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This work is concerned with the quadratic-mean asymptotically almost periodic mild solutions for a class of stochastic functional
differential equations d𝑥 (𝑡) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥

𝑡
)] d𝑡 + 𝐻(𝑡, 𝑥 (𝑡) , 𝑥

𝑡
) ∘ d𝑊(𝑡). A new criterion ensuring the existence

and uniqueness of the quadratic-mean asymptotically almost periodic mild solutions for the system is presented. The condition of
being uniformly exponentially stable of the strongly continuous semigroup {𝑇 (𝑡)}

𝑡≥0
is essentially removed, which is generated by

the linear densely defined operator 𝐴 : 𝐷(𝐴) ⊂ 𝐿2(P,H) → 𝐿
2
(P,H), only using the exponential trichotomy of the system, which

reflects a deeper analysis of the behavior of solutions of the system. In this case the asymptotic behavior is described through the
splitting of the main space into stable, unstable, and central subspaces at each point from the flow’s domain. An example is also
given to illustrate our results.

1. Introduction

The theory of almost periodic functions was first developed
by the Danish mathematician H. Bohr in 1925-1926. Then
Bohr’s work was developed substantially by S. Bochner, J.
Favard, V. V. Stepanov, and others. Generalization of the
classical theory of almost periodic functions has been taken
in several directions. These works were recapitulated in
literatures [1] and [2]. The concept of almost periodicity is
important in probability for investigating stochastic processes
[3–7]. Such a notion is also of interest for applications
arising in mathematical physics and statistics. Literature [8]
developed the notion of 𝑝-mean almost periodicity based
on the concept of quadratic mean uniformly almost periodic
utilized by [7] and pointed out that each 𝑝-mean almost
periodic process is uniformly continuous and stochastically
bounded [9]. Literature [8] also pointed that the collection of
all 𝑝-mean almost periodic processes is a Banach space when
it is equipped with some norm obtained through the norm of
𝐿
𝑝
(P,B), where (B, ‖ ⋅ ‖) is a Banach space.
The asymptotically almost periodic functions were first

introduced by Fréchet. In the modern theory of differential

equations,many authors [1, 2] applied successfully the asymp-
totic property to determine the existence of almost periodic
solutions. Along with the development of such equations
as the evolution partial differential equations, functional
differential equations, and so forth, where the phase spaces
are infinite, the theory of Banach valued asymptotically
almost periodic functions had been developed [10–12]. Some
techniques in functional analysis and harmonic analysis were
applied to such equations; for example, in [1, 13], the authors
applied spectrum theory to get almost periodic solutions for
some linear abstract evolution differential equations. More
recently, [14] developed the notion of 𝑝-mean asymptotical
almost periodicity for stochastic processes. Among others,
it showed that each 𝑝-mean asymptotically almost periodic
stochastic process is stochastically bounded.

Recently, [8] studied the existence and uniqueness of
quadratic-mean almost periodic solutions for the class of
stochastic differential equations

d𝑥 (𝑡) = 𝐴𝑥 (𝑡) d𝑡 + 𝐹 (𝑡, 𝑥 (𝑡)) d𝑡 + 𝐺 (𝑡, 𝑥 (𝑡)) ∘ d𝑊(𝑡) ,

𝑡 ∈ R.
(1)
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Literature [15] investigated the existence and stability of
quadratic-mean almost periodic mild solutions for stochastic
functional differential equations

d𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥
𝑡
)] d𝑡

+ 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥
𝑡
) ∘ d𝑊(𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜎, 0] .

(2)

They both assumed that the strongly continuous semigroup
{𝑇(𝑡)}

𝑡≥0
is uniformly exponentially stable, which is generated

by the linear densely defined operator 𝐴 : 𝐷(𝐴) ⊂

𝐿
2
(P,H) → 𝐿

2
(P,H). For other works, we refer the reader

to [16–21] and the references therein.
One should point that the following condition (C) is very

much important in the above-mentioned literatures.

(C) The operator 𝐴 is the generator of a uniformly
exponentially stable semigroup {𝑇(𝑡)}

𝑡≥0
such that

there exist constants 𝑀 > 0, 𝛿 > 0 with ‖𝑇(𝑡)‖ ≤
𝑀𝑒
−𝛿𝑡
, (𝑡 ≥ 0).

It is clear that the condition (C) is too strict [22] so that it
cannot be satisfied even if for simple 𝐴 = diag{1, −1} or 𝐴 =

diag{1, 0, −1}. Literature [22] presented some new criteria
ensuring the existence and uniqueness of quadratic-mean
almost periodic solution for stochastic differential equation
(1), and only assumes that the linear system

d𝑥 (𝑡) = 𝐴 (𝑡) d𝑡 (3)

admits exponential dichotomy. It is clear that when 𝐴(𝑡) =
diag{1, −1}, the system (3) admits exponential dichotomy.
More generally, in the case 𝐴(𝑡) ≡ 𝐴, a constant matrix, the
system (3) admits exponential dichotomy if and only if the
eigenvalues of 𝐴 have a nonzero real part. Literature [14, 17]
has obtained the existence and uniqueness of quadratic-mean
almost automorphic solutions or asymptotically almost peri-
odic solutions for stochastic functional differential equations
under a hyperbolic and analytic semigroup {𝑇(𝑡)}

𝑡≥0
. At the

same time, one notices that the case that the eigenvalues
of 𝐴 have a zero real part is very common; for example,
𝐴(𝑡) = diag{1, 0, −1}.Therefore, it is interesting to ask, what is
that, when the semigroup {𝑇(𝑡)}

𝑡≥0
is not exponentially stable,

which is generated by the family {𝐴(𝑡) : 𝑡 ∈ R}, or when the
semigroup {𝑇(𝑡)}

𝑡≥0
is nonhyperbolic? This question will be

considered in the paper.
In the present paper, motivated by [8, 14, 15], we discuss

the existence and uniqueness of quadratic-mean asymptot-
ically almost periodic solution to the following stochastic
functional differential equation on 𝐿2(P,H), where P is the
probability measure of the probability space (Ω,F,P) and
(H, ‖ ⋅ ‖) is a real separable Hilbert space:

d𝑥 (𝑡) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥
𝑡
)] d𝑡

+ 𝐻 (𝑡, 𝑥 (𝑡) , 𝑥
𝑡
) ∘ d𝑊(𝑡) , 𝑡 ∈ R.

(4)

We present the new criterion ensuring the existence of a
unique quadratic-mean asymptotically almost periodic solu-
tion for the stochastic functional differential equation (1), by

employing the properties of almost periodic function and
the technique of inequality. We essentially remove the above
conditions (C) and only assume that the linear system (2)
admits exponential trichotomy (see Definition 11). We also
point out that exponential trichotomy is the most complex
asymptotic property of dynamical systems arising from the
centralmanifold theory. Starting from the idea that the center
manifold of an equilibrium point of a dynamical system
consists of orbits whose behavior around the equilibrium
point is not controlled by either the attraction of the stable
manifold or the repulsion of the unstable manifold. The
exponential trichotomy reflects a deeper analysis of the
behavior of solutions of dynamical systems. In this case the
asymptotic behavior is described through the splitting of the
main space into stable, unstable, and central subspaces at each
point from the flow’s domain.

This paper is organized as follows. In Section 2, the
relating notations, definitions, and the basic results are
introduced, which would be used later. In Section 3, a
new criterion ensuring the existence and uniqueness of a
quadratic-mean asymptotically almost periodicmild solution
for stochastic functional differential equations is presented.
In Section 4, an example is given to illustrate our results.
Finally, conclusions are drawn in Section 5.

2. Preliminaries

Let (Ω,F,P) be a probability space, for a Banach space (B, ‖ ⋅
‖) and 𝑝 ≥ 1, denoted by 𝐿𝑝(P,B), the Banana space of all
B-value random variable 𝑥, such that

E‖𝑥‖
𝑝
= ∫

Ω

‖𝑥‖
𝑝dP < ∞. (5)

It is then routine to check that 𝐿𝑝(P,B) is a Banach space
when it is equipped with its natural norm ‖ ⋅ ‖

𝑝
defined by

‖𝑥‖
𝐿
𝑝
(P,B) = (∫

Ω

‖𝑥‖
𝑝dP)
1/𝑝

(6)

for each 𝑥 ∈ 𝐿𝑝(P,B).
This setting requires the following preliminary defini-

tions.

Definition 1. A stochastic process 𝑥 : R → 𝐿
𝑝
(P,B) is said

to be continuous whenever
lim
𝑡→ 𝑠

E‖𝑥(𝑡) − 𝑥(𝑠)‖
𝑝
= 0. (7)

Definition 2. A stochastic process 𝑥 : R → 𝐿
𝑝
(P,B) is said

to be stochastically bounded whenever

lim
𝑁→∞

sup
𝑡∈R

P {‖𝑥 (𝑡)‖ > 𝑁} = 0. (8)

Let CUB(R; 𝐿𝑝(P,B)) denote the collection of all
stochastic processes 𝑥 : R → 𝐿

𝑝
(P,B), which are

continuous and uniformly bounded. It is easily to check that
CUB(R; 𝐿𝑝(P,B)) is a Banach space when it is equipped
with the norm

‖𝑥‖
∞
= sup
𝑡∈R

(E‖𝑥(𝑡)‖
𝑝
)

1/𝑝

. (9)
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Definition 3. A continuous stochastic process 𝑥 : R →

𝐿
𝑝
(P,B) is said to be 𝑝-mean almost periodic if for each

𝜀 > 0 there exists 𝑙(𝜀) > 0 such that any interval of length
𝑙(𝜀) contains at least a number 𝜏 for which

sup
𝑡∈R

E‖𝑥(𝑡 + 𝜏) − 𝑥(𝑡)‖
𝑝
< 𝜀. (10)

The collection of all stochastic processes 𝑥 : R →

𝐿
𝑝
(P,B) which are 𝑝-mean almost periodic is denoted by

𝐴𝑃(R; 𝐿𝑝(P,B)). 𝐴𝑃(R; 𝐿𝑝(P,B)) is a closed subspace of
CUB(R; 𝐿𝑝(P,B)). Therefore, 𝐴𝑃(R; 𝐿𝑝(P,B)) is a Banach
space when it is equipped with the norm ‖ ⋅ ‖

∞
(see, e.g., [3]).

Let (B
1
, ‖ ⋅ ‖
1
), (B
2
, ‖ ⋅ ‖
2
) be two Banach spaces and

𝐿
𝑝
(P,B
1
), 𝐿𝑝(P,B

2
) their corresponding 𝐿𝑝-spaces, respec-

tively.

Definition 4 (see [8]). A function 𝑓 : R × 𝐿
𝑝
(P,B
1
) →

𝐿
𝑝
(P,B
2
), (𝑡, 𝑥) → 𝑓(𝑡, 𝑥), which is jointly continuous, is

said to be 𝑝-mean almost periodic in 𝑡 ∈ R uniformly in
𝑥 ∈ K where K ⊂ 𝐿

𝑝
(P,B
1
) is compact if, for any 𝜀 > 0,

there exists 𝑙(𝜀,K) > 0 such that any interval of length 𝑙(𝜀,K)
contains at least a number 𝜏 for which

sup
𝑡∈R

(E
󵄩
󵄩
󵄩
󵄩
𝑓(𝑡 + 𝜏, 𝑥) − 𝑓(𝑡, 𝑥)

󵄩
󵄩
󵄩
󵄩

𝑝

)

1/𝑝

< 𝜀 (11)

for each stochastic process 𝑥 : R → K.

Theorem 5. Let 𝑓 : R × 𝐿
𝑝
(P,B
1
) → 𝐿

𝑝
(P,B
2
), (𝑡, 𝑥) →

𝑓(𝑡, 𝑥), be a𝑝-mean almost periodic process in 𝑡 ∈ R uniformly
in 𝑥 ∈ K, where K ⊂ 𝐿

𝑝
(P,B
1
) is compact. Then for every

real sequence 𝛼󸀠, there exists 𝛽 ⊂ 𝛼󸀠 and a continuous function
𝑔(𝑡, 𝑥) such that 𝑇

𝛽
𝑓(𝑡, 𝑥) = 𝑔(𝑡, 𝑥) exists uniformly onR×K.

Further, 𝑔(𝑡, 𝑥) is also 𝑝-mean almost periodic process in 𝑡 ∈ R

uniformly in 𝑥 ∈ K.

Thespace of the restrictions of all𝑝-mean almost periodic
stochastic processes on R is denoted by 𝐴𝑃(R; 𝐿𝑝(P,B)),
and 𝑝-mean almost periodic stochastic processes in 𝑡, uni-
formly for 𝑥 in compact subset K of 𝐿𝑝(P,B

1
) by A𝑃(R ×

𝐿
𝑝
(P,B
1
); 𝐿
𝑝
(P,B
2
)).

Denote by 𝐶
0
(R; 𝐿𝑝(P,B)) the space of all continuous

stochastic processes 𝑍 : R → 𝐿
𝑝
(P,B) such that lim

𝑡→+∞
E

‖𝑍(𝑡)‖
𝑝
= 0, and denote by 𝐶

0
(R × 𝐿

𝑝
(P,B
1
); 𝐿
𝑝
(P,B
2
))

the space of all continuous functions 𝑍 : R × 𝐿
𝑝
(P,B
1
) →

𝐿
𝑝
(P,B
2
) such that lim

𝑡→+∞
E‖𝑍(𝑡, 𝑥)‖

𝑝

2
= 0 uniformly for 𝑥

in any compact subset of 𝐿𝑝(P,B
1
).

Definition 6. A stochastic process 𝑋 : 𝑅 → 𝐿
𝑝
(P,B) is

called 𝑝-mean asymptotically almost periodic if there exist
two stochastic processes 𝑌 ∈ 𝐴𝑃(R; 𝐿𝑝(P,B)) and 𝑍 ∈

𝐶
0
(R; 𝐿𝑝(P,B)) such that𝑋 = 𝑌 + 𝑍.

By 𝐴𝐴𝑃(R; 𝐿𝑝(P,B)) one denotes the collection of all 𝑝-
mean asymptotically almost periodic stochastic processes.

Definition 7. A stochastic process 𝑋 : 𝑅 × 𝐿
𝑝
(P,B
1
) → 𝐿

𝑝

(P,B
2
) is called 𝑝-mean asymptotically periodic if there exist

two stochastic processes 𝑌 ∈ 𝐴𝑃(R × 𝐿
𝑝
(P,B
1
); 𝐿
𝑝
(P,B
2
))

and 𝑍 ∈ 𝐶
0
(R × 𝐿

𝑝
(P,B
1
); 𝐿
𝑝
(P,B
2
)) such that𝑋 = 𝑌 + 𝑍.

By 𝐴𝐴𝑃(R × 𝐿
𝑝
(P,B
1
); 𝐿
𝑝
(P,B
2
)) we denote the collec-

tion of such function.

Lemma 8 (see [14]). If 𝑋 belongs to 𝐴𝐴𝑃(R; 𝐿𝑝(P,B)), one
has the following:

(1) there exists a constant𝑀 > 0 such that E‖𝑋(𝑡)‖𝑝 ≤ 𝑀
for each 𝑡 ∈ R;

(2) 𝑋 is stochastically bounded.

It is easy to see that𝐴𝐴𝑃(R; 𝐿𝑝(P,B)) = 𝐴𝑃(R; 𝐿𝑝(P,B))
⊕𝐶
0
(R; 𝐿𝑝(P,B)). Then the space 𝐴𝐴𝑃(R; 𝐿𝑝(P,B)) of 𝑝-

mean asymptotically almost periodic stochastic processes is a
Banach space when it is equipped with the norm ‖ ⋅ ‖

∞
.

Lemma 9 (see [14]). Let 𝑥 ∈ 𝐴𝑃(R
+
; 𝐿
𝑝
(P,B
1
)), 𝐾 =

{(𝑥(𝑡), 𝑥
𝑡
) : 𝑡 ∈ R

+
}, where 𝑥

𝑡
= {𝑥(𝑡 + ℎ) : −𝜎 < ℎ < 0} is

regarded as a 𝐶([−𝜎, 0], 𝐿𝑝(P,B
1
)) valued stochastic process.

Moreover

𝑓 ∈ 𝐴𝑃 (R
+
× 𝐿
𝑝
(P,B
1
))

× 𝐶 ([−𝜎, 0] , 𝐿
𝑝
(P,B
1
) ; 𝐿
𝑝
(P,B
2
)) ,

𝑓 ∈ 𝐶
𝐾
(R
+
× 𝐿
𝑝
(P,B
1
))

× 𝐶 ([−𝜎, 0] , 𝐿
𝑝
(P,B
1
) ; 𝐿
𝑝
(P,B
2
)) .

(12)

Then 𝑓(⋅, 𝑥(⋅), 𝑥) ∈ 𝐴𝑃(R
+
; 𝐿
𝑝
(P,B
2
)).

Lemma 10 (see [14]). Let 𝑥 ∈ 𝐴𝐴𝑃(R
+
; 𝐿
𝑝
(P,B
1
)), 𝐾 =

{(𝑥(𝑡), 𝑥
𝑡
) : 𝑡 ∈ R

+
}, where x

𝑡
= {𝑥(𝑡 + ℎ) : −𝜎 < ℎ < 0} is

regarded as a 𝐶([−𝜎, 0], 𝐿𝑝(P,B
1
)) valued stochastic process.

Moreover

𝑓 ∈ 𝐴𝐴𝑃 (R
+
× 𝐿
𝑝
(P,B
1
))

× 𝐶 ([−𝜎, 0] , 𝐿
𝑝
(P,B
1
) ; 𝐿
𝑝
(P,B
2
)) ,

𝑓 ∈ 𝐶
𝐾
(R
+
× 𝐿
𝑝
(P,B
1
))

× 𝐶 ([−𝜎, 0] , 𝐿
𝑝
(P,B
1
) ; 𝐿
𝑝
(P,B
2
)) .

(13)

Then 𝑓(⋅, 𝑥(⋅), 𝑥) ∈ 𝐴𝐴𝑃(R
+
; 𝐿
𝑝
(P,B
2
)).

Next, one introduces a crucial concept [23].
Suppose that 𝑈(𝑡) is the fundamental matrix solution of

the linear differential system

d𝑥
d𝑡

= 𝐴 (𝑡) 𝑥, (14)

where 𝐴(𝑡) is a linear continuous operator, with 𝑈(0) = 𝐼.

Definition 11 (see [23]). System (14) is said to admit exponen-
tial trichotomy if there are linear projections 𝑃, 𝑄 such that

𝑃𝑄 = 𝑄𝑃, 𝑃 + 𝑄 − 𝑃𝑄 = 𝐼, (15)
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and constants 𝛼 > 0 and 𝛽 ≥ 1 such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈(𝑡)𝑃𝑈

−1
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (−𝛼 (𝑡 − 𝑠)) ,

for 0 ≤ 𝑠 ≤ 𝑡,
(16)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈(𝑡)(𝐼 − 𝑃)𝑈

−1
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (−𝛼 (𝑠 − 𝑡)) ,

for 𝑡 ≤ 𝑠, 𝑠 ≥ 0,

(17)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈(𝑡)𝑄𝑈

−1
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (−𝛼 (𝑠 − 𝑡)) ,

for 𝑡 ≤ 𝑠 ≤ 0,
(18)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈(𝑡)(𝐼 − 𝑄)𝑈

−1
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (−𝛼 (𝑡 − 𝑠)) ,

for 𝑠 ≤ 𝑡, 𝑠 ≤ 0.

(19)

If in the above definition we put 𝑄 = 𝐼 − 𝑃, (16) becomes

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈(𝑡)𝑃𝑈

−1
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (−𝛼 (𝑡 − 𝑠)) , for 𝑠 ≤ 𝑡,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈(𝑡)(𝐼 − 𝑃)𝑈

−1
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (𝛼 (𝑡 − 𝑠)) , for 𝑡 ≤ 𝑠.

(20)

It is clear that when 𝐴(𝑡) = − tanh 𝑡, the system (14)
admits exponential trichotomy. More generally, in the case
𝐴(𝑡) ≡ 𝐴 = diag{1, 0, −1}, a constant matrix, the system (14)
admits exponential trichotomy.

Theorem 12. Let 𝐴(𝑡) be a continuous linear operator on
R and let (14) have an exponential trichotomy (16) on R

+
.

If for some sequence 𝑎 = {𝑎
𝑛
}, lim

𝑛→+∞
𝑎
𝑛

= +∞,
𝑇
𝑎
𝐴(𝑡) = 𝐵(𝑡) uniformly on compact subintervals of R,

lim
𝑛→+∞

𝑈(𝑎
𝑛
)𝑃𝑈
−1
(𝑎
𝑛
) = 𝑃

∗, lim
𝑛→+∞

𝑈(𝑎
𝑛
)𝑄𝑈
−1
(𝑎
𝑛
) =

𝑄
∗, and the equation (which is called the hull equation (14))

d𝑦
d𝑡

= 𝐵 (𝑡) 𝑦 (21)

has an exponential trichotomy on R with projections 𝑃∗, 𝑄∗
and the same constants 𝛼, 𝛽.

Proof. The translated equation

d𝑥
d𝑡

= 𝐴 (𝑡 + 𝑎
𝑛
) 𝑥 (22)

has the fundamental matrix

𝑈
𝑛
(𝑡) = 𝑈 (𝑡 + 𝑎

𝑛
) 𝑈
−1
(𝑎
𝑛
) ,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈
𝑛
(𝑡)𝑃
𝑛
𝑈
−1

𝑛
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (−𝛼 (𝑡 − 𝑠)) ,

𝑡 ≥ 𝑠 ≥ −𝑎
𝑛
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈
𝑛
(𝑡)(𝐼 − 𝑃

𝑛
)𝑈
−1

𝑛
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (𝛼 (𝑡 − 𝑠)) ,

𝑠 ≥ 𝑡 ≥ −𝑎
𝑛
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈
𝑛
(𝑡)𝑄
𝑛
𝑈
−1

𝑛
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (−𝛼 (𝑡 − 𝑠)) ,

𝑡 ≤ 𝑠 ≤ 𝑎
𝑛
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈
𝑛
(𝑡)(𝐼 − 𝑄

𝑛
)𝑈
−1

𝑛
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (𝛼 (𝑡 − 𝑠)) ,

𝑠 ≤ 𝑡 ≤ 𝑎
𝑛
,

(23)

where 𝑃
𝑛
= 𝑈(𝑎

𝑛
)𝑃𝑈
−1
(𝑎
𝑛
), 𝑄
𝑛
= 𝑈(𝑎

𝑛
)𝑄𝑈
−1
(𝑎
𝑛
). Since

|𝑃
𝑛
| ≤ 𝛽, |𝑄

𝑛
| ≤ 𝛽 by restricting attention to a subsequence

we can assume that 𝑃
𝑛
→ 𝑃
∗, 𝑄
𝑛
→ 𝑄
∗, where 𝑃∗, 𝑄∗ are

projections. Since𝑈
𝑛
(𝑡) → 𝑉(𝑡) for every 𝑡, where𝑉(𝑡) is the

fundament matrix of (21) such that 𝑉(0) = 𝐼, it follows that
󵄩
󵄩
󵄩
󵄩
󵄩
𝑉
𝑛
(𝑡)𝑃
∗
𝑉
−1

𝑛
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (−𝛼 (𝑡 − 𝑠)) ,

𝑡 ≥ 𝑠 ≥ 0,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑉
𝑛
(𝑡)(𝐼 − 𝑃

∗
)𝑉
−1

𝑛
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (𝛼 (𝑡 − 𝑠)) ,

𝑠 ≥ 𝑡, 𝑠 ≥ 0,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑉
𝑛
(𝑡)𝑄
∗
𝑉
−1

𝑛
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (−𝛼 (𝑡 − 𝑠)) ,

𝑡 ≤ 𝑠 ≤ 0,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑉
𝑛
(𝑡)(𝐼 − 𝑄

∗
)𝑉
−1

𝑛
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
≤ 𝛽 exp (𝛼 (𝑡 − 𝑠)) ,

𝑠 ≥ 𝑡, 𝑠 ≤ 0.

(24)

Since the projection corresponding to an exponential
trichotomy onR is uniquely determined it follows that 𝑃

𝑛
→

𝑃
∗, 𝑄
𝑛
→ 𝑄
∗ without restriction to a subsequence.

3. Existence of Asymptotically Almost
Periodic Solutions

For convenience, throughout this section, let (H, ‖ ⋅ ‖) be a
real separable Hilbert space, and let (Ω,F,P) be a complete
probability space equipped with a normal filtration {F

𝑡
:

𝑡 ∈ R}, that is, a right-continuous, increasing family of
sub-𝜎-algebras of F. Let L(𝐿2(P,H)) be the space of all
bounded linear operators from 𝐿

2
(P,H) to 𝐿2(P,H) and 𝐶 =

𝐶([−𝜎, 0], 𝐿
2
(P,H)) the space of all continuous functions

from [−𝜎, 0] to 𝐿2(P,H) with the sup norm

󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩𝐶
= sup {󵄩󵄩󵄩

󵄩
𝜓(𝑠)

󵄩
󵄩
󵄩
󵄩𝐿
2
(P,H)

: 𝜓 ∈ 𝐶, −𝜎 ≤ 𝑠 ≤ 0} . (25)
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For any continuousF
𝑡
-adapted 𝐿2(P,H)-valued stochas-

tic process 𝑥(𝑡) : Ω → 𝐿
2
(P,H), 𝑡 ≥ −𝜎, we associate it

with a continuous F
𝑡
-adapted 𝐶-valued stochastic process

𝑥
𝑡
: Ω → 𝐶, 𝑡 ≥ 0, by setting 𝑥

𝑡
(𝑠)(𝜔) = 𝑥(𝑡 + 𝑠)(𝜔), 𝑠 ∈

[−𝜎, 0].
In this section, we study the existence and uniqueness of

quadratic-mean asymptotically almost periodicmild solution
to stochastic functional differential equations of the form

d𝑥 (𝑡) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥
𝑡
)] d𝑡

+ 𝐻 (𝑡, 𝑥 (𝑡) , 𝑥
𝑡
) ∘ d𝑊(𝑡) , 𝑡 ∈ R,

(26)

where 𝐴(𝑡) is a linear operator and 𝐷(𝐴) ⊂ 𝐿
2
(P,H) →

𝐿
2
(P,H) generates a strongly continuous semigroup

{𝑇(𝑡)}
𝑡≥0

, which is nonhyperbolic. That is to say, the linear
operator 𝐴(𝑡) may exhibit central flow. 𝑊(𝑡) is a certain
𝑄-Wiener process with covariance operator 𝑄 and takes
its values on 𝐿2(P,H). 𝐹 : R × 𝐿

2
(P,H) × 𝐶 → 𝐿

2
(P,H)

and 𝐻 : R × 𝐿
2
(P,H) × 𝐶 → 𝐿

2
(P,L(𝐿2(P,H))) are two

continuous mappings.
Throughout this section, we require the following

assumptions.

(H1) Suppose that 𝐹 ∈ 𝐴𝐴𝑃(R × 𝐿
2
(P,H) × 𝐶; 𝐿2(P,H)).

Furthermore, there exists a constant 𝐹
𝑙
> 0 such that

󵄩
󵄩
󵄩
󵄩
𝐹(𝑡, 𝑥

1
, 𝑥
2
) − 𝐹(𝑡, 𝑦

1
, 𝑦
2
)
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(P,H)

≤ 𝐹
𝑙
(
󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑦
1

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(P,H)

+
󵄩
󵄩
󵄩
󵄩
𝑥
2
− 𝑦
2

󵄩
󵄩
󵄩
󵄩

2

𝐶
)

(27)

for all stochastic processes (𝑥
1
, 𝑥
2
), (𝑦
1
, 𝑦
2
) ∈ 𝐿

2
(P,

H) × 𝐶 and for each 𝑡 ∈ R.
(H2) Suppose that𝐻 ∈ 𝐴𝐴𝑃(R×𝐿2(P,H)×𝐶; 𝐿2(P,L(𝐿2

(P,H))). Furthermore, there exists a constant𝐻
𝑙
> 0

such that
󵄩
󵄩
󵄩
󵄩
𝐻(𝑡, 𝑥

1
, 𝑥
2
) − 𝐻(𝑡, 𝑦

1
, 𝑦
2
)
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(P,L(𝐿2(P,H))

≤ 𝐻
𝑙
(
󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑦
1

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(P,H)

+
󵄩
󵄩
󵄩
󵄩
𝑥
2
− 𝑦
2

󵄩
󵄩
󵄩
󵄩

2

𝐶
) ,

(28)

for all stochastic processes (𝑥
1
, 𝑥
2
), (𝑦
1
, 𝑦
2
) ∈

𝐿
2
(P,H) × 𝐶 and for each 𝑡 ∈ R.

(H3) Suppose that the linear system of (26)

d𝑥 (𝑡) = 𝐴 (𝑡) d𝑡 (29)

admits exponential trichotomy (see Definition 11);
that is, there exist constants 𝛼 > 0, 𝛽 ≥ 1 such that
(16) holds.

Define the function 𝐺(𝑡, 𝑠) as the form

𝐺 (𝑡, 𝑠) =

{
{
{
{

{
{
{
{

{

𝑈(𝑡) 𝑃𝑈
−1
(𝑠) , 0 ≤ 𝑠 ≤ 𝑡,

−𝑈 (𝑡) (𝐼 − 𝑃)𝑈
−1
(𝑠) , max {𝑡, 0} ≤ 𝑠,

−𝑈 (𝑡) 𝑄𝑈
−1
(𝑠) , 0 ≥ 𝑠 ≥ 𝑡,

𝑈 (𝑡) (𝐼 − 𝑄)𝑈
−1
(𝑠) , min {𝑡, 0} ≥ 𝑠,

(30)

where 𝑈(𝑡) is the fundamental matrix solution of the linear
differential system (29) with 𝑈(0) = 𝐼.

Definition 13. A F
𝑡
-progressive process {𝑥(𝑡)}

𝑡∈R is called a
mild solution of (26) on R if

𝑥 (𝑡) = 𝐺 (𝑡, 𝑠) 𝑥 (𝑠) + ∫

𝑡

𝑠

𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏) , 𝑥
𝜏
) d𝜏

+ ∫

𝑡

𝑠

𝐺 (𝑡, 𝜏)𝐻 (𝜏, 𝑥 (𝜏) , 𝑥
𝜏
) ∘ d𝑊(𝜏) ,

(31)

for all 𝑡 ≥ 𝑠, for each 𝑠 ∈ R, where 𝐺(𝑡, 𝑠) is defined by (30).

Theorem 14. Assume that conditions (H1)–(H3) are satisfied.
And the positive constants 𝛼, 𝛽, 𝐹

𝑙
, and𝐻

𝑙
satisfy the following

condition:

Λ =

8𝛽

𝛼

√𝐹
𝑙
+

𝛼𝐻
𝑙

2

< 1. (32)

Then the system (26) has a unique quadratic-mean asymp-
totically almost periodic mild solution, which can be explicitly
expressed as follows:

𝑥 (𝑡) =

4

∑

𝑖=1

Φ
𝑖
𝑥 (𝑡) +

4

∑

𝑖=1

Ψ
𝑖
𝑥 (𝑡) , (33)

where

Φ
1
𝑥 (𝑡) := ∫

𝑡

0

𝑈 (𝑡) 𝑃𝑈
−1
(𝑠) 𝐹 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) d𝑠,

Φ
2
𝑥 (𝑡) := ∫

max{𝑡,0}

+∞

𝑈 (𝑡) (𝐼 − 𝑃)𝑈
−1
(𝑠) 𝐹 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) d𝑠,

Φ
3
𝑥 (𝑡) := ∫

𝑡

0

𝑈 (𝑡)𝑄𝑈
−1
(s) 𝐹 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) d𝑠,

Φ
4
𝑥 (𝑡) := ∫

min{𝑡,0}

−∞

𝑈 (𝑡) (𝐼 − 𝑄)𝑈
−1
(𝑠) 𝐹 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) d𝑠,

Ψ
1
𝑥 (𝑡) := ∫

𝑡

0

𝑈 (𝑡) 𝑃𝑈
−1
(𝑠)𝐻 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) ∘ d𝑊(𝑠) ,

Ψ
2
𝑥 (𝑡) := ∫

max{𝑡,0}

+∞

𝑈 (𝑡) (𝐼 − 𝑃)𝑈
−1
(𝑠)

× 𝐻 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) ∘ d𝑊(𝑠) ,

Ψ
3
𝑥 (𝑡) := ∫

𝑡

0

𝑈 (𝑡)𝑄𝑈
−1
(𝑠)𝐻 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) ∘ d𝑊(𝑠) ,

Ψ
4
𝑥 (𝑡) := ∫

min{𝑡,0}

−∞

𝑈 (𝑡) (𝐼 − 𝑄)𝑈
−1
(𝑠)

× 𝐻 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) ∘ d𝑊(𝑠) .

(34)

We show that (26) exists as a mild solution. Note that (33)
and (34) are well defined for each 𝑡 ∈ R and satisfy (31) for all
𝑡 ≥ 𝑠, for each 𝑠 ∈ R. Hence 𝑥(𝑡) given by (33) and (34) is a
mild solution of (26).
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Define a mapping L on 𝐶(R, 𝐿2(P,H)) by

(L𝑥) (𝑡) =
4

∑

𝑖=1

Φ
𝑖
𝑥 (𝑡) +

4

∑

𝑖=1

Ψ
𝑖
𝑥 (𝑡) := (𝐵

1
𝑥) (𝑡) + (𝐵

2
𝑥) (𝑡) ,

(35)

where the Φ𝑖, Ψ𝑖 are defined in (34).
In order to prove Theorem 14, we first prove Lemmas 15

and 16.

Lemma 15. Assume that conditions (H1)–(H3) are satisfied.
Then the operator Lmaps 𝐴𝐴𝑃(R, 𝐿2(P,H)) into itself.

Proof. First, let us show that 𝐵
1
𝑥 is quadratic-mean asymp-

totically almost periodic whenever 𝑥 ∈ 𝐴𝐴𝑃(R, 𝐿2(P,H))

dose.
Indeed, assuming that 𝑥 is quadratic-mean asymp-

totically almost periodic and using condition (H1) and
Lemma 10, one can easily see that 𝑠 󳨃→ 𝐹(𝑠, 𝑥(𝑠), 𝑥

𝑠
) is

quadratic-mean asymptotically almost periodic. Therefore,
there exist an almost periodic stochastic process 𝑘(𝑠, 𝑥(𝑠), 𝑥

𝑠
)

and a stochastic process ℎ ∈ 𝐶
0
(R × 𝐿2(P,H), 𝐿2(P,H)) such

that 𝐹 = 𝑘 + ℎ. Furthermore, one observes that

Φ
1
𝑥 (𝑡) := ∫

𝑡

0

𝑈 (𝑡) 𝑃𝑈
−1
(𝑠) 𝑘 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) d𝑠

+ ∫

𝑡

0

𝑈 (𝑡) 𝑃𝑈
−1
(𝑠) ℎ (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) d𝑠

:= 𝛼 (𝑡) + 𝛽 (𝑡) .

(36)

We claim that 𝛼(𝑡) ∈ 𝐴𝑃(R, 𝐿2(P,H)). In fact, 𝑠 󳨃→ 𝑘(𝑠,

𝑥(𝑠), 𝑥
𝑠
) is quadratic-mean almost periodic. Therefore, one

can find a common subsequence {𝛼
𝑛
}. One still denotes it as

𝛼 = {𝛼
𝑛
}, such that

𝑇
𝛼
𝑘 (𝑡, 𝑥 (𝑡) , 𝑥

𝑡
) = 𝑘
1
(𝑡, 𝑥 (𝑡) , 𝑥

𝑡
) , (37)

uniformly for 𝑡 ∈ R, and

lim
𝑘→∞

𝑈(𝑡 + 𝛼
𝑘
) 𝑃𝑈
−1
(𝑠 + 𝛼

𝑘
) = 𝑉 (𝑡) 𝑃

∗
𝑉
−1
(𝑠) ,

0 ≤ 𝑠 ≤ 𝑡,

lim
𝑘→∞

𝑈 (𝑡 + 𝛼
𝑘
) (𝐼 − 𝑃)𝑈

−1
(𝑠 + 𝛼

𝑘
) = 𝑉 (𝑡) (𝐼 − 𝑃

∗
) 𝑉
−1
(𝑠) ,

max {𝑡, 0} ≤ 𝑠,

lim
𝑘→∞

𝑈 (𝑡 + 𝛼
𝑘
) 𝑄𝑈
−1
(𝑠 + 𝛼

𝑘
) = 𝑉 (𝑡) 𝑄

∗
𝑉
−1
(𝑠) ,

0 ≥ 𝑠 ≥ 𝑡,

lim
𝑘→∞

𝑈 (𝑡 + 𝛼
𝑘
) (𝐼 − 𝑄)𝑈

−1
(𝑠 + 𝛼

𝑘
) = 𝑉 (𝑡) (𝐼 − 𝑄

∗
) 𝑉
−1
(𝑠) ,

min {𝑡, 0} ≥ 𝑠,
(38)

in the sense of norm ‖ ⋅ ‖
𝐿
2
(P,H) = (∫Ω

‖ ⋅ ‖
2dP)1/2 uniformly

for 𝑡 ∈ R. Then

𝛼 (𝑡 + 𝛼
𝑘
)

= ∫

𝑡+𝛼𝑘

0

𝑈(𝑡 + 𝛼
𝑘
) 𝑃𝑈
−1
(𝑠) 𝑘 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) d𝑠

= ∫

𝑡

0

𝑈 (𝑡 + 𝛼
𝑘
) 𝑃𝑈
−1
(𝑠 + 𝛼

𝑘
) 𝑘 (𝑠 + 𝛼

𝑘
, 𝑥 (𝑠 + 𝛼

𝑘
) , 𝑥
𝑠+𝛼𝑘

) d𝑠.

(39)

From (37), (38), (39), and Lebesgue’s control convergence
theorem, one sees that 𝛼(𝑡 + 𝛼

𝑘
) converges to

∫

𝑡

0

𝑉 (𝑡) 𝑃
∗
𝑉
−1
(𝑠) 𝑘
1
(𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) d𝑠 (40)

uniformly for 𝑡 ∈ R. Hence 𝛼(𝑡) ∈ 𝐴𝑃(R, 𝐿2(P,H)).
Next, let us show that 𝛽(𝑡) ∈ 𝐶

0
(R, 𝐿2(P,H)). In fact

E
󵄩
󵄩
󵄩
󵄩
𝛽(𝑡)

󵄩
󵄩
󵄩
󵄩

2

= E
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

0

𝑈(𝑡)𝑃𝑈
−1
(𝑠)ℎ(𝑠, 𝑥(𝑠), 𝑥

𝑠
)d𝑠
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝛽
2
E(∫
𝑡

0

𝑒
−𝛼(𝑡−𝑠) 󵄩

󵄩
󵄩
󵄩
ℎ(𝑠, 𝑥(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩
d𝑠)
2

= 𝛽
2
E(∫
𝑡

0

𝑒
−(𝛼(𝑡−𝑠))/2

𝑒
−(𝛼(𝑡−𝑠))/2 󵄩

󵄩
󵄩
󵄩
ℎ(𝑠, 𝑥(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩
d𝑠)
2

≤ 𝛽
2
E [(∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)d𝑠)(∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)󵄩

󵄩
󵄩
󵄩
ℎ(𝑠, 𝑥(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩

2d𝑠)]

= 𝛽
2
(∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)d𝑠)(∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)

E
󵄩
󵄩
󵄩
󵄩
ℎ(𝑠, 𝑥(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩

2d𝑠)

≤ 𝛽
2
(∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)d𝑠)

2

sup
𝑡∈R

E
󵄩
󵄩
󵄩
󵄩
ℎ(𝑡, 𝑥(𝑡), 𝑥

𝑡
)
󵄩
󵄩
󵄩
󵄩

2

=

𝛽
2

𝛼
2
(1 − 𝑒

−𝛼𝑡
)

2

sup
𝑡∈R

E
󵄩
󵄩
󵄩
󵄩
ℎ(𝑡, 𝑥(𝑡), 𝑥

𝑡
)
󵄩
󵄩
󵄩
󵄩

2

.

(41)

Since ℎ ∈ 𝐶
0
(R × 𝐿

2
(P,H), 𝐿2(P,H)), we deduce that

lim
𝑡→+∞

E‖𝛽(𝑡)‖
2
= 0.

Therefore, Φ
1
𝑥(⋅) is quadratic-mean asymptotically

almost periodic.
Similar to the proof given for Φ1𝑥(⋅), one can prove that

Φ
2
𝑥(⋅), Φ3𝑥(⋅), and Φ4𝑥(⋅) are quadratic-mean asymptoti-

cally almost periodic.
Thus, 𝐵

1
𝑥 is quadratic-mean asymptotically almost peri-

odic whenever 𝑥 ∈ 𝐴𝐴𝑃(R, 𝐿2(P,H)).
Secondly, we show that 𝐵

2
𝑥 is also quadratic-mean

asymptotically almost periodic whenever 𝑥 ∈ 𝐴𝐴𝑃(R, 𝐿2

(P,H)).
Of course, this is more complicated than the previous

case because of the involvement of the Brownian motion𝑊.
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To overcome such a difficulty, one makes extensive use of
the Itô isometry identity and the properties of 𝑊̃ defined by
𝑊̃ ≡ 𝑊(𝑠 + 𝛼

𝑘
) for each 𝑠. Note that 𝑊̃ is also a Brownian

motion and has the same distribution as𝑊. Assuming that 𝑥
is quadratic-mean asymptotically almost periodic, using (H2)
and Lemma 10, one can easily see that 𝑠 󳨃→ 𝐻(𝑠, 𝑥(𝑠), 𝑥

𝑠
)

is quadratic-mean asymptotically almost periodic.Therefore,
there exist an almost periodic stochastic process 𝑛(𝑠, 𝑥(𝑠), 𝑥

𝑠
)

and a stochastic process𝑚 ∈ 𝐶
0
(R×𝐿2(P,H), 𝐿2(P,H)) such

that𝐻 = 𝑛 + 𝑚. Furthermore, one observes that

Ψ
1
𝑥 (𝑡) ≡ ∫

𝑡

0

𝑈 (𝑡) 𝑃𝑈
−1
(𝑠) 𝑛 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) ∘ d𝑊(𝑠)

+ ∫

𝑡

0

𝑈 (𝑡) 𝑃𝑈
−1
(𝑠)𝑚 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) ∘ d𝑊(𝑠)

:= 𝑁 (𝑡) + 𝑀 (𝑡) .

(42)

We claim that 𝑁(𝑡) ∈ 𝐴P(R, 𝐿2(P,H)). In fact, 𝑠 󳨃→

𝑛(𝑠, 𝑥(𝑠), 𝑥
𝑠
) is quadratic-mean almost periodic. Therefore,

one can find a common subsequence {𝛼
𝑛
}. One still denotes

it as 𝛼 = {𝛼
𝑛
}, such that

𝑇
𝛼
𝑛 (𝑡, 𝑥 (𝑡) , 𝑥

𝑡
) = 𝑛
1
(𝑡, 𝑥 (𝑡) , 𝑥

𝑡
) , (43)

uniformly for 𝑡 ∈ R and (38) hold.
Now

𝑁(𝑡 + 𝛼
𝑘
)

= ∫

𝑡+𝛼𝑘

0

𝑈 (𝑡 + 𝛼
𝑘
) 𝑃𝑈
−1
(𝑠) 𝑛 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) ∘ d𝑊(𝑠)

= ∫

𝑡

0

𝑈(𝑡 + 𝛼
𝑘
) 𝑃𝑈
−1
(𝑠 + 𝛼

𝑘
)

× 𝑛 (𝑠 + 𝛼
𝑘
, 𝑥 (𝑠 + 𝛼

𝑘
) , 𝑥
𝑠+𝛼𝑘

) ∘ d𝑊(𝑠 + 𝛼
𝑘
)

= ∫

𝑡

0

𝑈(𝑡 + 𝛼
𝑘
) 𝑃𝑈
−1
(𝑠 + 𝛼

𝑘
)

× 𝑛 (𝑠 + 𝛼
𝑘
, 𝑥 (𝑠 + 𝛼

𝑘
) , 𝑥
𝑠+𝛼𝑘

) ∘ d𝑊̃ (𝑠) .

(44)

Using Itô’s isometry identity, one obtains

E
󵄩
󵄩
󵄩
󵄩
𝑁(𝑡 + 𝛼

𝑘
)
󵄩
󵄩
󵄩
󵄩

2

=∫

𝑡

0

E
󵄩
󵄩
󵄩
󵄩
󵄩
𝑈(𝑡 + 𝛼

𝑘
)𝑃𝑈
−1
(𝑠 + 𝛼

𝑘
)𝑛(𝑠 + 𝛼

𝑘
, 𝑥(𝑠 + 𝛼

𝑘
), 𝑥
𝑠+𝛼𝑘

)

󵄩
󵄩
󵄩
󵄩
󵄩

2

d𝑠.

(45)

From (38), (43), (45), and Lebesgue’s control convergence
theorem, one sees that

𝑇
𝛼
𝑁(𝑡) = ∫

𝑡

0

𝑉 (𝑡) 𝑃
∗
𝑉
−1
(𝑠) 𝑛
1
(𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) d𝑠 (46)

uniformly for 𝑡 ∈ R. Hence𝑁(𝑡) ∈ 𝐴𝑃(R, 𝐿2(P,H)).

Next, let us show that𝑀(𝑡) ∈ 𝐶
0
(R, 𝐿2(P,H)). In fact

E‖𝑀(𝑡)‖
2

= E
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

0

𝑈(𝑡)𝑃𝑈
−1
(𝑠)𝑚(𝑠, 𝑥(𝑠), 𝑥

𝑠
) ∘ d𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

= E(
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

0

𝑈(𝑡)𝑃𝑈
−1
(𝑠)𝑚(𝑠, 𝑥(𝑠), 𝑥

𝑠
) ∘ d𝑊̃(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

)

2

≤ 𝛽
2
∫

𝑡

0

exp (−2𝛼 (𝑡 − 𝑠))

× E
󵄩
󵄩
󵄩
󵄩
𝑚(𝑠 + 𝜏, 𝑥(𝑠 + 𝜏), 𝑥

𝑠+𝜏
) − 𝑚(𝑠, 𝑥(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩

2d𝑠

≤ 𝛽
2
(∫

𝑡

0

exp (−2𝛼 (𝑡 − 𝑠) d𝑠))

× sup
𝑠∈R

E
󵄩
󵄩
󵄩
󵄩
𝑚(𝑠 + 𝜏, 𝑥(𝑠 + 𝜏), 𝑥

𝑠+𝜏
) − 𝑚(𝑠, 𝑥(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩

2

=

𝛽
2

2𝛼

(1 − 𝑒
−2𝛼𝑡

)

× sup
𝑠∈R

E
󵄩
󵄩
󵄩
󵄩
𝑚(𝑠 + 𝜏, 𝑥(𝑠 + 𝜏), 𝑥

𝑠+𝜏
) − 𝑚(𝑠, 𝑥(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩

2

,

(47)

where we make extensive use of the Itô isometry identity and
the properties of 𝑊̃ defined by 𝑊̃ ≡ 𝑊(𝑠+𝜏)−𝑊(𝜏) for each
𝑠. Note that 𝑊̃ is also a Brownian motion and has the same
distribution as𝑊.

Since 𝑚 ∈ 𝐶
0
(R × 𝐿

2
(P,H), 𝐿2(P,H)), we deduce that

lim
𝑡→+∞

E ‖ 𝑀(𝑡)‖
2
= 0.

Therefore, Ψ
1
𝑥(⋅) is quadratic-mean asymptotically

almost periodic.
Similar to the proof given for Ψ1𝑥(⋅), one can prove that

Ψ
2
𝑥(⋅),Ψ3𝑥(⋅), andΨ4𝑥(⋅) are quadratic-mean asymptotically

almost periodic.
Thus, 𝐵

2
𝑥 is quadratic-mean asymptotically almost peri-

odic whenever 𝑥 ∈ 𝐴𝐴𝑃(R, 𝐿2(P,H)).
In view of the above, it is clear that L maps

𝐴𝐴𝑃(R, 𝐿2(P,H) into itself. The proof of Lemma 15 is
complete.

Lemma 16. Assume that conditions (H1)–(H3) are satisfied.
Then the operator L is a contraction providing Λ = (8𝛽/𝛼)

√𝐹
𝑙
+ 𝛼𝐻
𝑙
/2 < 1.

Proof. Consider
󵄩
󵄩
󵄩
󵄩
(L𝑥) 𝑡 − (L𝑦) 𝑡󵄩󵄩󵄩

󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

+∞

−∞

𝐺 (𝑡, 𝑠) [𝐹 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) − 𝐹 (𝑠, 𝑦 (𝑠) , 𝑥

𝑠
)] d𝑠

+ ∫

+∞

−∞

𝐺 (𝑡, 𝑠) [𝐻 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) − 𝐻 (𝑠, 𝑦 (𝑠) , 𝑥

𝑠
)] ∘ d𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

+∞

−∞

𝐺 (𝑡, 𝑠) [𝐹 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) − 𝐹 (𝑠, 𝑦 (𝑠) , 𝑥

𝑠
)] d𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
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+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

+∞

−∞

𝐺 (𝑡, 𝑠) [𝐻 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) − 𝐻 (𝑠, 𝑦 (𝑠) , 𝑥

𝑠
)] ∘ d𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

:=
󵄩
󵄩
󵄩
󵄩
𝐶
1

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝐶
2

󵄩
󵄩
󵄩
󵄩
.

(48)

Since (∑𝑛
𝑖=1
𝑎
𝑖
)
2

< 𝑛∑
𝑛

𝑖=1
𝑎
2

𝑖
, one can write

E
󵄩
󵄩
󵄩
󵄩
(L𝑥)𝑡 − (L𝑦)𝑡󵄩󵄩󵄩

󵄩

2

≤ 2E
󵄩
󵄩
󵄩
󵄩
𝐶
1

󵄩
󵄩
󵄩
󵄩

2

+ 2E
󵄩
󵄩
󵄩
󵄩
𝐶
2

󵄩
󵄩
󵄩
󵄩

2

. (49)

Combining (30), one can write
󵄩
󵄩
󵄩
󵄩
𝐶
1

󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

∞

−∞

𝐺 (𝑡, 𝑠) [𝐹 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) − 𝐹 (𝑠, 𝑦 (𝑠) , 𝑥

𝑠
)] d𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

0

𝑈 (𝑡) 𝑃𝑈
−1
(𝑠) [𝐹 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) − 𝐹 (𝑠, 𝑦 (𝑠) , 𝑥

𝑠
)] d𝑠

− ∫

+∞

max{𝑡,0}
𝑈 (𝑡) (𝐼 − 𝑃)𝑈

−1
(𝑠)

× [𝐹 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) − 𝐹 (𝑠, 𝑦 (𝑠) , 𝑥

𝑠
)] d𝑠

− ∫

0

𝑡

𝑈 (𝑡)𝑄𝑈
−1
(𝑠) [𝐹 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) − 𝐹 (𝑠, 𝑦 (𝑠) , 𝑥

𝑠
)] d𝑠

+ ∫

min{𝑡,0}

−∞

𝑈 (𝑡) (𝐼 − 𝑄)𝑈
−1
(𝑠)

× [𝐹 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) − 𝐹 (𝑠, 𝑦 (𝑠) , 𝑥

𝑠
)] d𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝛽 [∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)

+ ∫

+∞

max{𝑡,0}
𝑒
−𝛼(𝑠−𝑡)

+ ∫

0

𝑡

𝑒
−𝛼(𝑠−𝑡)

+ ∫

min{𝑡,0}

−∞

𝑒
−𝛼(𝑡−𝑠)

]

⋅
󵄩
󵄩
󵄩
󵄩
𝐹 (𝑠, 𝑥 (𝑠) , 𝑥

𝑠
) − 𝐹 (𝑠, 𝑦 (𝑠) , 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩
d𝑠.

(50)

Thus,

E
󵄩
󵄩
󵄩
󵄩
𝐶
1

󵄩
󵄩
󵄩
󵄩

2

≤ 4𝛽
2
E(∫
𝑡

0

𝑒
−𝛼(𝑡−𝑠) 󵄩

󵄩
󵄩
󵄩
𝐹(𝑠, 𝑥(𝑠), 𝑥

𝑠
) − 𝐹(𝑠, 𝑦(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩
d𝑠)
2

+4𝛽
2
E(∫
+∞

max{𝑡,0}
𝑒
−𝛼(𝑠−𝑡)󵄩

󵄩
󵄩
󵄩
𝐹(𝑠, 𝑥(𝑠), 𝑥

𝑠
) − 𝐹(𝑠, 𝑦(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩
d𝑠)
2

+ 4𝛽
2
E(∫
0

𝑡

𝑒
−𝛼(𝑠−𝑡) 󵄩

󵄩
󵄩
󵄩
𝐹(𝑠, 𝑥(𝑠), 𝑥

𝑠
) − 𝐹(𝑠, 𝑦(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩
d𝑠)
2

+4𝛽
2
E(∫

min{𝑡,0}

−∞

𝑒
−𝛼(𝑡−𝑠)󵄩

󵄩
󵄩
󵄩
𝐹(𝑠, 𝑥(𝑠), 𝑥

𝑠
) − 𝐹(𝑠, 𝑦(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩
d𝑠)
2

:= 𝑈
1
+ 𝑈
2
+ 𝑈
3
+ 𝑈
4
.

(51)

We first evaluate 𝑈
1
as follows:

𝑈
1

= 4𝛽
2
E(∫
𝑡

0

𝑒
−𝛼(𝑡−𝑠) 󵄩

󵄩
󵄩
󵄩
𝐹(𝑠, 𝑥(𝑠), 𝑥

𝑠
) − 𝐹(𝑠, 𝑦(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩
d𝑠)
2

≤ 4𝛽
2
E [(∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)d𝑠)

× (∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)󵄩

󵄩
󵄩
󵄩
𝐹(𝑠, 𝑥(𝑠), 𝑥

𝑠
) − 𝐹(𝑠, 𝑦(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩

2d𝑠)]

≤ 4𝛽
2
(∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)d𝑠)

× (∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)

E
󵄩
󵄩
󵄩
󵄩
𝐹(𝑠, 𝑥(𝑠), 𝑥

𝑠
) − 𝐹(𝑠, 𝑦(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩

2d𝑠)

≤ 4𝛽
2
𝐹
𝑙
(∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)d𝑠)

2

× sup
𝑠∈R

(
󵄩
󵄩
󵄩
󵄩
𝑥(𝑠) − 𝑦(𝑠)

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(P,H)

+
󵄩
󵄩
󵄩
󵄩
𝑥(𝑠) − 𝑦(𝑠)

󵄩
󵄩
󵄩
󵄩

2

𝐶
)

≤

8𝛽
2
𝐹
𝑙

𝛼
2
[1 − 𝑒

−𝛼𝑡
]
󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
≤

8𝛽
2
𝐹
𝑙

𝛼
2

󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
.

(52)

Similar to the discussion given for𝑈
1
, for𝑈

2
,𝑈
3
, and𝑈

4
, one

has

𝑈
2

= 4𝛽
2
E(∫
+∞

max{𝑡,0}
𝑒
−𝛼(𝑠−𝑡) 󵄩

󵄩
󵄩
󵄩
𝐹(𝑠, 𝑥(𝑠), 𝑥

𝑠
) − 𝐹(𝑠, 𝑦(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩
d𝑠)
2

≤

8𝛽
2
𝐹
𝑙

𝛼
2

󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
,

𝑈
3
≤

8𝛽
2
𝐹
𝑙

𝛼
2

󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
, 𝑈

4
≤

8𝛽
2
𝐹
𝑙

𝛼
2

󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
.

(53)

Then,

E
󵄩
󵄩
󵄩
󵄩
𝐶
1

󵄩
󵄩
󵄩
󵄩

2

≤

32𝛽
2
𝐹
𝑙

𝛼
2

󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
. (54)

Next, we evaluate E‖𝐶
2
‖
2 as follows:

E
󵄩
󵄩
󵄩
󵄩
𝐶
2

󵄩
󵄩
󵄩
󵄩

2

= E
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

∞

−∞

𝐺(𝑡, 𝑠)[𝐻(𝑠, 𝑥(𝑠), 𝑥
𝑠
) − 𝐻(𝑠, 𝑦(𝑠), 𝑥

𝑠
)] ∘ d𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 4E
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

0

𝑈 (𝑡) 𝑃𝑈
−1
(𝑠)

× [𝐻(𝑠, 𝑥(𝑠), 𝑥
𝑠
) − 𝐻(𝑠, 𝑦(𝑠), 𝑥

𝑠
)] ∘ d𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2
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+ 4E
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

+∞

max{𝑡,0}
𝑈 (𝑡) (𝐼 − 𝑃)𝑈

−1
(𝑠)

× [𝐻(𝑠, 𝑥(𝑠), 𝑥
𝑠
) − 𝐻(𝑠, 𝑦(𝑠), 𝑥

𝑠
)] ∘ d𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 4E

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

0

𝑡

𝑈 (𝑡)𝑄𝑈
−1
(𝑠)

× [𝐻(𝑠, 𝑥(𝑠), 𝑥
𝑠
) − 𝐻(𝑠, 𝑦(𝑠), 𝑥

𝑠
)] ∘ d𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 4E

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

min{𝑡,0}

−∞

𝑈 (𝑡) (𝐼 − 𝑄)𝑈
−1
(𝑠)

× [𝐻(𝑠, 𝑥(𝑠), 𝑥
𝑠
) − 𝐻(𝑠, 𝑦(𝑠), 𝑥

𝑠
)] ∘ d𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

:= 𝑉
1
+ 𝑉
2
+ 𝑉
3
+ 𝑉
4
.

(55)

As for the first term 𝑉
1
, using Itô’s isometry identity, one

obtains

𝑉
1

= 4E
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

0

𝑈 (𝑡) 𝑃𝑈
−1
(𝑠)

×[𝐻(𝑠, 𝑥(𝑠), 𝑥
𝑠
) − 𝐻(𝑠, 𝑦(𝑠), 𝑥

𝑠
)] ∘ d𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

= 4E [∫
𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈(𝑡)𝑃𝑈

−1
(𝑠)[𝐻(𝑠, 𝑥(𝑠), 𝑥

𝑠
) −𝐻(𝑠, 𝑦(𝑠), 𝑥

𝑠
)]

󵄩
󵄩
󵄩
󵄩
󵄩

2

d𝑠]

≤ 4𝛽
2
∫

𝑡

0

𝑒
−2𝛼(𝑡−𝑠)

E
󵄩
󵄩
󵄩
󵄩
𝐻(𝑠, 𝑥(𝑠), 𝑥

𝑠
) − 𝐻(𝑠, 𝑦(𝑠), 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩

2d𝑠

≤ 4𝛽
2
𝐻
𝑙
(∫

𝑡

0

𝑒
−2𝛼(𝑡−𝑠)d𝑠)

× sup
𝑠∈R

(
󵄩
󵄩
󵄩
󵄩
𝑥(𝑠) − 𝑦(𝑠)

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(P,H)

+
󵄩
󵄩
󵄩
󵄩
𝑥(𝑠) − 𝑦(𝑠)

󵄩
󵄩
󵄩
󵄩

2

𝐶
)

≤

8𝛽
2
𝐻
𝑙

𝛼

[1 − 𝑒
−2𝛼𝑡

]
󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
≤

8𝛽
2
𝐻
𝑙

𝛼

󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
.

(56)

Similarly, one can evaluate the second term𝑉
2
, third term

𝑉
3
, and the fourth term𝑉

4
of the right-hand side, respectively:

𝑉
2

= 4E
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

+∞

max{𝑡,0}
𝑈 (𝑡) 𝑃𝑈

−1
(𝑠)

× [𝐻(𝑠, 𝑥(𝑠), 𝑥
𝑠
) − 𝐻(𝑠, 𝑦(𝑠), 𝑥

𝑠
)] ∘ d𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

8𝛽
2
𝐻
𝑙

𝛼

󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
,

𝑉
3
≤

8𝛽
2
𝐻
𝑙

𝛼

󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
,

𝑉
4
≤

8𝛽
2
𝐻
𝑙

𝛼

󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
.

(57)

Therefore,

E
󵄩
󵄩
󵄩
󵄩
𝐶
2

󵄩
󵄩
󵄩
󵄩

2

≤

32𝛽
2
𝐻
𝑙

𝛼

󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
. (58)

Thus, by combing (54) and (58), it follows that

E
󵄩
󵄩
󵄩
󵄩
(L𝑥)(𝑡) − (L𝑦)(𝑡)󵄩󵄩󵄩

󵄩

2

≤

64𝛽
2

𝛼
2
[𝐹
𝑙
+

𝛼𝐻
𝑙

2

]
󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩

2

∞
,

(59)

which implies that

󵄩
󵄩
󵄩
󵄩
(L𝑥)(𝑡) − (L𝑦)(𝑡)󵄩󵄩󵄩

󵄩∞
≤

8𝛽

𝛼

√𝐹
𝑙
+

𝛼𝐻
𝑙

2

󵄩
󵄩
󵄩
󵄩
𝑥(⋅) − 𝑦(⋅)

󵄩
󵄩
󵄩
󵄩∞

= Λ
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩∞
.

(60)

Since Λ < 1, by (60), we know that L is a contraction
mapping. The proof of Lemma 16 is complete.

Hence, combining Lemmas 15 and 16 and the contraction
mapping principle, L has a unique fixed point 𝑥(𝑡), which is
obviously the unique quadratic-mean asymptotically almost
periodic mild solution of (26).

This completes the proof of Theorem 14 due to Lemmas
15 and 16.

Remark 17. If the conditions of the main result of [14] and
(H1) and (H2) hold, (26) admits exponential trichotomy with
projections 𝑃,𝑄 and 𝑃𝑄 = 0; hence system (26) has a
unique quadratic-mean asymptotically almost periodic mild
solution. So our main result improves the main result of [14].

4. Example

The deterministic nonlinear Duffing-van der Pol equation

̈𝑦 = 𝑎𝑦 + 𝑏 ̇𝑦 + 𝑟𝑦
3
+ 𝑑y2 ̇𝑦 + 𝑠 ̇𝑦3, 𝑎, 𝑏, 𝑟, 𝑑, 𝑠 ∈ R, (61)

has become a paradigm for mathematicians, physicists, and
engineers. There are numerous physical and engineering
problems whose dynamics are described by (61) for some
parameter values.

In particular, for 𝑟 = 𝑠 = 0 one obtains the van der Pol
equation and for 𝑑 = 𝑠 = 0 one obtains the Duffing equation.

As an example, we consider the following functional
differential equation for small 𝜖

1
and 𝜖
2
:

̈𝑦 = − (𝑎 + 𝑏𝑝 (𝑡)) 𝑦 + 𝜖
1
𝑓 (𝑡, 𝑦, 𝑦

𝑡
) + 𝜖
2
ℎ (𝑡, 𝑦, 𝑦

𝑡
) ̇𝑦. (62)
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It is easy to see that (61) is the general form of the Duffing-
van der Pol equation (61). By perturbing the remaining
parameters and the right-hand side of (62) by real or white
noise, one arrives at noise, more specifically the random
(for real noise) or stochastic (for white noise) functional
differential equation, respectively:

̈𝑦 = − (𝑎 + 𝑏𝑝 (𝑡)) 𝑦 + 𝜖
1
𝑓 (𝑡, 𝑦, 𝑦

𝑡
) + 𝜖
2
𝜉
2
(𝑡) ℎ (𝑡, 𝑦, 𝑦

𝑡
) ̇𝑦,

(63)

where 𝑠
2
is intensity parameter, functions 𝑓 ∈ 𝐴𝐴𝑃(R ×

𝐿
2
(P,R) × 𝐶; 𝐿

2
(P,R)), ℎ ∈ 𝐴𝐴𝑃(R × 𝐿

2
(P,R) ×

𝐶; 𝐿
2
(P,L(𝐿2(P,R))), and 𝜉(𝑡) = (𝜉

1
(𝑡), 𝜉
2
(𝑡)) = (0, 𝜉

2
(𝑡))

is a stationary process or white noise. As a first order system
for 𝑥 = (𝑥

1
, 𝑥
2
)
𝑇
= (𝑦, ̇𝑦)

𝑇, (63) takes the form

d𝑥 (𝑡) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐹 (𝑡, 𝑥, 𝑥
𝑡
)] d𝑡 + 𝐻 (𝑡, 𝑥, 𝑥

𝑡
) ∘ d𝑊(𝑡) ,

𝑡 ∈ R,

(64)

where

𝐴 (𝑡) = (

0 1

− (𝑎 + 𝑏𝑝 (𝑡)) 0
) ,

𝐹 (𝑡, 𝑥, 𝑥
𝑡
) = (

0

𝜖
1
𝑓 (𝑡, 𝑥

1
, 𝑥
1𝑡
)
) ,

𝐻 (𝑡, 𝑥, 𝑥
𝑡
) = (

0

𝜖
2
ℎ (𝑡, 𝑥

1
, 𝑥
1𝑡
) 𝑥
2

) .

(65)

Let 𝑥 = 𝐴𝐴𝑃(R; 𝐿2(P,R2)). Suppose that vector func-
tions 𝐹 and 𝐻 satisfy the inequality conditions of (H1) and
(H2) in Theorem 14. We see that when (i) 𝑏 ≥ 0, 𝑎 +
sup
𝑡∈R𝑝(𝑡) < 0 or (ii) 𝑏 < 0, 𝑎 + inf

𝑡∈R𝑝(𝑡) > 0 hold,
d𝑥/d𝑡 = 𝐴(𝑡)𝑥(𝑡) admits exponential trichotomy, as in [24,
25].That is, there exist constants 𝛼 and 𝛽 such that (16) holds.
When (8𝛽/𝛼)√𝜖

1
𝐹
𝑙
+ 𝛼𝜖
2
𝐻
𝑙
/2 < 1, the other conditions of

Theorem 14 are satisfied. So (63) has a unique quadratic-mean
asymptotically almost periodic mild solution.

Remark 18. The linear system of the system (63) admits
exponential trichotomy with projections 𝑃, 𝑄 and 𝑃𝑄 = 0;
hence the main result of [14] cannot ensure the existence and
uniqueness of asymptotically almost periodicmild solution of
(63). It is obvious that the condition that “the family {𝐴(𝑡) :
𝑡 ∈ R} of operators in R generates an exponentially stable
semigroup {𝑇(𝑡)}

𝑡≥0
” cannot be satisfied. So themain result of

[18, 19, 21] cannot also ensure the existence of almost periodic
type mild solution of (63).

5. Conclusions

In this paper, a new criterion ensuring the existence and
uniqueness of the quadratic-mean asymptotically almost
periodic mild solutions for a class of stochastic functional
differential equations is presented. The condition of being
uniformly exponentially stable of the linear operator is
essentially removed, only using its exponential trichotomy,

which reflects a deeper analysis of the behavior of solutions of
the system. In this case the asymptotic behavior is described
through the splitting of the main space into stable, unstable,
and central subspaces at each point from the flow’s domain.
An example is also given to illustrate our results.
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