schemes effectively solves
the trade-off between signal robustness and system capacity.

At perfect weather conditions the transmission systems
of the wireless optical network are supposed to operate using
the highest-capacity transmission mode, which provides the
maximum capacity of links. But when the signal propagation
conditions deteriorate, the operating mode of each affected
transmission system changes to a more robust one and the
capacity of network links decreases. Whenever the resulting
capacity of a network link is less than the total nominal
bandwidth of the information flows assigned to the link,
packet losses are inevitable.

With elastic packet traffic, packet losses will cause packet
sources to adapt (lower) their packet rate to match the
available network bandwidth. This behaviour is due to the
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Figure 1: An optical wireless network.

per session end-to-end flow control mechanisms of the
TCP data transport protocol. The packet rate of the TCP
session is increased linearly every time the sender application
receives an acknowledgement that a packet has reached the
destination, and the rate is decreased geometrically every
time a packet is lost (cf. Figure 2). Since the packet losses
happen randomly, arguably, the decrease of the packet rates
of the sessions on a given link must be fair, meaning
that the sessions with higher packet rates decrease the
rate first and all sessions decrease the rate to the same
value.

Changing the rate atwhich packets are sent directly affects
the perceived quality of service and should be controlled
by careful network design. The network design problem
considered in this paper consists in dimensioning the links
of a given optical wireless network and routing a given set
of elastic traffic flows so that the total cost of links (i.e.,
the total cost of the optical wireless transmission systems
installed on the links) does not exceed a given budget 𝐵 > 0,
and in nonnominal transmission conditions the bandwidth
that is assigned to any single traffic session is decreased
by at most a given factor 𝛾, 0 < 𝛾 < 1. Alternatively,
the objective of the design may be to minimise the total
cost of links or to maximise the minimal bandwidth reduc-
tion. It is assumed that any subset of network links can
be affected by unfavourable transmission conditions and
that the decrease of packet rates on an affected link is
fair.

The considered problem is similar to the classical prob-
lems of survivable network design (cf. [3]). However, there
are a couple of major differences. First, in this paper a
max-min fair distribution of traffic is considered instead
of the general one; moreover, the fairness is considered at
the level of individual sessions and not aggregated traffic
flows. The application of the max-min fairness concept in
network design and the approaches to solving max-min
fairness problems are discussed in [4, 5]. Second, designing
survivable networks is based on the notion of the set of
network states, which usually consists of the nominal (failure-
free) state and a number of nonnominal (failure) states.
And the particular issue considered in this paper (apart
from the fact that links do not fail but their capacity is
decreased instead) is that in the case of the optical wireless
network no meaningful set of nonnominal network states
can be defined (what is the extent of fog?)—actually, any
subset of links can be affected by unfavourable transmission
conditions, which leads to a huge number of network states.
Dealing with that issue is a major problem considered in this
paper.

Available bandwidth

Packet rate

Figure 2: Elastic traffic behaviour.

2. Problem Modelling

Let the optical wireless network be modelled with a directed
graphG = (V,E), withV being the set of nodes andE being
the set of links, and let P be the set of paths in G. For each
𝑝 ∈ P, let 𝐸

𝑃
(𝑒) ⊆ E denote the set of links of path 𝑝, and,

for each 𝑒 ∈ E, let 𝑃
𝐸
(𝑒) ⊆ P denote the set of paths that use

link 𝑒.
Let the links of the network be realised with one type

of transmission system that can operate in two transmission
modes—the primary (high-capacity) mode which is used in
nominal transmission conditions and the secondary (low-
capacity) mode which is used when conditions deteriorate.
Without loss of generality it can be assumed that the capacity
of the system is equal to 1 in the high-capacity mode and is
equal to 𝛼, 0 < 𝛼 < 1, in the low-capacity mode. Each link of
the network can be equipped with a number of transmission
systems. Let the link cost function 𝜉 : E → R

+
define the cost

of a single transmission system installed on the link.
Let S denote the set of network states. Let 𝑠

0
denote

the nominal network state of perfect transmission conditions
(when all transmission systems operate in the high-capacity
mode) and let setS

𝑓
of nonnominal network states represent

all assumed situations of unfavourable transmission condi-
tions; thus,S ≡ {𝑠

0
} ∪S
𝑓
. In particular,S

𝑓
could be defined

by assuming that at most 𝑁 links of the network can be
simultaneously affected by unfavourable signal transmission
conditions. For each 𝑠 ∈ S

𝑓
, let 𝐸

𝑆
(𝑠) ⊆ E be the

set of affected links in nonnominal state 𝑠. It is assumed
that whenever transmission conditions on a network link
deteriorate, all the transmission systems installed on the link
operate in the low-capacity transmission mode.

Let the network traffic be modelled with a set of demands
D. Let function 𝑠 : D → Z

+
define the number of sessions

that correspond to the demand, function 𝑟 : D → R
+
define

the nominal packet rate of a single session, and function 𝑙 :

D → R
+
define the average packet length for the demand (it

can be noticed that 𝑏(𝑑) ≡ 𝑟(𝑑)𝑙(𝑑) is the nominal bandwidth
required by a single session and ℎ(𝑑) ≡ 𝑟(𝑑)𝑙(𝑑)𝑠(𝑑) is the
volume of demand 𝑑 ∈ D). Finally, for each 𝑑 ∈ D, let
P(𝑑) ⊆ P denote the set of admissible paths of demand 𝑑.

For each 𝑒 ∈ E, let variable 𝑦
𝑒
denote the number of

transmission systems installed on link 𝑒. For each 𝑑 ∈ D and
𝑝 ∈ P(𝑑), let variable 𝑥

𝑑𝑝
denote the number of sessions of

demand 𝑑 assigned to path 𝑝, and, for each 𝑑 ∈ D, 𝑝 ∈ P(𝑑),
and 𝑠 ∈ S

𝑓
(it could be assumed that 𝐸

𝑃
(𝑝) ∩ 𝐸

𝑆
(𝑠) ̸= 0),

let variable 𝑧
𝑑𝑝𝑠

denote the reduction of the packet rate of
the sessions of demand 𝑑 assigned to path 𝑝 in state 𝑠 (if
𝑧
𝑑𝑝𝑠

equals 1, the packet rate is not reduced). The network
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design problem can now be formulated as a mathematical
programme with the following constraints:

∑

𝑒∈E

𝜉 (𝑒) 𝑦𝑒 ≤ 𝐵 (1a)

∑

𝑝∈P(𝑑)

𝑥
𝑑𝑝

= 𝑠 (𝑑) 𝑑 ∈ D (1b)

∑

𝑑∈D

∑

𝑝∈P(𝑑)∩𝑃𝐸(𝑒)

𝑟 (𝑑) 𝑙 (𝑑) 𝑥𝑑𝑝 ≤ 𝑦
𝑒

𝑒 ∈ E (1c)

∑

𝑑∈D

∑

𝑝∈P(𝑑)∩𝑃𝐸(𝑒)

𝑟 (𝑑) 𝑙 (𝑑) 𝑥𝑑𝑝𝑧𝑑𝑝𝑠 ≤ 𝛼𝑦
𝑒

𝑠 ∈ S
𝑓
, 𝑒 ∈ 𝐸

𝑆 (𝑠)

(1d)

𝛾 ≤ 𝑧
𝑑𝑝𝑠

≤ 1 𝑑 ∈ D, 𝑝 ∈ P (𝑑) , 𝑠 ∈ S
𝑓 (1e)

𝑥
𝑑𝑝

∈ Z
+

𝑑 ∈ D, 𝑝 ∈ P (𝑑) (1f)

𝑦
𝑒
∈ Z
+

𝑒 ∈ E. (1g)

Let 𝑦 ≡ (𝑦
𝑒
)
𝑒∈E, 𝑥 ≡ (𝑥

𝑑𝑝
)
𝑑∈D,𝑝∈P(𝑑), and 𝑧 ≡

(𝑧
𝑑𝑝𝑠

)
𝑑∈D,𝑝∈P(𝑑),𝑠∈S𝑓

. Let W(𝐵, 𝛾,S
𝑓
) denote the feasibility

set defined by constraints (1a), (1b), (1c), (1d), (1e), (1f), and
(1g) being the set of triples (𝑦, 𝑥, 𝑧). Seemingly, to complete
the formulation of the network design problem, additional
constraints are still required to express the conditions that
must be satisfied by variables 𝑧

𝑑𝑝𝑠
; the constraints should

reflect the effect of fairly slowing down the elastic traffic
sessions in response to the decrease of link capacities in
nonnominal states 𝑠 ∈ S

𝑓
. That effect can be modelled as

follows.
Consider a given nonnominal state 𝑠 ∈ S

𝑓
. Consider

vector 𝑍 ≡ 𝑧
𝑠
. LetF denote the set of affected network links,

that is, F ≡ 𝐸
𝑆
(𝑠), and let 𝑐 be the vector of their capacities:

𝑐 ≡ (𝑐
𝑒
∈ R
+
: 𝑒 ∈ F, 𝑐

𝑒
= 𝛼𝑦
𝑒
) (i.e., 𝑐 ≡ 𝛼𝑦|

𝐸𝑆(𝑠)
). For each𝑑 ∈

D, 𝑝 ∈ P(𝑑), and 𝑒 ∈ 𝐸
𝑃
(𝑝) ∩F, let 𝑡

𝑑𝑝𝑒
be a binary variable

that equals 1 if the decrease of capacity of link 𝑒 causes the
decrease of the packet rate of the sessions of demand 𝑑 that
are routed along path 𝑝 and 0 otherwise. For each 𝑒 ∈ F, let
𝑢
𝑒
be a binary variable that equals 1 if link 𝑒 is saturated (i.e.,

the total flow ∑
𝑑∈D ∑

𝑝∈P(𝑑)∩𝑃𝐸(𝑒)
𝑟(𝑑)𝑙(𝑑)𝑥

𝑑𝑝
𝑧
𝑑𝑝𝑠

on the link
is equal to the link’s capacity) and 0 otherwise; the decrease of
capacity of a link can cause the decrease of a session’s packet
rate only if the link becomes saturated. For each 𝑒 ∈ F, let
variable V

𝑒
denote the common packet rate of the sessions

that have their rate reduced due to the decrease of capacity
of link 𝑒; V

𝑒
is also the maximum session packet rate on link

𝑒.The condition for packet rate reduction can be expressed as
follows:

𝑍
𝑑𝑝

= min{1, min
𝑒∈𝐸𝑃(𝑝)∩F

V
𝑒

𝑟 (𝑑)
} 𝑑 ∈ D, 𝑝 ∈ P (𝑑) . (2)

Altogether, the following constraints must hold (𝐶 and 𝑅

are sufficiently large constants, e.g., 𝐶 ≡ ∑
𝑑∈D ℎ(𝑑) and

𝑅 ≡ max
𝑑∈D𝑟(𝑑)) which express the relation between packet

rate reduction and capacity decrease of links from F (the

constraints are based on the model of the max-min fair
network flows proposed in [6]):

1 − 𝑍
𝑑𝑝

≤ ∑

𝑒∈𝐸𝑃(𝑝)∩F

𝑡
𝑑𝑝𝑒

𝑑 ∈ D, 𝑝 ∈ P (𝑑) (3a)

𝑡
𝑑𝑝𝑒

≤ 𝑢
𝑒

𝑑 ∈ D, 𝑝 ∈ P (𝑑) , 𝑒 ∈ 𝐸
𝑃
(𝑝) ∩F (3b)

0 ≤ 𝑐
𝑒
− ∑

𝑑∈D

∑

𝑝∈P(𝑑)∩𝑃𝐸(𝑒)

𝑟 (𝑑) 𝑙 (𝑑) 𝑥𝑑𝑝𝑍𝑑𝑝 ≤ 𝐶 (1 − 𝑢
𝑒
)

𝑒 ∈ F

(3c)

0 ≤ V
𝑒
− 𝑟 (𝑑) 𝑍𝑑𝑝 ≤ 𝑅 (1 − 𝑡

𝑑𝑝𝑒
) 𝑑 ∈ D, 𝑝 ∈ P (𝑑) ,

𝑒 ∈ 𝐸
𝑃
(𝑝) ∩F

(3d)

𝑅 (1 − 𝑢
𝑒
) ≤ V
𝑒
≤ 𝑅 𝑒 ∈ F (3e)

𝑢
𝑒
∈ {0, 1} 𝑒 ∈ F (3f)

𝑡
𝑑𝑝𝑒

∈ {0, 1} 𝑑 ∈ D, 𝑝 ∈ P (𝑑) , 𝑒 ∈ 𝐸
𝑃
(𝑝) ∩F (3g)

0 ≤ 𝑍
𝑑𝑝

≤ 1 𝑑 ∈ D, 𝑝 ∈ P (𝑑) . (3h)

Let 𝑄(𝑐, 𝑥,F) denote the feasible set defined by constraints
(3a), (3b), (3c), (3d), (3e), (3f), (3g), and (3h), and let
𝑄
𝑍
(𝑐, 𝑥,F) denote the projection of 𝑄(𝑐, 𝑥,F) onto the set

of vectors 𝑍. It can be shown that set𝑄(𝑐, 𝑥,F) is nonempty.
Actually, for a vector 𝑍 to satisfy constraints (3a), (3b), (3c),
(3d), (3e), (3f), (3g), and (3h), vector (𝑟(𝑑)𝑍

𝑑𝑝
: 𝑑 ∈ D, 𝑝 ∈

P(𝑑), 𝑥
𝑑𝑝

> 0)must bemax-min fair.Thusfinding vector𝑍 ∈

𝑄
𝑍
(𝑐, 𝑥,F) can be formulated as amax-min fair optimisation

problem having vector 𝑍 ≡ 0 as a feasible solution.
Assuming the objective of minimising the total cost of

links, the considered network design problem, denoted by
𝑃(𝛾,S

𝑓
), can now be defined as follows:

𝑃 (𝛾,S
𝑓
) : min𝐵 (4a)

(𝑦, 𝑥, 𝑧) ∈ W (𝐵, 𝛾,S
𝑓
) (4b)

𝑧
𝑠
∈ 𝑄
𝑍
(𝛼𝑦|
𝐸𝑆(𝑠)

, 𝑥, 𝐸
𝑆 (𝑠)) 𝑠 ∈ S

𝑓
(4c)

𝐵 ≥ 0. (4d)

3. Problem Solving

Potentially, the number of nonnominal network states is
huge as each subset of links F ⊆ E can correspond to
a nonnominal network state. Thus, in general, the number
of constraints and variables of problem (4a), (4b), (4c), and
(4d) is also huge. Still, problem (4a), (4b), (4c), and (4d)
can be solved with the constraint and column generation
approach, by generating nonnominal network states (and
thus the constraints and variables that correspond to those
states) on the “as-needed” basis.

Problem (4a), (4b), (4c), and (4d) defined with a
restricted set S

𝑓
of nonnominal states can be treated as the
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master problem. Let (𝑦
∗
, 𝑥
∗
, 𝑧
∗
) be an optimal solution to

the master problem. For given 𝑦
∗ and 𝑥

∗, the slave problem
consists in finding such set of links affected by unfavourable
signal transmission conditions that for at least one path of a
demand the reduction of the packet rate is less than 𝛾; this set
corresponds to a new nonnominal network state 𝑠

∗, which is
then added to set S

𝑓
of the master problem.

For each 𝑒 ∈ E, let 𝑞
𝑒
be a binary variable that equals 1

if link 𝑒 belongs to the required set 𝐸
𝑆
(𝑠
∗
) and 0 otherwise.

For each 𝑑 ∈ D and 𝑝 ∈ P(𝑑), let variable 𝑍
𝑑𝑝

denote
the reduction of the packet rate of the sessions of demand
𝑑 assigned to path 𝑝 in the required state, and let 𝑍 ≡

(𝑍
𝑑𝑝

)
𝑑∈D,𝑝∈P(𝑑). Let 𝜃 ≡ min

𝑑∈D,𝑝∈P(𝑑)𝑍𝑑𝑝, and for each
𝑑 ∈ D and 𝑝 ∈ P(𝑑), let 𝑟

𝑑𝑝
be a binary variable that equals

1 whenever 𝑍
𝑑𝑝

= 𝜃. Then, a new nonnominal network state
can be found by solving the following slave problem 𝑅(𝑦, 𝑥)

for 𝑦
∗ and 𝑥

∗ which minimises the value of 𝜃 over all sets
F ⊆ E (it could also be assumed that |F| ≤ 𝑁):

𝑅 (𝑦, 𝑥) : min 𝜃 (5a)

0 ≤ 𝑍
𝑑𝑝

− 𝜃 ≤ 1 − 𝑟
𝑑𝑝

𝑑 ∈ D, 𝑝 ∈ P (𝑑)

(5b)

∑

𝑑∈D,𝑝∈P(𝑑)

𝑟
𝑑𝑝

≥ 1 (5c)

𝑐
𝑒
= 𝑦
𝑒
− 𝑞
𝑒 (1 − 𝛼) 𝑦𝑒 𝑒 ∈ E (5d)

𝑍 ∈ 𝑄
𝑍 (𝑐, 𝑥,E) (5e)

𝑐
𝑒
≥ 0 𝑒 ∈ E (5f)

𝑞
𝑒
∈ {0, 1} 𝑒 ∈ E (5g)

𝑟
𝑑𝑝

∈ {0, 1} 𝑑 ∈ D, 𝑝 ∈ P (𝑑) (5h)

0 ≤ 𝑍
𝑑𝑝

≤ 1 𝑑 ∈ D, 𝑝 ∈ P (𝑑) (5i)

0 ≤ 𝜃 ≤ 1. (5j)

It can be noticed that constraints (3a), (3b), (3c), (3d), (3e),
(3f), (3g), and (3h) defining set 𝑄

𝑍
(𝑐, 𝑥,E) can be directly

embedded into the formulation of 𝑅(𝑦, 𝑥).
If the optimal objective value 𝜃

∗ of slave problem
𝑅(𝑦
∗
, 𝑥
∗
) is greater or equal to 𝛾, the optimal solution of

the master problem is the optimal solution of the considered
network design problem. Otherwise, the master problem
must be modified by adding variables and constraints that
correspond to a new nonnominal network state 𝑠

∗
∈ S
𝑓
:

the optimal solution vector 𝑞
∗

≡ (𝑞
∗

𝑒
)
𝑒∈E of problem (5a),

(5b), (5c), (5d), (5e), (5f), (5g), (5h), (5i), and (5j) defines
the values of the characteristic function of set 𝐸

𝑆
(𝑠
∗
); that is,

𝐸
𝑆
(𝑠
∗
) ≡ {𝑒 ∈ E : 𝑞

∗

𝑒
= 1}.

Solving problem (4a), (4b), (4c), and (4d) with state
generation approach does not guarantee that considering a
large number of network states can be avoided. However,
careful examination of the packet rate reduction condition (2)
leads to a conclusion that, actually, it is sufficient to consider
only single-link states in the design problem.This fact can be
expressed formally with the following proposition.

Proposition 1. Consider an arbitrary set of nonnominal net-
work states S

𝑓
and set Ŝ

𝑓
such that |𝐸

𝑆
(𝑠)| = 1 for each

𝑠 ∈ Ŝ
𝑓
and ⋃

𝑠∈S𝑓
𝐸
𝑆
(𝑠) = ⋃

𝑠∈Ŝ𝑓
𝐸
𝑆
(𝑠). If (𝑦∗, 𝑥∗, 𝑧∗) is a

feasible solution of problem𝑃(𝛾, Ŝ
𝑓
), then there exists a feasible

solution (𝑦
∗
, 𝑥
∗
, 𝑧) of problem 𝑃(𝛾,S

𝑓
).

Proof. Consider a set of vectors 𝑧
𝑠
, 𝑠 ∈ S

𝑓
, such that 𝑧

𝑠
∈

𝑄
𝑍
(𝛼𝑦
∗
|
𝐸𝑆(𝑠)

, 𝑥
∗
, 𝐸
𝑆
(𝑠)) (recall that sets 𝑄

𝑍
are not empty). It

will be proved that (𝑦∗, 𝑥∗, 𝑧) is a feasible solution of problem
𝑃(𝛾,S

𝑓
).

Due to (4a), (4b), (4c), and (4d), it must be shown that
(𝑦
∗
, 𝑥
∗
, 𝑧) ∈ W(𝐵, 𝛾,S

𝑓
). As (𝑦∗, 𝑥∗, 𝑧∗) is a feasible solution

of problem 𝑃(𝛾, Ŝ
𝑓
), therefore (𝑦

∗
, 𝑥
∗
, 𝑧
∗
) ∈ W(𝐵, 𝛾,S

𝑓
),

and it is sufficient to prove that vector 𝑧 satisfies constraints
(1e); that is, 𝑧

𝑑𝑝𝑠
≥ 𝛾 for each 𝑑 ∈ D, 𝑝 ∈ P(𝑑), 𝑠 ∈ S

𝑓
.

Assume that there exist 𝑑


∈ D, 𝑝


∈ P(𝑑

), and

𝑠

∈ S
𝑓
, such that 𝑧

𝑑

𝑝

𝑠
 < 𝛾. Due to (2), there must exist

link 𝑒


∈ 𝐸
𝑃
(𝑝) ∩ 𝐸

𝑆
(𝑠

) such that 𝑧

𝑑

𝑝

𝑠
 = V

𝑒
/𝑟(𝑑

) for

𝑄(𝛼𝑦
∗
|
𝐸𝑆(𝑠

)
, 𝑥
∗
, 𝐸
𝑆
(𝑠

)); obviously, that linkmust be saturated

in 𝑠
; that is, ∑

𝑑∈D ∑
𝑝∈P(𝑑)∩𝑃𝐸(𝑒


)
𝑟(𝑑)𝑙(𝑑)𝑥

𝑑𝑝
𝑧
𝑑𝑝𝑠
 = 𝛼𝑦

∗

𝑒
 .

According to the assumption, there exists state 𝑠 ∈ Ŝ
𝑓
,

such that 𝐸
𝑆
(𝑠) = {𝑒


}. With (𝑦

∗
, 𝑥
∗
, 𝑧
∗
) being a feasible

solution of problem 𝑃(𝛾, Ŝ
𝑓
), due to (4a), (4b), (4c), and

(4d), 𝑧∗
𝑠

∈ 𝑄
𝑍
(𝛼𝑦
∗
|
𝐸𝑆(𝑠)

, 𝑥
∗
, 𝐸
𝑆
(𝑠)) and 𝑧

∗

𝑑𝑝𝑠
≥ 𝛾 for each

𝑑 ∈ D and 𝑝 ∈ P(𝑑), in particular, 𝑧∗
𝑑

𝑝

𝑠
≥ 𝛾. Therefore,

due to (2), V̂
𝑒
/𝑟(𝑑

) ≥ 𝛾 for 𝑄(𝛼𝑦

∗
|
𝐸𝑆(𝑠)

, 𝑥
∗
, 𝐸
𝑆
(𝑠)), and thus

V̂
𝑒
 > V
𝑒
 . Then, once again due to (2) (and the fact that F =

𝐸
𝑆
(𝑠) = {𝑒


}), 𝑧∗
𝑑𝑝𝑠

= min{1, V̂
𝑒
/𝑟(𝑑)} ≥ min{1, V

𝑒
/𝑟(𝑑)} ≥

𝑧
𝑑𝑝𝑠
 for each 𝑑 ∈ D, 𝑝 ∈ P(𝑑) ∩ 𝑃

𝐸
(𝑒

), and

𝑧
∗

𝑑

𝑝

𝑠
> 𝑧
𝑑

𝑝

𝑠
 . Thus, ∑

𝑑∈D ∑
𝑝∈P(𝑑)∩𝑃𝐸(𝑒


)
𝑟(𝑑)𝑙(𝑑)𝑥

𝑑𝑝
𝑧
∗

𝑑𝑝𝑠
>

∑
𝑑∈D ∑

𝑝∈P(𝑑)∩𝑃𝐸(𝑒

)
𝑟(𝑑)𝑙(𝑑)𝑥

𝑑𝑝
𝑧
𝑑𝑝𝑠
 = 𝛼𝑦

∗

𝑒
 , which is not

possible.

The intuition behind the proof of Proposition 1 is that
the packet rate on any given link decreases most if that
link is the only overloaded link in the network; decreasing
the capacity of other links can only decrease the load on
that particular link and minimise the need for packet rate
decrease. Consequently, the opposite of Proposition 1 is not
true as stated by the following proposition.

Proposition 2. Consider an arbitrary set of nonnominal net-
work states S

𝑓
and set Ŝ

𝑓
such that |𝐸

𝑆
(𝑠)| = 1 for each

𝑠 ∈ Ŝ
𝑓
and ⋃

𝑠∈S𝑓
𝐸
𝑆
(𝑠) = ⋃

𝑠∈Ŝ𝑓
𝐸
𝑆
(𝑠). If (𝑦∗, 𝑥∗, 𝑧∗) is a

feasible solution of problem 𝑃(𝛾,S
𝑓
), then there need not exist

a feasible solution (𝑦
∗
, 𝑥
∗
, 𝑧) of problem 𝑃(𝛾, Ŝ

𝑓
).

Proof. Consider a network illustrated in Figure 3, which
consists of nodes 𝑎, 𝑏 and 𝑐, links 𝑒

1
≡ (𝑎, 𝑏) and 𝑒

2
≡ (𝑏, 𝑐),

and demands 𝑑
1
from 𝑎 to 𝑏 and 𝑑

2
from 𝑎 to 𝑐, such that

ℎ(𝑑
1
) = 1/2, 𝑟(𝑑

1
) = 1 and ℎ(𝑑

2
) = 1,𝑟(𝑑

2
) = 1/2. Let

S
𝑓

≡ {𝑠}, such that 𝐸
𝑆
(𝑠) ≡ {𝑒

1
, 𝑒
2
}. Let 𝛼 = 1/2 and

𝛾 = 1/2. Consider a solution to problem 𝑃(𝛾,S
𝑓
) (obviously,

it is the optimal solution), such that 𝑦
∗

𝑒1
= 2 and 𝑦

∗

𝑒2
= 1
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d1: h = 1/2, r = 1

e1: y
∗ = 2 e2: y

∗ = 1

d2: h = 1, r = 1/2

𝛼 = 1/2
𝛾 = 1/2

Figure 3: A network example for infeasibility of problem 𝑃(𝛾, Ŝ
𝑓
).

and 𝑥
∗

𝑑1
= 𝑠(𝑑

1
) and 𝑥

∗

𝑑2
= 𝑠(𝑑

2
) (index 𝑝 is skipped as

there is only one path for each demand): it can be checked
that 𝑧∗

𝑑1𝑠
= 1 and 𝑧

∗

𝑑2𝑠
= 1/2 (again with index 𝑝 skipped).

However, for state 𝑠, such that𝐸
𝑆
(𝑠) ≡ {𝑒

1
}, link 𝑒

1
is saturated

since ℎ(𝑑
1
) + ℎ(𝑑

2
) > 𝛼𝑦

∗

𝑒1
= 1, and inevitably the packet

rates of both flows must decrease as 𝑟(𝑑
1
) > 𝑟(𝑑

2
) and

ℎ(𝑑
2
) = 𝛼𝑦

∗

𝑒1
. Thus, 𝑠(𝑑

1
)𝑙(𝑑
1
)V
𝑠𝑒1

+ 𝑠(𝑑
2
)𝑙(𝑑
2
)V
𝑠𝑒1

= 𝛼𝑦
∗

𝑒1
= 1

and V
𝑠𝑒1

= 1/(ℎ(𝑑
1
)/𝑟(𝑑
1
) + ℎ(𝑑

2
)/𝑟(𝑑
2
)) = 2/5, and then

𝑧
𝑑1𝑠

= V
𝑠𝑒1

/𝑟(𝑑
1
) = 2/5 < 𝛾.

Proposition 1 leads directly to the following conclusion.

Corollary 3. Consider an arbitrary set of nonnominal network
states S

𝑓
and set Ŝ

𝑓
⊆ S
𝑓
such that |𝐸

𝑆
(𝑠)| = 1 for each

𝑠 ∈ Ŝ
𝑓
and ⋃

𝑠∈S𝑓
𝐸
𝑆
(𝑠) = ⋃

𝑠∈Ŝ𝑓
𝐸
𝑆
(𝑠). The optimal objective

function value of problem 𝑃(𝛾,S
𝑓
) is equal to the optimal

objective function value of problem 𝑃(𝛾, Ŝ
𝑓
).

Proof. Due to Proposition 1, the optimal objective function
value of problem 𝑃(𝛾, Ŝ

𝑓
) is an upper bound on the optimal

objective function value of problem 𝑃(𝛾,S
𝑓
). But it is also

a lower bound since problem 𝑃(𝛾, Ŝ
𝑓
) is a relaxation of

problem 𝑃(𝛾,S
𝑓
) (due to the fact that Ŝ

𝑓
⊆ S
𝑓
).

Proposition 1 andCorollary 3 not only enable considering
a limited set of network states, but also allow for simplifying
constraints (3a), (3b), (3c), (3d), (3e), (3f), (3g), and (3h)
defining set 𝑄

𝑍
(𝑐, 𝑥,F), due to the fact that only one link

for each state needs to be analysed. First, since |F| = 1, the
number of variables and constraints is heavily reduced, and
index 𝑒 ∈ F is actually not required. Second, as it can be
noticed that it is not necessary to examine directly whether
the considered link is saturated (the link must be saturated if
at least one 𝑍

𝑑𝑝
is less than 1), variables 𝑢

𝑒
and constraints

(3b) and (3c) are actually not required.
Still, problem (4a), (4b), (4c), and (4d) is nonlinear due

to the nonlinearity of constraint (1d). However, if single-
path routing of demands is assumed, the problem can be
formulated as aMIP. For each 𝑑 ∈ D and𝑝 ∈ P(𝑑), let 𝑥

𝑑𝑝
be

a binary variable that equals 1 if the sessions of demand 𝑑 use
path 𝑝 and 0 otherwise. Then variables 𝑥

𝑑𝑝
can be replaced

with variables 𝑥


𝑑𝑝
using substitution 𝑥

𝑑𝑝
≡ 𝑠(𝑑)𝑥



𝑑𝑝
. Finally,

expression 𝑋
𝑑𝑝𝑠

≡ 𝑥


𝑑𝑝
𝑧
𝑑𝑝𝑠

can be linearised requiring that
0 ≤ 𝑋

𝑑𝑝𝑠
≤ 𝑥


𝑑𝑝
and 𝑧
𝑑𝑝𝑠

− (1 − 𝑥


𝑑𝑝
) ≤ 𝑋

𝑑𝑝𝑠
≤ 𝑧
𝑑𝑝𝑠

.
Thus, problem 𝑃(𝛾,S

𝑓
) can be treated as a single-path

routing MIP problem with additional constraints. And as

analysed in [5, 7] the single-path routing problem can be
solved quite efficiently. Hopefully, the additional constraints
are not very demanding, as, in particular, the actual values
of variables 𝑧

𝑑𝑝𝑠
are not critical—it is only important if they

are greater or equal to 𝛾. However, the numerical experiments
that are supposed to illustrate the computational complexity
of the problem will be the subject of a separate paper.
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