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We deal with a regular Dirac system which has discontinuities at two points and contains eigenparameter in a boundary condition
and two transmission conditions. We investigate asymptotic behaviour of eigenvalues and corresponding eigenfunctions of this

Dirac system and construct Green’s function.

1. Introduction

We consider the Dirac system

) (x) = py () uy (%) = Mgy (%),
1

u; (%) + py () uy (x) = —Auy (x), x €1,

By (u) := Byuy (a) + Bru, (a) = 0, 2

By (u) = (Aay — oy ) uy (b) — (Ao — oty ) u, (b) =0, (3)
T, () :=u; (¢ ) = 8uy () =0, (4)

T, =u,(q) = 0uy () + huy () =0, (5)

Ts () :=8uy (¢ ) —yu; (¢) = 0, (6)

Ty (1) =0y () — yus () + Auy () =0, (7)

where I = [a,¢) U (¢,6) U(g,bl,a < ¢ < ¢ <
b; A € C; the real valued functions p;(-) and p,(-) are
continuous in [a, ¢;), (¢, ¢,) and (¢, b] and have finite limits
) = hmx%cfpl(x)’ ne) = hmx%@fpl(x)’ palei) =
lim, _, = py (), pa(6) = lim, _, . p,(x); a, o, By € R (i
L,2), B +p5#0;8,y €R, 8> 0,y#0;¢ :==¢ -0, ¢ =
G+0(@=12)andp:= (ocioc2 - ocloc;) > 0.

Boundary-value problems with transmission (or dis-
continuity) conditions inside the interval often appear in
mathematical physics, mechanics, electronics, geophysics,

and other branches of natural sciences (see [1, 2]). References
[3-5] are examples of works with boundary conditions
depending linearly on an eigenparameter and transmission
conditions at the point of discontinuity for Sturm Liouville
problem.

The basic and comprehensive results about Dirac opera-
tors were given in [6]. The oscillation property and asymp-
totic formulas for the eigenvalues of Dirac systems were
given in [7] and the derivative sampling theorem to compute
eigenvalues of Dirac systems was used in [8, 9]. Continuous
Dirac systems have been investigated in these works. Works
in direction of Dirac systems with an internal point of dis-
continuity are few (see [10-13]). Sampling theories associated
with discontinuous Dirac systems were investigated in [11,
12] (also the problem in [12] contains eigenparameter in a
boundary condition). Direct and inverse problems for Dirac
operators with discontinuity inside an interval were studied
in [13]. Dirac operators with eigenparameter dependent on
both boundary conditions and one of the discontinuity
conditions were investigated in [10]. In these discontinuous
works, Dirac systems had only one point of discontinuity.

We examine Dirac system which has two points of dis-
continuity and contains at the same time an eigenparameter
in a boundary condition and two transmission conditions
in this paper. Dirac system which has two points of discon-
tinuity does not exist as far as we know. Our investigation
will be a good example for discontinuous Dirac systems.
Firstly, we give some spectral properties of eigenvalues
and eigenfunctions and then obtain asymptotic formulas
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for eigenvalues and corresponding eigenfunctions. Finally,
we construct Green’s function of the problem (1)-(7).

2. Spectral Properties

To formulate a theoretic approach to problem (1)-(7), let L :=
L,(a,c;) ® Ly(¢;,¢,) ® Ly(cy,b) and C* := C® C @ C and we
define the Hilbert space H = L & C* with an inner product

UEL VD H

[ )
= J u' (x)V(x)dx + 6% J u' (x)V(x)dx ®)

b 2 o .
+y? J 0" )V () dx+ Lk + ok + 0hik,
o P

where T denotes the matrix transpose,

u(x) v (x)
U(x) = Z; , V(x) = ’,2 € H,
hy ks
- (1) e (e ©
u;(),v; ()€ L,(ab) (i=12)),
hi,kieC (j=123).

For functions u(x), which are defined on I and have finite
limit u(c)’) := lim, _, ;. u(x) and u(c) = lim,, _, . u(x), by
Uy (x), Uy (x), and u ;) (x), we denote the functions

_ Ju@, x € [a,q),
oy () = u(q), x=g¢,
(u(cl), x=c,
Uy (x) = qux), xe€(q.q), (10)
(u(g), x=0¢
, ,bl,
w9 = {10 et

which are defined on I} := [a,¢], I, = [¢,5], and I; :=
[c,, b], respectively.

Lemma 1. The eigenvalues of the problem (1)-(7) are real.

Proof. Assume the contrary that A, is a nonreal eigenvalue of
problem (1)-(7). Let (Z;g; ) be a corresponding (nontrivial)
eigenfunction. By (1), we have

i {”1 () Uy (x) — 1y (%) u, (x)}

dx (11)
- (Xo =) {|u1(x)|2 + |u2(x)|2} , xel

Abstract and Applied Analysis

Integrating the above equation through [a, ¢ ], [¢;, 6,], and
[c,, b], we obtain

(Xo - Ao) <J’Cl (|’“‘1(9€)|2 + |u2(x)|2) dx)

= uy () () =y () 1y (1)

- (ul (@) u, (a) —u, (a)u, (a)) >
(XO - /\0) <J% (|u1(x)|2 + |u2(x)|2) dx)

=u ()i () -1, () uy ()

= ( (@)t () — 1, () wy ()

b
Go=20) (] o o)
Q

= u, (b) 7, (b) — 11, (b) uy (b)

(12)

~ (0 (&) (6) -1 (6) 1y (c)) -

Then from boundary conditions (2)-(3) and transmission
conditions (4)-(7), we have, respectively,

u, (@) u, (a) —u, (@) u, (a) =0, (13)
Ao - A b’
w, (b) i, (b) — i (b) u, (b) = el ,°) |”22( LN
Mo% - “1|
Uy (C;)az (61_) —u (51_) U, (C;)
2 + + + + (15)
=6 (”1 (Cl )ﬁz (Cl ) — U (Cl )“2 (Cl ))’

8 (”1 (‘g)ﬁz (C;) - (F{) U, (C;))

(16)

= Yz (uy (C;)az (CD —-u, (C;) Uy (“;))

Since XO # Ay, it follows from (13)-(16) and (12) that
(5] [>]
j (juy O + |a()) e + 62 j (@) + | (0)) e

Y )

P‘o“{ - “1'2'

b
+ y2 L (|u1(x)|2 + |u2(x)|2) dx =

17)

This contradicts the conditions I: (luy (%) |2+|u2(x) [$)dx+

b
8 [l ()P + luy () ) +y? [ 1y (O +luay (0)P)dx > 0
and p > 0. Consequently,A, must be real. O
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Lemma 2. Let A and y be two different eigenvalues of problem
(1)-(7). Then the corresponding eigenfunctions u(x,A) and
v(x, ) of this problem satisfy the following equality:

[} Q
J u' () v(xp)dx +6° J u' (%, A) v (x,pu)dx

a o

b 2

iy J T (M) v (x ) dx + Lhk, + ok, + Ok, = 0.
3 P

(18)

One must note that, since the eigenfunctions are real
valued, the left hand side in the last expression coincides with
the inner product in H.

Now one will construct a special fundamental system of
solutions of (1). By virtue of Theorem 1.1 in [14], one will
define two solutions of (1),

pen=(in) xev=(3en) o

where

¢y (1), x€acq),
¢ (V)= {61, xe(q0),
(¢35 (0, A),  x€(eb],

(20)
b (x 1), xelac),
b (1) = {1 (1), x€(qy6),
[$23 (0, 1), x € (0],
X (64), x¢€laq),
X (6A) = 1xn (6A), xe(q,q),
xi: (6 A), xe(eb],

(21)
X1 (6 A), x€laq),
o (6A) = 1 xn (A, x€(q0),
Xo3 (6 A),  x € (6, b],

as follows. Let one consider the next initial value problem:

) (x) = py () uy (%) = Mgy (%),
(22)

Uy (X)) + p, () uy (x) = —Auy (%), x€(aq)

u, (a) = B,, u, (a) = -p;. (23)

By virtue of Theorem 1.1 in [14], this problem has a unique
solution u = (;’z;gg ), which is an entire function of A €
C for each fixed x € [a,¢]. Similarly, employing the same
method as in the proof of Theorem 1.1 in [14], one sees that

the problem
)y (x) = py (¥ g (%) = Aty (),
x€(cb) (29

uy (b) = Aa; — ay,

Ul (x) + py (X) ty (%) = =My (%),

u, (b) = Aaj — ay,

A o .
;Z& A; )’ which is an entire

function of parameter A € C for each fixed x € [c,, b].

Now the functions ¢,;(x, A) and ¢,;(x, A) are defined in
terms of ¢, ;(x, A) and §,;(x, A),i = 2,3, j = 1,2, respectively,
as follows. The initial value problem

has a unique solution u = (

ub (%) = py (%) 4y (x) = Auy (%),
(25)

Ul (x) + py () (%) = ~Auy (%), x € (c1,6),
1 _
231 (Cl) = gﬁbn (Cl >)‘) >
(26)

2 (@) = 5 19 (6 0) 4201, (6. )}

has a unique solution u = (ﬁzgii ) for each A € C, and the

initial value problem

U (x) = py (%) 1y (x) = Aty (%),
(27)

ui (%) + py (X)uy (x) = Ay (x), x € (c,b),
1) _
Uy (Oz) =—¢p (Cz >)‘)
Y
(28)

Uy (6) = = {8¢y, (. A) + Ay, (6, M)}

1
Y
has a unique solution u = (iﬁg% ) foreach A € C.
Similarly, the functions X1}(x) A) and y, j(x, A) are defined
in terms of x;;(x,A) and y,;(x,A), i = 2,3, j = 1,2,
respectively, as follows. The initial value problem

) (x) = py () uy (%) = Mgy (%),
(29)

Ul (%) + py () 1y (%) = ~Mty (%), x € (c1,6),

iy (6) = £ (65, ),
(30)
+ A +
()= L (@) - s @0

. . _ X12(x,A)
has a unique solution u = ( P ) for each A € C, and the
initial value problem

) (x) = py () uy (%) = Mgy (%), o
ul (x) + py () uy (%) = My (%), x€(a,q),
u (o) = 01 (Cf’/\) >

u, (6) = 8 {x2 (51+’ A) = Mz (‘31+’ M}

(32)

has a unique solution u = ( ﬁig;; ) for each A € C.

Hence, ¢(-, A) satisfies (1) on I, boundary condition (2),
and transmission conditions (4)-(7) and y(:, A) satisfies (1)
on I, boundary condition (3), and transmission conditions

(4)-(7).



Let W(¢, x)(-»A) denote the Wronskians of ¢(:,1) and
x(-, A) defined by

6. A) 65 (1)
ne penl

W x) (5 A) =

It is obvious that the Wronskians

w; (1) =W (dx) ()
= ¢1i (x) /\) Xoi (xr /1) - (/521' (x’ A) X (x’ A) > x € Ii
(34)

are independent of x € I, (i = 1,2,3) and are entire
functions. Taking into account (26), (28), (30), and (32), a
short calculation gives

w, (N) = 8w, (A) = Y*w; (A) (35)

foreach A € C.

Corollary 3. The zeros of the functions w,(), w,(A), and
w5 () coincide.

Then, one may take into consideration the characteristic
function w(A) as

w(A) = w, (1) = 8w, (A) = y*w; (A). (36)

Lemma 4. All eigenvalues of problem (1)-(7) are just zeros of
the function w(A). Moreover, every zero of w(A) has multiplicity
one.

Proof. Since the functions ¢,(x,A) and ¢,(x, A) satisfy the
boundary condition (2) and transmission conditions (4)-(7),
to find the eigenvalues of problem (1)-(7), we have to insert
the functions ¢, (x, 1) and ¢, (x, A) in the boundary condition
(3) and find the roots of this equation.

By (1), we obtain, for A, € C, A # 4,

{1 (o0 s () — 1 (00) 2 (5 )}
= (=) {d ., ) ¢y (x, 1) + ¢, (x, 1), (x, )} -

(37)

Integrating the above equation through [a, ¢ ], [¢;, 6, ], and
[¢,, b] and taking into account the initial conditions (23), (26),
(28), (30), and (32),we obtain
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(A-w) {52‘/’12 (C;’#) b1, (C1+>)‘) +Y2¢13 (Cz+>)‘) b3 (Cz+’ !")}
+Y2 (h13 (0, 1) bos (b, 1) — 13 (by 1) 3 (B, 1))
=(u-4) {J:l (‘/’11 () ¢y (x, )
+yy (%, 4) sy () dx
, (@
+0° | ($ (o1 s ()
+y (%, A) by, (3, 1)) dx

, (b
Ty L (13 (6 A) ¢y (0, 1)

+¢23 (x) /\) ¢23 (x, ‘U)) dx} .
(38)

Dividing both sides of (38) by (A — ) and letting u — A,
we reach the relation

52(‘/’12 (o) /\))2 + Y2(¢13 (C;’A))Z

o¢,; (b, 1)

3, (b, A
+V2(¢23(b’” o Pl )>

- ¢13 (b’ A) T
=T {Ll (I‘/’u (x, )‘)lz + |¢21 (x, A)|2) dx
+8 sz (|¢12 M+ (6 (%, /\)|2) dx

b
+y’ L (13 G DI +[g23 (6. D) dx} -
(39)

We show that equation

w) =y (A — @) 13 (0, 1) ~ (A ~ ) 655 (b,2)) = 0
(40)

has only simple roots. Assume the converse; that is, (40) has
a double root A,. Then the following two equations hold:

(Ao‘xi - 0‘1) b13 (b) /\0) - (/\00‘; - 0‘2) $23 (b>A0) =0,

0,5 (b, Ay)
“i¢13 (b, Ao) + (AO“; - “1) % - “;‘/)23 (b, )
0¢y; (b, A
- (Aocx; - (xz) —¢238(/\ o) =0.

(41)
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Since p#0 and A, is real, then (Aja — ocl)2 +
(Aocxé - a2)2 #0, from (41),

(Aoo‘; - 0‘2)
b13 (b Ag) = M——Oﬁ)%s (b, Ay),
O3 (b, Ao) _ Phas (b Ao) N (’\O‘Xé - 0‘2) d¢ys (b, /\0)‘
oA (Aoa] —a)* (Ao —ay) A
(42)
Combining (42) and (39), with A = A, we obtain
2 2
8 (1)) + (s (1) + LB L))
(Ao —vy)
=" {J 1 (|¢11 (x, /\)lz + ¢y (, /\)|2)dx
)
+0’ J (|¢12 (%, A)lz + |¢22 (%, )‘)Iz) dx (43)
Lt
Ty J (¢33 (2, 4) 5 (2, 1)
G
+¢y3 (%, 1) ¢y3 (%, 1)) dx]» ,
contradicting the assumption p > 0. O

3. Asymptotic Approximate Formulas

Now using variation of constants (see [14]), we will transform
(1), (20),(23), (26), and (28) into the integral equations

¢11 (x,A) = By cos (A (x —a)) + B sin (A (x - a))

_ stin(A(x_y))Pl (y)¢11 ()/’/\)dy

a

[ cos0e= ) 0) s (1)

by (x5, 1) = B, sin (A (x —a)) — B cos (A (x — a))

+ J’" cos(A(x =) p, () b1y (35 A) dy

a

[0 ) 22 () (10
B (i) = 361 (6 ) cos (1 x-a))
- % (621 (e, A) + Ay (¢, A)) sin (A (x - )))
[ )

_ J’C" cos (A (x—9)) p, (¥) by, (1, 1) dy,

$yp (x,4) = %ﬁbn (‘31_’ A)sin (A (x - ¢))

+ é (51 (5 A) + Ay (¢, 1)) cos (A (x — )
+ J’C" cos(A(x—9))p, () by, (1, 1) dy

~[sin 0= ) () (2 0

G

frs (1) = 3% (6, 1) cos (A (x - )

- i (865 (65, 1) + Ay (65, ) sin (A (x - )

[ @G p )0 by

_ J: cos (A (x = 9)) p, () b3 (3, 1) dy,

b () = gqsu (6 V) sin(A(x - )

+ i (865, (65, 4) + Ay (65, )) cos (A (x — )

+ J’xCOS()t(x—y))pl (}’)(/)13 ()/,A)dy

Q

- J: sin (A (x = »)) p2 (¥) b3 (3, A) dy.

(44)

For [A| — o0, the solutions ¢,;(x, A) and ¢,;(x, A) (i =
1,2,3) have the following asymptotic representation uni-
formly with respect to x, x € I, cf. [14]:

¢1q (x5, A) = [By cos (A (x —a)) + B, sin (A (x — a))]

1
+ O(_ r(x—a)) ,
Ae

¢y (1) = [Bysin (A (x — a)) — B cos (A (x — a))]

co(Leta),

b2 (62) = 5 [Brcos (A (6 - @) + fy sin (A (¢ - )]

xsin(A(x—¢))+0O (eT(X_“)) ,

b2 (60) = 5 [Brcos(A (6 - @) + y sin (A (e~ )]

xcos(A(x-¢))+0O (er(x_“)) ,



b () = g_y (B, cos (A (¢, — @) + By sin (A (¢, — a))]

xsin(A (¢ —¢))sin (A (x —¢))
+ O(/\er(x_“)) ,

2

by (1) = §—y (B, cos (A (6, - a)) + By sin (A (¢, - a)]

X sin (/\ (c2 - Cl)) cos (A (x - Gz))
+0 (/\er(x_“)) ,
(45)

where 7 = |Im A|.

By substituting the obtained asymptotic formulas for
¢1;(x, A) and ¢,;(x, 1) (i = 1,2, 3) in the definitions of w(A),
we can establish the following theorem.

Theorem 5. Let T = |Im A|. Then the characteristic function
w(A) has the following asymptotic representation:

A0 {a [, cos (A (& -~ @) + fy sin (A (s - @)

xsin (A (c, — ¢;)) sin (A (b—¢,))
+ay [B, cos (A (¢ —a)) + By sin (A (e, - a)) ]
xsin (A (e, - ) cos (A (b - ;) }

+ O()LZET(b_a)) .

w(A) =

(46)

By putting sin z = (¢’ — e %)/2i and cos z = (¢ + ¢ %) /2
in (46), one derives that

w) =@M +0 (Ve "), (47)
where
@ (A)
_ & Ahilb-a) _“;ﬁz B By + Py B oy
8 8i 8i 8

4+ Hhilb-ate—c) <“;ﬁ2 + (X;ﬁl B 0‘;/32 . “;/31 )

8 8i 8i 8

+ il (“{/32 + B + B, B B )

8 8i 8i 8

+ pHita-a) (_“;ﬁz B o By B P, + By )

8 8i 8i 8
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! ! ! !
4+ i) b + “1[?1 + “2@2 + 0B
8 8i 8i 8

! ! ! !
+ eHiea) % B B “1/.31 + “2(32 + o B
8 8i 8i 8

! ! ! !
+ i) % B, B « B B %P, B %P
8 8i 8i 8

+ (_“iﬁz + 0‘;[?1 B “;.L.;z B oy )}
8 8i 8i 8
(48)

Lemma 6. Let {o;}¥ | be the set of real numbers satisfying the
inequalities ay > oty > -+ > o,y > 0 and {B}L, the set of
complex numbers. If B, # 0, then the roots of the equation

et BeMt v ﬂp_le“f"l’\ +f,=0 (49)

have the form

=2y (=041, ), (50)

X
where ¥ (n) is a bounded sequence [15].

Theorem 7. The eigenvalues A, of problem (1)-(7) have the
following asymptotic formula:

nm
A =
"o(b-a)

+0(1). (51)

Proof. By using Lemma 6, @(A) = 0 has an infinite number of
roots Xn with asymptotic expression

1,= "2 swm),

(b-a)

sup ¥ (n)| <co, (52)

where ¥(n) = O(1/n). By applying well-known Rouche’s
theorem, which assets that if f(s) and g(s) are analytic inside
and on a closed contour I, and |g(s)| < | f(s)| on T, then f(s)
and f(s) + g(s) have the same number of zeros inside I', and
then we obtain

A, =4, +0(),

L _m (53)

"-a

+0(1).

O
By putting (51) in the (45), we obtain the following
asymptotic formulae of the eigen-vector-functions ¢(:, A,,):
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(Bycos (A, (x—a)) + By sin(A, (x—a)))+0<%> o)
x€la,q),
(B,sin (A, (x —a)) - By cos (A, (x —a))) +O (%)
A
—5 (Bycos (A, (q —a)) + fysin (4, (e —a)))sin (A, (x —4)) + O(1)
$(xr)=1| A ’ x € (c0),
5 (Bacos (A, (a —a)) + Bysin(A, (¢ —a))) cos (A, (x = 1)) + O (1)
AZ
3y (B cos (A, (¢, —a)) + By sin (A, (¢, —a)))sin (4, (¢, - ¢))) sin (A, (x — 5,)) + O (n) s
22 , x€(co,b],
—6—; (B, cos (A, (¢, —a)) + By sin (4, (¢, —a))) sin (4, (¢, — 1)) cos (A, (x = ¢,)) + O (m)
(54)
where We applied the standard method of variation of the con-

(8120 ey,

A
T

(iii - 23) x € (eb).

4. Green’s Function

Let f(-) = (28) be a continuous vector-valued function.
Now, we derive Green’s function of problem (1)-(7). Consider
the inhomogeneous eigenvalue problem consisting of the
differential system,
uy (%) = (py () + A) uy (%) = f; (%),
(56)
uy (%) + (P, (X) + M)ty (x) = = f (x),
and boundary conditions (2), (3) and transmission condi-

tions (4)-(7) with A are not an eigenvalue of problem (1)-(7).
Now we can represent the general solution of (56) in the

following form:
' ¢y (x, A))
A
1 (¢21 (x,A)

LA
+B, ())21 Ez’ A;) , x€laq),

¢y (x, A))
A
? (¢zz (x, 1)

X1z (%, A)
+B (Xzz (x, A))  xE (CI’GZ) '

é13 (x, )‘)>
A
’ <¢23 (x, )

Xi3 (6 4)
+B, (Xzs o )L)) , x€(c,b].

x €1,

u(x,A) = A (57)

stants to (57); thus, the functions A;(x, A) and B;(x,A) (i =
1,2, 3) satisfy the linear system of equations

AL (5, 2) 6y (6, ) + By (x5, 4) o1 (5,4) = f, (%),
AL (5 A) ¢y (6 ) + B (6,4) x1, (6,4) = = f; (%),
x€laq),
AL (6,0 65 (5, 4) + By (6, 1) 1o (5, 4) = f; ()
AL (M) by (6 A) + B (6, 1) xip (6 A) = —f, (x),  (58)
x €(e,6),
AL () 655 (6, 4) + By (6, 4) 1o (5, 4) = f, (%)
AL (6 A) s (6 1) + By (6, 4) x5 (6. 1) = = f; (%),
x € (e, b].
Since A is not an eigenvalue and w;(1)#0 (i = 1,2,3),

each of the linear systems in (58) has a unique solution which
leads to

AL () = ﬁ) j T ENEEET A,

B, (x,1) = Lj ¢TENF©)dE +B,,

o) )
x€laq),
2 g
Ayl = o j X ENEE) dE+ A,
2 X
B (o) = 2 j ¢7 EN () dE +B,,
X € (Cl’cz))
Y
Ase ) = 2 j X ENE@E)dE+ A,



2

B = Yo [T en@a s,
x € (¢, 0],
(59)
where A;, B; (i = 1,2, 3) are arbitrary constants and
[(én (E,/\))
(fren): eetae
(/512 (E’ /\))
A) = G)»
¢ (¢22 N §e(ana)
(/513 (E’ /l)) b
(o) eeten
(60)
’ XII(E’A))
<X21 &1 telaa),
(E,A))
,A — X12 , ,
x (& A) <X22 &N §e(aq)
x13 & A)) b
L<x23 &) St

Substituting (59) into (57), we obtain the solutions of (56),

X ENEE)dE

LN L¢> NIGE:

+A1¢(x,4) + B x (x, ), x€la,q),

S\ (¢ .
el R RLOL

Sy ) [* -
e AR GE:
+A2¢ (x) A’) + BZX (x’ A) >

¢ (x,A) = 1
x€(c,6),

2 ,A b .
PP [xrant@a

2
Yx (A (* ¢
| e enroa

+A3¢(x,A) + B3y (x, 1),

x€(c,b].
(61)

Then, from boundary conditions (2), (3) and transmis-
sion conditions (4)-(7), we get

2

Y
A= (Mj X EDEE)

62
o)

%)
j X ENE ) dE,
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B, =0,

a2 [ eneoas

b= - [ 4 @@

A, =0,

B- 2L [ et
o | e ent@a

(62)

Then (61) can be written as
)= [ GEEN @) dE

%)
N aZJ G (0, &) £ (E)dE (63)

b
+y L G (. £ ) £ (8) dE,

where

(X (1) ¢" (&N

o) , a<é<x<b,
_ x#0,6, §#6,0,
SN =1 Eng

o) , a<x<é&<h,

x#c,6, §#0,6
(64)

The function G(x,&, 1) is called Green’s function of
problem (1)-(7). Obviously, G(x,&,A) is a meromorphic
function of A, for every (x,§) € I?, which has poles only at
the eigenvalues.
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