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This paper is concerned with a stochastic nonautonomous logistic model with jumps. In the model, the martingale and jump noise
are taken into account. This model is new and more feasible and applicable. Sufficient criteria for the existence of global positive
solutions are obtained; then asymptotic boundedness in pthmoment, stochastically ultimate boundedness, and asymptotic pathwise
behavior are to be considered.

1. Introduction

The well-known logistic system is an important and applica-
ble system in both ecology and mathematical ecology. The
classical nonautonomous logistic equation can be described
by

d𝑥 (𝑡) = 𝑥 (𝑡) [𝑎 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)] d𝑡 (1)

for 𝑡 ≥ 0 with initial value 𝑥(0) > 0. In this model, 𝑥(𝑡) is
the population size at time 𝑡, so we are only concerned with
positive solutions. The coefficient 𝑎(𝑡) is the intrinsic growth
rate and 𝑎(𝑡)/𝑏(𝑡) stands for the carrying capacity at time
𝑡. Both 𝑎(𝑡) and 𝑏(𝑡) are continuous bounded functions on
𝑡 ≥ 0. System (1) models the population density of a single
species whose members compete among themselves for a
limited amount of food and living space. About the detailed
model construction, readers can refer to [1].

Because of the importance in theory and practice, many
authors have studied deterministic model (1) and its gener-
alization. Many good results on the dynamical behavior have
been reported; see, for example, Freedman andWu [2], Lisena
[3], Golpalsamy [4], Kuang [5], and the references therein.
Among them, the books [4, 5] are good references in this
area.

However, in the real world, the population systems are
inevitably subject to much stochastic environmental noise
which is important in ecosystem (see, e.g., Gard [6, 7]).

In model (1), the parameters are all deterministic and irre-
spective of the environmental fluctuations; therefore, they
have limitations in applications and it is difficult to fit data
and predict the future accurately [8]. May [1] proposed the
fact that because of the environmental noise, the birth rate,
carrying capacity, and other parameters involved in the sys-
tem exhibit random fluctuation to a greater or lesser extent.
So it is necessary to find a more practical model.

According to the well-known central limit theorem, the
sum of all stochastic environmental noise follows a normal
distribution, and we usually call the white noise and denote
it by 𝐵̇(𝑡). We impose the stochastic perturbation on 𝑏(𝑡) and
then get the following Itô’s equation:

d𝑥 (𝑡) = 𝑥 (𝑡) [(𝑎 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)) d𝑡 + 𝜎 (𝑡) 𝑥 (𝑡) d𝐵 (𝑡)] ,
(2)

where 𝐵(𝑡) is a standard Brownian motion defined on a
complete probability space (Ω,F, {F

𝑡
}
𝑡≥0
,P)with a filtration

{F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e, F
𝑡
is right

continuous andF
0
contains allP-null sets) and𝜎2(𝑡) denotes

the intensity of the noise. The white noise has important
effects on the model. The famous result is that Mao et al. [9]
showed that the environmental Brownian noise suppresses
explosion in population dynamics. From then on, many
valuable results are established. Liu and Wang studied the
persistence and extinction of the solutions of model (2) in
[10]. There are many other literatures to consider the models
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with white noise; the readers can refer to [11–22] and the
references cited therein.

In addition, the population may suffer from sudden
environmental shocks, namely, some jump type stochastic
perturbation, for example, tsunami, earthquakes, floods,
hurricanes, epidemics, red tides, and so on. These events are
so strong that they break the continuity of the solution, so
these phenomena cannot be described by (2). Introducing
jump noise into the model may be a reasonable way to
describe these phenomena; see [23, 24]. Models with jumps
have received considerable attention in recent years, but by
now, there are few papers to deal with population systems
driven by jumps. About the knowledge of jumps, the readers
can refer to Applebaum [25] and Situ [26].

On the other hand, as is well known now, martingale
is also an important field of stochastic analysis. Martingale
theory has important and valuable applications in science,
economics, finance, and elsewhere, and it has been devel-
oped well [26–28]. As we know that Brownian motion is a
special martingale and it has many good properties, such
as the independent increments, the increment stationary,
and the Gaussian. So we attempt to generalize the driving
process.

Motivated by the above reasons, it is eager to introduce
a general driving process with jumps. In this paper, we
propose and study the following logistic equation driven by
martingales with jumps:

d𝑥 (𝑡) = 𝑥 (𝑡
−
) [ (𝑎 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡

−
)) d𝑡 + 𝜎 (𝑡) 𝑥 (𝑡−) d𝑀(𝑡)

+∫

Z

𝑐 (𝑥 (𝑡
−
) , 𝑧) 𝑁̃ (d𝑡, d𝑧)] .

(3)

In the model, 𝑥(𝑡−) is the left limit of 𝑥(𝑡), 𝑁 is a Poisson
counting measure with characteristic measure 𝜋 on a mea-
surable subset Z of (0,∞) with 𝜋(Z) < ∞, and 𝑁̃(d𝑡, d𝑧) =
𝑁(d𝑡, d𝑧) − 𝜋(d𝑧)d𝑡 is the corresponding martingale mea-
sure. It is worth noting that a martingale usually does not
share the good properties which a Brownian motion satisfies,
so there are many difficulties when we extend the Brownian
motion in the stochastic integral to the martingale; maybe
this is one of the reasons why biological models driven by
martingales have not been widely studied. About the detailed
information of martingales, readers can refer to [26–28].
Throughout this paper, we assume that𝑀 is independent of
𝑁.

The rest of this paper is organized as follows. In
Section 2, sufficient conditions for global positive solutions
are obtained. In Section 3, asymptotic boundedness in 𝑝th
moment and stochastically ultimate boundedness of model
(3) are investigated. In Section 4, the asymptotic pathwise
behavior is examined. We complete the paper with conclu-
sions in Section 5.

2. Global Positive Solutions

Throughout this paper, we assume that 𝑎(𝑡), 𝑏(𝑡), and 𝜎(𝑡)

are continuous bounded functions on 𝑡 ∈ R
+
= [0,∞),

inf
𝑡∈R
+

𝑏(𝑡) > 0. 𝑀(𝑡) denotes a square integrable martingale
with 𝑀(0) = 0, and ⟨𝑀⟩(𝑡) is the unique integrable incre-
asing process such that 𝑀2(𝑡) − ⟨𝑀⟩(𝑡) is a martingale.
Further, we assume that E⟨𝑀⟩(𝑡) < ∞, where E(𝑓) means
the mathematical expectation of 𝑓. In the sequel, we denote
by 𝐾 a generic constant whose value may vary in different
appearance.

Before we consider the asymptotic properties of solutions
to system (3), first we should guarantee the existence of the
global positive solutions. For the jump-diffusion coefficient
𝑐(𝑥, 𝑧), we impose the following conditions.

Assumption 1. For any 𝑥 ∈ R
+
and 𝑧 ∈ Z,

𝑐 (𝑥, 𝑧) > −1, (4)

and, for each 𝑘 > 0, there exists a 𝐿
𝑘
> 0 such that

∫

Z

󵄨
󵄨
󵄨
󵄨
𝑐 (𝑥, 𝑧) − 𝑐 (𝑦, 𝑧)

󵄨
󵄨
󵄨
󵄨

2

𝜋 (d𝑧) ≤ 𝐿
𝑘

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

2

, (5)

where 𝑥, 𝑦 ∈ R
+
with |𝑥| ∨ |𝑦| ≤ 𝑘.

Theorem 2. Let Assumption 1 hold. And further assume that
for 𝑝 ∈ (0, 1) there exist constants 𝛿 > 0, 𝛼 > 1 such that

∫

Z

[(1 + 𝑐 (𝑥, 𝑧))
𝑝
− 1− 𝑝𝑐 (𝑥, 𝑧)] 𝜋 (𝑑𝑧) ≤ −𝛿|𝑥|

𝛼
+ 𝑜 (|𝑥|

𝛼
) ,

(6)

for 𝑥 ∈ R
+
, where 𝑜(|𝑥|𝛼)/|𝑥|𝛼 → 0 as |𝑥| → ∞. Then for

any initial value 𝑥 > 0, (3) has a unique global positive solution
𝑥(𝑡) for 𝑡 ≥ 0 almost surely.

Proof. Our proof is motivated by Bao and Yuan [24]. By (5),
the coefficients of (3) satisfy the local Lipschitz condition, so
for any initial value 𝑥 > 0, (3) has a unique local solution
𝑥(𝑡) on 𝑡 ∈ [0, 𝜏

𝑒
), where 𝜏

𝑒
is the exploded time (see [28]).

To show that this solution is global, we only need to show
that 𝜏

𝑒
= ∞ a.s. Let 𝑘

0
> 0 be sufficiently large satisfying

𝑥 < 𝑘
0
. For each integer 𝑘 ≥ 𝑘

0
, define an increasing sequence

of stopping times 𝜏
𝑘
by the prescription

𝜏
𝑘
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : |𝑥 (𝑡)| > 𝑘} . (7)

Clearly, 𝜏
𝑘
is increasing as 𝑘 → ∞. Let 𝜏

∞
= lim

𝑘→∞
𝜏
𝑘
;

then 𝜏
∞
≤ 𝜏
𝑒
. If we can obtain 𝜏

∞
= ∞ a.s., then 𝜏

𝑒
= ∞ a.s.

In other words, if we can derive 𝜏
∞
= ∞, then we complete

the proof. For 𝑝 ∈ (0, 1), define a 𝐶2-function 𝑉 : R
+
→ R
+

by

𝑉 (𝑥) = 𝑥
𝑝
. (8)
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Let 𝑇 be an arbitrary positive constant, for 0 ≤ 𝑡 ≤ 𝜏
𝑘
∧

𝑇, applying Itô’s formula for semimartingales with jumps
deduces that

d𝑉 (𝑥 (𝑡)) = 𝑝𝑥
𝑝−1

𝑥 [(𝑎 (𝑡) − 𝑏 (𝑡) 𝑥) d𝑡 + 𝜎 (𝑡) 𝑥d𝑀(𝑡)]

+

1

2

𝑝 (𝑝 − 1) 𝑥
𝑝−2

𝜎
2
(𝑡) 𝑥
4d ⟨𝑀⟩ (𝑡)

+ ∫

Z

[(𝑥 + 𝑥𝑐 (𝑥, 𝑧))
𝑝
− 𝑥
𝑝
] 𝑁̃ (d𝑡, d𝑧)

+ ∫

Z

[(𝑥 + 𝑥𝑐 (𝑥, 𝑧))
𝑝
− 𝑥
𝑝
− 𝑝𝑥
𝑝−1

𝑥𝑐 (𝑥, 𝑧)]

× 𝜋 (d𝑧) d𝑡

= 𝑝𝑥
𝑝
[(𝑎 (𝑡) − 𝑏 (𝑡) 𝑥) d𝑡 + 𝜎 (𝑡) 𝑥d𝑀(𝑡)]

+

1

2

𝑝 (𝑝 − 1) 𝑥
𝑝+2

𝜎
2
(𝑡) d ⟨𝑀⟩ (𝑡)

+ 𝑥
𝑝
∫

Z

[(1 + 𝑐 (𝑥, 𝑧))
𝑝
− 1] 𝑁̃ (d𝑡, d𝑧)

+ 𝑥
𝑝
∫

Z

[(1 + 𝑐 (𝑥, 𝑧))
𝑝
− 1 − 𝑝𝑐 (𝑥, 𝑧)] 𝜋 (d𝑧) d𝑡

≤ 𝑝𝑥
𝑝
[𝑎 (𝑡) − 𝑏 (𝑡) 𝑥] d𝑡 + 𝑝𝑥𝑝+1𝜎 (𝑡) d𝑀(𝑡)

+ 𝑥
𝑝
∫

Z

[(1 + 𝑐 (𝑥, 𝑧))
𝑝
− 1] 𝑁̃ (d𝑡, d𝑧)

+ 𝑥
𝑝
∫

Z

[(1 + 𝑐 (𝑥, 𝑧))
𝑝
− 1 − 𝑝𝑐 (𝑥, 𝑧)] 𝜋 (d𝑧) d𝑡

= 𝐿𝑉 (𝑥 (𝑡)) d𝑡 + 𝑝𝑥𝑝+1𝜎 (𝑡) d𝑀(𝑡)

+ 𝑥
𝑝
∫

Z

[(1 + 𝑐 (𝑥, 𝑧))
𝑝
− 1] 𝑁̃ (d𝑡, d𝑧) ,

(9)

where, for 𝑥 ∈ R
+
,

𝐿𝑉 (𝑥) = 𝑝𝑥
𝑝
[𝑎 (𝑡) − 𝑏 (𝑡) 𝑥]

+ 𝑥
𝑝
∫

Z

[(1 + 𝑐 (𝑥, 𝑧))
𝑝
− 1 − 𝑝𝑐 (𝑥, 𝑧)] 𝜋 (d𝑧)

:= 𝐾
1
(𝑥, 𝑝) + 𝐾

2
(𝑥, 𝑝) .

(10)

Note that

𝐾
1
(𝑥, 𝑝) ≤ 𝐾|𝑥|

𝑝+1
+ 𝑜 (|𝑥|

𝑝+1
) . (11)

By condition (6),

𝐾
2
(𝑥, 𝑝) ≤ −𝛿|𝑥|

𝑝+𝛼
+ 𝑜 (|𝑥|

𝑝+𝛼
) . (12)

So, for 𝛼 > 1, there exists a 𝐾 > 0 such that

𝐿𝑉 (𝑥) ≤ 𝐾, ∀𝑥 ∈ R
+
. (13)

For any given 𝑙 > 0, define

𝜇 (𝑙) = inf {𝑉 (𝑥) , |𝑥| ≥ 𝑙} . (14)

Then we see that

lim
𝑙→∞

𝜇 (𝑙) = ∞. (15)

By (9), (13), and the definition of 𝜇, we derive

𝜇 (𝑘)P (𝜏
𝑘
≤ 𝑇) ≤ E [𝑉 (𝑥 (𝜏

𝑘
)) 𝐼
𝜏
𝑘
≤𝑇
] ≤ E𝑉 [𝑥 (𝜏

𝑘
∧ T)]

≤ 𝐾.

(16)

Letting 𝑘 → ∞ and making use of (15), we obtain

P (𝜏
∞
≤ 𝑇) = 0. (17)

By the arbitrariness of 𝑇, we reach that

P (𝜏
∞
= ∞) = 1. (18)

This completes the proof.

Remark 3. From the conditions and the results ofTheorem 2,
we can see that the jump processes can suppress the potential
population explosion and guarantee the existence of the
global solution.

Remark 4. The condition (6) can be achieved. Bao and Yuan
[24] give an example to illustrate this.

3. Asymptotic Moment Properties

By now, we give the conditions to guarantee that (3) admits a
unique global positive solution. From the biological point of
view, the nonexplosion property and positivity in a popula-
tion dynamical system are not good enough. In this section,
we will examine the moment properties and stochastically
ultimate boundedness.

Theorem5. Let the conditions ofTheorem 2 hold.Then for any
𝑝 ∈ (0, 1), there exists a positive constant 𝐾 satisfying

lim sup
𝑡→∞

E|𝑥 (𝑡)|
𝑝
≤ 𝐾. (19)

Namely, (3) is asymptotically bounded in 𝑝th moment.

Proof. Let 𝑉 be defined as (8). For any 𝑥 < 𝑘, we define a
stopping time sequence

𝜎
𝑘
= inf {𝑡 ≥ 0 : |𝑥 (𝑡)| > 𝑘} . (20)

Clearly, 𝜎
𝑘
goes to infinity when 𝑘 → ∞. Applying Itô’s

formula leads to

E [𝑒
𝑡∧𝜎
𝑘
𝑉 (𝑥 (𝑡 ∧ 𝜎

𝑘
))]

≤ 𝑉 (𝑥) + E∫
𝑡∧𝜎
𝑘

0

𝑒
𝑠
[𝑉 (𝑥 (𝑠)) + 𝐿𝑉 (𝑥 (𝑠))] d𝑠,

(21)

where 𝐿𝑉 is defined by (10). Because the leading term of
𝐿𝑉(𝑥) is −𝛿|𝑥|𝛼+𝑝 with 𝛼 > 1 and 𝛿 > 0, then there exists
a constant𝐾 > 0 such that

𝑉 (𝑥) + 𝐿𝑉 (𝑥) ≤ 𝐾. (22)
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Therefore,

E [𝑒
𝑡∧𝜎
𝑘
𝑉 (𝑥 (𝑡 ∧ 𝜎

𝑘
))] ≤ 𝑉 (𝑥) + 𝐾 (𝑒

𝑡
− 1) . (23)

Letting 𝑘 → ∞, we reach

E [𝑒
𝑡
𝑥
𝑝
(𝑡)] ≤ 𝑉 (𝑥) + 𝐾 (𝑒

𝑡
− 1) . (24)

This is equivalent to

E [𝑥
𝑝
(𝑡)] ≤

𝑉 (𝑥)

𝑒
𝑡

+ 𝐾 (1 − 𝑒
−𝑡
) . (25)

Taking upper limit for both sides, we can get our desired
results. This completes the proof.

As an application of Theorem 5, together with Cheby-
shev’s inequality, we follow the next corollary.

Corollary 6. Under the conditions of Theorem 5, (3) is
stochastically ultimate bounded. Namely, ∀𝜖 ∈ (0, 1), ∃𝐻 =

𝐻
𝜖
> 0 such that

lim sup
𝑡→+∞

P [|𝑥 (𝑡)| > 𝐻] < 𝜖, (26)

for any initial value 𝑥(0) > 0.

4. Asymptotic Pathwise Estimation

In the previous section, we consider how the solutions vary
on R
+
in probability or in moment. The pathwise properties

of the solutions are the subject of the present section. For later
applications, we first give a lemma which is a generalization
of exponential martingale inequality with jumps [25].

Lemma 7. Let 𝑓 : [0,∞) → R and ℎ : [0,∞) × Y → R

be both predictable {F
𝑡
}—adapted processes such that for any

𝑇 > 0,

∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨

2

𝑑 ⟨𝑀⟩ (𝑡) < ∞ 𝑎.𝑠.,

∫

𝑇

0

∫

Z
|ℎ (𝑡, 𝑧)|

2
𝜋 (𝑑𝑧) 𝑑𝑡 < ∞ 𝑎.𝑠.

(27)

Then for any constants 𝛼, 𝛽 > 0,

P{ sup
0≤𝑡≤𝑇

[∫

𝑡

0

𝑓 (𝑠) 𝑑𝑀 (𝑠) −

𝛼

2

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠)

󵄨
󵄨
󵄨
󵄨

2

𝑑 ⟨𝑀⟩ (𝑠)

+ ∫

𝑡

0

∫

Z

ℎ (𝑠, 𝑧) 𝑁̃ (𝑑𝑠, 𝑑𝑧)

−

1

𝛼

∫

𝑡

0

∫

Z

[𝑒
𝛼ℎ(𝑠,𝑧)

− 1 − 𝛼ℎ (𝑠, 𝑧)] 𝜋 (𝑑𝑧) 𝑑𝑠]

> 𝛽} ≤ 𝑒
−𝛼𝛽

.

(28)

Proof. This part is motivated by [25]. For every integer 𝑘 ≥ 1,
define the stopping time sequence

𝜌
𝑘
= inf {𝑡 ≥ 0 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑓 (𝑠) d𝑀(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

𝛼

2

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠)

󵄨
󵄨
󵄨
󵄨

2d ⟨𝑀⟩ (𝑠)

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

∫

Z

ℎ (𝑠, 𝑧) 𝑁̃ (d𝑠, d𝑧)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

1

𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

∫

Z

[𝑒
𝛼ℎ(𝑠,𝑧)

− 1 − 𝛼ℎ (𝑠, 𝑧)] 𝜋 (d𝑧) d𝑠
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝑘}

(29)

and Itô’s process

𝑥
𝑘
(𝑡) = 𝛼∫

𝑡

0

𝑓 (𝑠) 𝐼
[[0,𝜌
𝑘
]]
(𝑠) d𝑀(𝑠)

−

𝛼
2

2

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠)

󵄨
󵄨
󵄨
󵄨

2

𝐼
[[0,𝜌
𝑘
]]
(𝑠) d ⟨𝑀⟩ (𝑠)

+ 𝛼∫

𝑡

0

∫

Z

ℎ (𝑠, 𝑧) 𝐼
[[0,𝜌
𝑘
]]
(𝑠) 𝑁̃ (d𝑠, d𝑧)

− ∫

𝑡

0

∫

Z

[𝑒
𝛼ℎ(𝑠,𝑧)

− 1 − 𝛼ℎ (𝑠, 𝑧)] 𝐼
[[0,𝜌
𝑘
]]
(𝑠) 𝜋 (d𝑧) d𝑠.

(30)

From the definition of 𝜌
𝑘
, we can see that 𝑥

𝑘
(𝑡) is bounded

and 𝜌
𝑘
↑ ∞ a.s., when 𝑘 → ∞. Applying Itô’s formula to

exp[𝑥
𝑘
(𝑡)], we reach

𝑒
𝑥
𝑘
(𝑡)
= 1 + 𝛼∫

𝑡

0

𝑒
𝑥
𝑘
(𝑠)
𝑓 (𝑠) 𝐼

[[0,𝜌
𝑘
]]
(𝑠) d𝑀(𝑠)

+ ∫

𝑡

0

∫

Z

𝑒
𝑥
𝑘
(𝑠)
(𝑒
𝛼ℎ(𝑠,𝑧)

− 1) 𝐼
[[0,𝜌
𝑘
]]
(𝑠) 𝑁̃ (d𝑠, d𝑧) .

(31)

This equality implies that exp[𝑥
𝑘
(𝑡)] is a localmartingale with

E(exp[𝑥
𝑘
(𝑡)]) = 1, so exp[𝑥

𝑘
(𝑡)] is a martingale (seeTheorem

5.2.4 in [25]). By virtue of Doob’s martingale inequality, we
derive

P( sup
0≤𝑡≤𝑇

exp [𝑥
𝑘
(𝑡)] > 𝑒

𝛼𝛽
) ≤ 𝑒
−𝛼𝛽

E (exp [𝑥
𝑘
(𝑇)]) = 𝑒

−𝛼𝛽
.

(32)

This is equivalent to

P{ sup
0≤𝑡≤𝑇

[∫

𝑡

0

𝑓 (𝑠) 𝐼
[[0,𝜌
𝑘
]]
(𝑠) d𝑀(𝑠)

−

𝛼

2

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠)

󵄨
󵄨
󵄨
󵄨

2

𝐼
[[0,𝜌
𝑘
]]
(𝑠) d ⟨𝑀⟩ (𝑠)
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+ ∫

𝑡

0

∫

Z

ℎ (𝑠, 𝑧) 𝐼
[[0,𝜌
𝑘
]]
(𝑠) 𝑁̃ (d𝑠, d𝑧)

−

1

𝛼

∫

𝑡

0

∫

Z

[𝑒
𝛼ℎ(𝑠,𝑧)

− 1 − 𝛼ℎ (𝑠, 𝑧)] 𝐼
[[0,𝜌
𝑘
]]
(𝑠)

×𝜋 (d𝑧) d𝑠] > 𝛽} ≤ 𝑒
−𝛼𝛽

.

(33)

Let 𝑘 → ∞, we can arrive at our desired result. This
completes the proof.

Theorem8. Let the conditions ofTheorem 2 hold. Assume fur-
ther that there exist constants 𝜃 ∈ (0, 1) and 𝜆 > 0 such that

∫

Z

[𝑙𝑛
2
(1 + 𝑐 (𝑥, 𝑧)) + 16𝑐 (𝑥, 𝑧)] 𝜋 (𝑑𝑧) ≤ 𝜆|𝑥|

𝜃
+ 𝑜 (|𝑥|

𝜃
) .

(34)

Then there exists a constant𝐾 > 0, independent of initial value
𝑥 > 0, such that the solution 𝑥(𝑡) of (3) satisfyies

lim sup
𝑡→∞

ln𝑥 (𝑡)
ln 𝑡

≤ 𝐾 𝑎.𝑠. (35)

Proof. ByTheorem 2, (3) has a unique global positive solution
for any initial condition 𝑥 > 0. Applying Itô’s formula to
[𝑒
𝑡 ln𝑥(𝑡)] leads to

𝑒
𝑡 ln𝑥 (𝑡) − ln𝑥 = ∫

𝑡

0

𝑒
𝑠
[ln𝑥 (𝑠) + 𝑎 (𝑠) − 𝑏 (𝑠) 𝑥 (𝑠)] d𝑠

+ ∫

𝑡

0

𝑒
𝑠
𝜎 (𝑠) 𝑥 (𝑠) d𝑀(𝑠)

−

1

2

∫

𝑡

0

𝑒
𝑠
𝜎
2
(𝑠) 𝑥
2
(𝑠) d ⟨𝑀⟩ (𝑠)

+ ∫

𝑡

0

∫

Z

𝑒
𝑠 ln (1 + 𝑐 (𝑥, 𝑧)) 𝑁̃ (d𝑠, d𝑧)

+ ∫

𝑡

0

∫

Z

𝑒
𝑠
[ln (1 + 𝑐 (𝑥, 𝑧)) − 𝑐 (𝑥, 𝑧)]

× 𝜋 (d𝑧) d𝑠.
(36)

By Lemma 7, for any 𝛼, 𝛽, 𝑇 > 0, we have

P{𝜔 : sup
0≤𝑡≤𝑇

[∫

𝑡

0

𝑒
𝑠
𝜎 (𝑠) 𝑥 (𝑠) d𝑀(𝑠)

−

𝛼

2

∫

𝑡

0

𝑒
2𝑠
𝜎
2
(𝑠) 𝑥
2
(𝑠) d ⟨𝑀⟩ (𝑠)

+ ∫

𝑡

0

∫

Z

𝑒
𝑠 ln (1 + 𝑐 (𝑥, 𝑧)) 𝑁̃ (d𝑠, d𝑧)

−

1

𝛼

∫

𝑡

0

∫

Z

[(1 + 𝑐 (𝑥, 𝑧))
𝛼𝑒
𝑠

−1 − 𝛼𝑒
𝑠 ln (1 + 𝑐 (𝑥, 𝑧)) ]

× 𝜋 (d𝑧) d𝑠] > 𝛽} ≤ 𝑒
−𝛼𝛽

.

(37)

Take 𝑇 = 𝑘, 𝛼 = 𝜀𝑒
−𝑘, and 𝛽 = (2𝑒

𝑘 ln 𝑘)/𝜀, where 𝑘 ∈ N and
0 < 𝜀 < 1/2. By Borel-Cantalli’s lemma, for almost all 𝜔 ∈ Ω,
there is an integer 𝑘

0
= 𝑘
0
(𝜔) such that

∫

𝑡

0

𝑒
𝑠
𝜎 (𝑠) 𝑥 (𝑠) d𝑀(𝑠) + ∫

𝑡

0

∫

Z

𝑒
𝑠 ln (1 + 𝑐 (𝑥, 𝑧)) 𝑁̃ (d𝑠, d𝑧)

≤

2𝑒
𝑘 ln 𝑘
𝜀

+

𝜀𝑒
−𝑘

2

∫

𝑡

0

𝑒
2𝑠
𝜎
2
(𝑠) 𝑥
2
(𝑠) d ⟨𝑀⟩ (𝑠)

+

1

𝜀𝑒
−𝑘
∫

𝑡

0

∫

Z

[(1 + 𝑐 (𝑥, 𝑧))
𝜀𝑒
𝑠−𝑘

− 1

−𝜀𝑒
𝑠−𝑘 ln (1 + 𝑐 (𝑥, 𝑧)) ] 𝜋 (d𝑧) d𝑠,

(38)

for 0 ≤ 𝑡 ≤ 𝑘 and 𝑘 ≥ 𝑘
0
. Therefore, for 0 ≤ 𝑡 ≤ 𝑘 and 𝑘 ≥ 𝑘

0
,

ln𝑥 (𝑡) ≤ 𝑒−𝑡 ln𝑥 + ∫
𝑡

0

𝑒
𝑠−𝑡
[ln𝑥 (𝑠) + 𝑎 (𝑠) − 𝑏 (𝑠) 𝑥 (𝑠)] d𝑠

+

1

2

∫

𝑡

0

𝑒
𝑠−𝑡
𝜎
2
(𝑠) 𝑥
2
(𝑠) [𝜀𝑒

𝑠−𝑘
− 1] d ⟨𝑀⟩ (𝑠)

+

2𝑒
𝑘−𝑡 ln 𝑘
𝜀

+ ∫

𝑡

0

∫

Z

𝑒
𝑠−𝑡
[ln (1 + 𝑐 (𝑥, 𝑧))

−𝑐 (𝑥, 𝑧) ] 𝜋 (d𝑧) d𝑠

+

𝑒
𝑘−𝑡

𝜀

∫

𝑡

0

∫

Z

[(1 + 𝑐 (𝑥, 𝑧))
𝜀𝑒
𝑠−𝑘

− 1

− 𝜀𝑒
𝑠−𝑘 ln (1 + 𝑐 (𝑥, 𝑧)) ] 𝜋 (d𝑧) d𝑠

≤ 𝑒
−𝑡 ln𝑥 + ∫

𝑡

0

𝑒
𝑠−𝑡
[ln𝑥 (𝑠) + 𝑎 (𝑠)

−𝑏 (𝑠) 𝑥 (𝑠)] d𝑠 + 2𝑒
𝑘−𝑡 ln 𝑘
𝜀

+

𝑒
𝑘−𝑡

𝜀

∫

𝑡

0

∫

Z

[(1 + 𝑐 (𝑥, 𝑧))
𝜀𝑒
𝑠−𝑘

− 1

− 𝜀𝑒
𝑠−𝑘 ln (1 + 𝑐 (𝑥, 𝑧)) ] 𝜋 (d𝑧) d𝑠

:= 𝑒
−𝑡 ln𝑥 + 𝐽

1
(𝑡) +

2𝑒
𝑘−𝑡 ln 𝑘
𝜀

+ 𝐽
2
(𝑡) ,

(39)
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where in the second step we use the fundamental inequality
ln𝑥 ≤ 𝑥 − 1, for 𝑥 > 0, and 𝜀𝑒𝑠−𝑘 − 1 ≤ 0. Making use of
Taylor’s series expansion, for 𝜀 ∈ (0, 1/2), 𝑥 ∈ R

+
, 𝑧 ∈ Z,

(1 + 𝑐 (𝑥, 𝑧))
𝜀𝑒
𝑠−𝑘

= 1 + 𝜀𝑒
𝑠−𝑘 ln (1 + 𝑐 (𝑥, 𝑧))

+

𝜀
2
𝑒
2(𝑠−𝑘)

2

(1 + 𝑐 (𝑥, 𝑧))
𝜉ln2 (1 + 𝑐 (𝑥, 𝑧)) ,

(40)

where 𝜉 ∈ (0, 𝜀). Thus

(41)

𝐽
2
(𝑡) = ∫

𝑡

0

∫

Z

𝜀𝑒
2𝑠−𝑘−𝑡

2

(1 + 𝑐 (𝑥, 𝑧))
𝜉ln2 (1 + 𝑐 (𝑥, 𝑧))

× 𝜋 (d𝑧) d𝑠.
(42)

For 𝑡 ≤ 𝑘 and 𝑘 ≥ 𝑘
0
, we have

𝐽
2
(𝑡) = ∫

𝑡

0

∫

−1<𝑐(𝑥,𝑧)<0

𝜀𝑒
2𝑠−𝑘−𝑡

2

(1 + 𝑐 (𝑥, 𝑧))
𝜉

× ln2 (1 + 𝑐 (𝑥, 𝑧)) 𝜋 (d𝑧) d𝑠

+ ∫

𝑡

0

∫

𝑐(𝑥,𝑧)≥0

𝜀𝑒
2𝑠−𝑘−𝑡

2

(1 + 𝑐 (𝑥, 𝑧))
𝜉

× ln2 (1 + 𝑐 (𝑥, 𝑧)) 𝜋 (d𝑧) d𝑠

:= 𝐽
21
(𝑡) + 𝐽

22
(𝑡) .

(43)

For−1 < 𝑐(𝑥, 𝑧) < 0 and 0 < 𝜉 < 𝜀 < 1/2, we have (1+𝑐)𝜉 < 1.
So

𝐽
21
(𝑡) < ∫

𝑡

0

∫

−1<𝑐(𝑥,𝑧)<0

𝜀𝑒
2𝑠−𝑘−𝑡

2

× ln2 (1 + 𝑐 (𝑥, 𝑧)) 𝜋 (d𝑧) d𝑠

≤ ∫

𝑡

0

∫

Z

𝜀𝑒
2𝑠−𝑘−𝑡

2

ln2 (1 + 𝑐 (𝑥, 𝑧)) 𝜋 (d𝑧) d𝑠.

(44)

By virtue of the fundamental inequality (ln𝑥 ≤ 𝑥 − 1, 𝑥 > 0)
1

4

ln𝑥 = ln𝑥1/4 ≤ 𝑥1/4 − 1 (45)

and noting that (1 + 𝑐)
𝜉
≤ (1 + 𝑐)

1/2 when 𝑐(𝑥, 𝑧) ≥ 0 and
0 ≤ 𝜉 < 𝜀 < 1/2, we see that

𝐽
22
(𝑡) ≤ 16∫

𝑡

0

∫

𝑐(𝑥,𝑧)≥0

𝜀𝑒
2𝑠−𝑘−𝑡

2

(1 + 𝑐 (𝑥, 𝑧)) 𝜋 (d𝑧) d𝑠

≤ 16∫

𝑡

0

∫

Z

𝜀𝑒
2𝑠−𝑘−𝑡

2

(1 + 𝑐 (𝑥, 𝑧)) 𝜋 (d𝑧) d𝑠.

(46)

Substituting (44) and (46) into (43), for 𝑡 ≤ 𝑘 and 𝑘 ≥ 𝑘
0
, we

find

𝐽
2
(𝑡) ≤

𝜀

2

∫

𝑡

0

∫

Z

𝑒
𝑠−𝑡
[ln2 (1 + 𝑐 (𝑥, 𝑧))

+16 (1 + 𝑐 (𝑥, 𝑧)) ] 𝜋 (d𝑧) d𝑠.
(47)

By condition (34), there exists a constant𝐾 > 0 such that

𝐽
1
(𝑡) + 𝐽

2
(𝑡) ≤ 𝐾 (1 − 𝑒

−𝑡
) . (48)

Substituting (48) into (39), for any 𝜔 ∈ Ω, 0 ≤ 𝑡 ≤ 𝑘, and
𝑘 ≥ 𝑘
0
, we arrive at

ln𝑥 (𝑡) ≤ 𝑒−𝑡 ln𝑥 + 2𝑒
𝑘−𝑡 ln 𝑘
𝜀

+ 𝐾. (49)

Therefore, for 𝑘 − 1 ≤ 𝑡 ≤ 𝑘, we have
ln𝑥 (𝑡)
ln 𝑡

≤

ln𝑥
𝑒
𝑡 ln 𝑡

+

𝐾

ln 𝑡
+

2𝑒 ln 𝑘
𝜀 ln (𝑘 − 1)

. (50)

Letting 𝑘 → ∞ (then 𝑡 → ∞), we follow that

lim sup
𝑡→+∞

ln𝑥 (𝑡)
ln 𝑡

≤

2𝑒

𝜀

. (51)

Letting 𝜀 ↑ 1/2, we can obtain our desired assertion. This
completes the proof.

Remark 9. The condition (34) can be fulfilled; Bao and Yuan
[24] give an example to show this.

Using the equality lim
𝑡→∞

(ln 𝑡)/𝑡 = 0 andTheorem 8, we
follow that the sample Lyapunov exponent of (3) is less than
or equal to zero, which is described by the following corollary.

Corollary 10. Under the conditions of Theorem 8, one has

lim sup
𝑡→+∞

ln𝑥 (𝑡)
𝑡

≤ 0 𝑎.𝑠. (52)

5. Conclusions

In this paper, we consider the stochastic logistic systemdriven
by martingales with jumps. The martingale and jumps make
our study more difficult. For the system, sufficient criteria
for the existence of a global positive solution are obtained;
then asymptotic boundedness, in 𝑝th moment, stochastically
ultimate boundedness and asymptotic pathwise behavior are
considered.The results strictly generalize the existing results,
so it is meaningful and important.
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