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This paper discusses a complex biological problem which is the fermentation of glycerol by Klebsiella pneumoniae in batch culture.
We set up an improved multistage model involving the concentration of intracellular substances. Furthermore, the existence,
uniqueness, and continuity of solutions with respect to the parameters are discussed. On the condition that glycerol and 1,3-
propanediol are assumed to pass the cellmembrane by passive diffusion coupledwith facilitated transport, we take the relative errors
between experimental data and computational values of the extracellular substances concentrations and the biological robustness
of the intracellular substances concentrations as the performance index. Then we establish a parameter identification model and
construct the particle swarm optimization algorithm to solve it. Finally, the numerical result shows that the improved model could
describe the glycerol fermentation in batch culture well.

1. Introduction

1,3-Propanediol (1,3-PD) is an important chemical raw mate-
rial with a wide range of applications, such as lubricants,
antifreeze agents, solvents, adhesives, and laminates. In par-
ticular, 1,3-PD is the main raw material of PTT which is a
new synthetic fibre with excellent performance. PTT can be
used to produce the carpet, engineering plastics, garment
material, and so forth. PTT was synthesized in 1941, but
until 1998 it was produced on a large-scale due to the low
production and high price of 1,3-PD in the past. The price of
PTT is controlled by the price of 1,3-PD, so it is necessary to
make the production of 1,3-PD higher and the price of 1,3-PD
lower. Now there are two methods that produce 1,3-PD: one
is chemical synthesis and the other is microbial fermentation.
The microbial fermentation which is the bioconversion of
glycerol to 1,3-PD has been paid much attention due to its
low cost, high production, no pollution, and so forth [1–3].
However, its production of 1,3-PD is lower compared with
the traditional chemical synthesis because of the immature
technology. Hence, many researchers have tried to investigate
the glycerol bioconversion to 1,3-PDbyKlebsiella pneumoniae
since 1980s [4].

In 1995, Zeng and Deckwer [5] proposed a five-dimen-
sional dynamical system of glycerol fermentation, in which
the concentrations of biomass, glycerol, and products (1,3-
PD, acetate, and ethanol) in reactor were considered. Xiu and
Zeng [6] and Gao et al. [7] did further research work for
the five-dimensional dynamical system, including parameter
identification, optimal control, and dynamic behaviour anal-
ysis. However, all of these researches did not consider the
changes of the intracellular substances concentration.

In 2008, Sun et al. [8] firstly proposed a nonlin-
ear dynamical system involving concentration changes of
three intracellular substances (glycerol, 1,3-PD, and 3-
hydroxypropionaldehyde (3-HPA)) and two key enzymes
(1,3-PD oxidoreductase (PDOR) and glycerol dehydratase
(GDHt)) in glycerol fermentation to 1,3-PD by Klebsiella
pneumoniae. In 2011, based on Sun’s model, Wang et al.
[9] inferred the possible ways across the cell membrane of
glycerol and 1,3-PD. The conclusion is used in this paper.

Comparedwith continuous and feed-batch cultures, glyc-
erol fermentation in batch culture can obtain the highest
production concentration. So nonlinear dynamical system
for this culture has been extensively considered in the paper
of Gao et al. [10]. The typical cell growth in batch culture
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includes several growth phases, which are defined as the
lag, exponential growth, decreased growth, and death phases.
In 2009, Wang et al. [11] provided an improved model of
glycerol fermentation in batch culture in order to describe the
multistage features without considering the concentrations of
the intracellular substances.

In this paper, we study the fermentation of glycerol
covering both extracellular and intracellular environments.
Furthermore, we apply the specific rate of cell growth
mentioned in the paper of Song et al. [12] to the eight-
dimensional dynamical system which is nonautonomous,
multistage, and nonlinear. In this way, we obtain a novel
mathematical model concerning the glycerol fermentation
in batch culture. Simultaneously, the Lipschitz and linear
growth conditions are proved; furthermore, we discuss the
existence and uniqueness of solutions to the system. Sub-
sequently, due to the lack of experimental data about the
concentrations of intracellular substances, we introduce the
description of biological robustness which was described in
words in the literature [13–15]. In this paper, we present
the quantitative description of biological robustness in an
unsteady process which is different from the one which is
defined in a steady state in [16, 17]. Taking the robustness
of intracellular substance concentrations as the performance
index in addition to the relative errors between experimental
data and computational values of the extracellular concen-
trations, we establish a nonlinear dynamical model with
27 parameters to be identified and prove the identifiability
of the model. At last, we construct a numerical algorithm
based on the particle swarm optimization [18] and solve the
identification model.

The paper is organized as follows. In Section 2, an eight-
dimensional nonlinear dynamical system of batch culture is
presented. The existence, uniqueness, and the continuity of
solutions are proved in Section 3. In Section 4, a quantitative
description of the substances about the system robustness and
the identification model is presented. A feasible algorithm is
constructed and the optimumparameters are identified at the
end of the paper.

2. Nonlinear Dynamical System

In order to describe the metabolic process in detail, Figure 1
gives the metabolic pathway of glycerol conversion into 1,3-
PD by Klebsiella pneumoniae.

During glycerol metabolism by Klebsiella pneumoniae
under anaerobic conditions at 37∘C and pH = 7.0, glycerol
is first transported across the cell membrane from the
extracellular environment to the intracellular environment,
and then it is further catabolized, reactions catalyzed by
enzymes, to generate intermediates and final products, for
example, 3-hydroxypropionaldehyde (3-HPA), 1,3-PD, acetic
acid, ethanol, and so forth. Finally, the products are trans-
ported across the cell membrane from the intracellular
environment to the extracellular environment. As shown in
Figure 1, the transport mechanisms of glycerol and 1,3-PD
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Figure 1: The metabolic pathway of glycerol converts into
1,3-PD by Klebsiella pneumoniae. Abbreviations: GDHt, glyc-
erol dehydratase; 3-HPA, 3-hydroxypropionaldehyde; 1,3-PD, 1,3-
propanediol; PDOR, 1,3-PD oxidoreductase; GDH, glycerol dehy-
drogenase; DHA, dihydroxyacetone; DHAK, dihydroxyacetone
kinase;DHAP, dihydroxyacetonephosphate;HAc, acetic acid; EtOH,
ethanol; TCA, TCA cycle.

across the membrane have not been observed in experiments
yet. Glycerol and 1,3-PD may pass the membrane by both
passive diffusion and active transport or by passive diffusion
only. In this paper, we use the conclusion which has been
inferred in [9].

According to the work [9], on the assumption that
both glycerol and 1,3-PD pass the cell membrane by active
transport coupling with passive diffusion under substrate-
sufficient conditions, the nonlinear dynamical system of
glycerol batch culture fermentation can be described by
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where
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(9)
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𝑇, respectively, denotes the con-
centrations of biomass, extracellular glycerol, extracellular
1,3-PD, acetic acid, ethanol, intracellular glycerol, 3-HPA,
and intracellular 1,3-PD at time 𝑡 in reactor and the unit
is mmolL−1. Besides, 𝐾𝐺
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On the basis of [9], the specific cell growth rate of biomass

(i.e., 𝜇) is expressed by the following equation:
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In the above equation, 𝜇
𝑚

is the maximum spe-
cific growth rate and the value is 0.67 h−1 and 𝐾

𝑠
=

0.28mmolL−1 is Monod saturation constant for substrate.
𝑥

∗

2

= 2039mmolL−1 denotes themaximum residual substrate
concentration and 𝑥∗

𝑖

(𝑖 = 3, 4, 5) denotes the maximum
product concentration whose values are 939.5mmolL−1,
1026mmolL−1, and 360.9mmolL−1, respectively.

However, the typical cell growth in batch culture includes
several growth phases, which are defined as the lag, expo-
nential growth, stationary growth, and death phases. We can
easily find that the value of 𝑥

2
will decrease below zero using

(2). Therefore, it cannot predict the stationary growth and
death phase. Based on the above analysis, we will modify (10)
by the form given in the literature [12] as follows:
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where 𝑡
𝑙
is the starting moment of lag growth phase and 𝑡

𝑚

is the time when 𝜇 reaches the maximum. Let 𝐼 := [0, 𝑡
𝑓
]

denote the total fermentation time. According to the actual
experiments, it is easy to know 0 ≤ 𝑡

𝑙
≤ 𝑡
𝑚
≤ 𝑡
𝑓
.

Considering the intracellular environment as a black box
model, the specific consumption rate 𝑞
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According to the literature [9], extracellular glycerol and
1,3-propanediol are assumed to pass the cell membrane by
passive diffusion coupled with facilitated transport, so the
specific consumption rate of substrate can be expressed by
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The specific formation rate of extracellular 1,3-PD is
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The specific formation rates of acetate and ethanol can be
expressed by (refer to [10])
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Therefore, the nonlinear dynamical system of glycerol

fermentation in batch culture can be described as follows:

�̇� (𝑡) = 𝑓 (𝑡, 𝑥, 𝑢) ,

𝑥 (0) = 𝑥
0
,

(16)

where 𝑥
0
denotes the initial state. Consider

𝑓 (𝑡, 𝑥, 𝑢) := (𝑓
1
(𝑡, 𝑥, 𝑢) , . . . , 𝑓

8
(𝑡, 𝑥, 𝑢))

𝑇

. (17)

𝑓
𝑖
(𝑡, 𝑥, 𝑢), 𝑖 ∈ 𝐼

8
, denote the right-hand side of the 𝑖th

equation of (1)–(8).
Since the concentrations of extracellular and intracellular

material are restricted in a certain range according to the
practical production, denote the admissible set of 𝑥 by𝑊ad :=

∏

8

𝑖=1

[𝑥
𝑖∗
, 𝑥

∗

𝑖

], where 𝑥
𝑖∗

and 𝑥∗
𝑖

indicate allowable lower
and upper bounds of state variable 𝑥(𝑡), respectively. The
admissible set of 𝑢 is denoted by 𝑈 = ∏

27

𝑖=1

[𝑢
𝑖∗
, 𝑢

∗

𝑖

], where
𝑢 = (𝑘

1

, . . . , 𝑘

17

, 𝑚
2
, 𝑚
4
, 𝑚
5
, 𝑌
2
, 𝑌
4
, 𝑌
5
, △𝑞
2
, 𝐾

∗

2

, 𝑡
𝑙
, 𝑡
𝑚
)

𝑇

∈

𝑅

27 represent the kinetic parameters. According to [9], the
boundary of 𝑢 is listed as shown in Table 1.

3. The Properties of the Nonlinear
Dynamical System

In this section, we study the questions of existence, unique-
ness, and continuity of solutions with respect to the parame-
ters.

According to the factual experiments, we make the
assumptions as shown in Table 2.
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Table 1: The boundary of 𝑢
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(H1) The concentration of reactants are uniform in reactor;
while time delay and non-uniform space distribution
are ignored.

(H2) No medium is pumped inside and outside the biore-
actor in the process of batch fermentation.

To begin with, we discuss some properties of the function
𝑓(𝑡, 𝑥, 𝑢).

Property 1. For fixed 𝑢 ∈ 𝑈, the function 𝑓(𝑡, 𝑥, 𝑢) defined by
(17) satisfied that

(i) 𝑓 is locally 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 continuous in 𝑥 on𝑊ad ⊆ 𝑅
8;

(ii) 𝑓 satisfies linear growth condition in 𝑥; that is, there
exists a constant 0 < 𝑘 < ∞, such that, for all 𝑥 ∈ 𝑊ad,

𝑓 (𝑡, 𝑥, 𝑢) ≤ 𝑘 (‖𝑥‖ + 1) , (18)

where ‖ ⋅ ‖ is Euclidean norm.
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That is, the function ℎ(𝑥) is Lipschitz on the set 𝑥 ∈ 𝑊ad.
It can be proved in a similar way that 𝑙(𝑥) in 𝑥 ∈ 𝑊ad is

locally 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 continuous. Hence, in view of the definition
of 𝑓(𝑡, 𝑥, 𝑢), 𝑓(𝑡, 𝑥, 𝑢) is Lipschitz continuous in 𝑥 ∈ 𝑊ad.

(ii) Because of the actual glycerol metabolism by Kleb-
siella pneumoniae, all the substances’ concentrations are in
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≤ 𝑆
𝑖
, 𝑖 = 2, 3, 4, 5. (26)

Let 𝐿
1
:= 𝜇
𝑚
and 𝐿

𝑖
:= 𝑆
𝑖
, 𝑖 = 2, 3, 4, 5; then






𝑓
1






=






𝜇











𝑥
1






≤ 𝜇
𝑚






𝑥
1






≤ 𝐿
1
(‖𝑥‖ + 1) ,






𝑓
2






=






𝑞
2











𝑥
1






≤ 𝑆
2






𝑥
1






≤ 𝐿
2
(‖𝑥‖ + 1) ,






𝑓
𝑖






=






𝑞
𝑖











𝑥
1






≤ 𝑆
𝑖






𝑥
1






≤ 𝐿
𝑖
(‖𝑥‖ + 1) , 𝑖 = 3, 4, 5.

(27)

Let 𝑆
6
:= (|𝑘

8
| + |𝑘
10
|𝑀
1
+ 𝑆
2
)/|𝑘
7
| and 𝐿

6
:= max{𝐶

6
, 𝜇
𝑚
},

and then






𝑓
6






≤

1






𝑘
7






(






𝑘
8






+






𝑘
10











𝑥
2
− 𝑥
6






+






𝑞
20






) +






𝜇











𝑥
6






≤ 𝑆
6
+ 𝜇
𝑚
‖𝑥‖ ≤ 𝐿

6
(‖𝑥‖ + 1) .

(28)

Let 𝑆
7
:= |𝑘
11
| + |𝑘
13
| and 𝐿

7
:= max{𝑆

7
, 𝜇
𝑚
}, and then






𝑓
7






≤ 𝑆
7
+






𝜇











𝑥
7






≤ 𝑆
7
+






𝜇
𝑚






‖𝑥‖ ≤ 𝐿
7
(‖𝑥‖ + 1) .

(29)

Let 𝑆
8
:= |𝑘
13
| + |𝑙
1
𝑘
15
| + |𝑙
2
𝑘
17
|𝑀
2
, 𝐿
8
:= max{𝑆

8
, 𝜇
𝑚
}, and






𝑓
8






≤






𝑘
13






+






𝑙
1
𝑘
15






+






𝑙
2
𝑘
17











𝑥
8
− 𝑥
3






+






𝜇











𝑥
8






≤ 𝑆
8
+ 𝜇
𝑚
‖𝑥‖ ≤ 𝐿

8
(‖𝑥‖ + 1) .

(30)

Denote 𝐿 = max{𝐿
𝑖
, 𝑖 ∈ 𝐼
8
} and 𝑘 = 2√2𝐿; then we have

‖𝑓(𝑡, 𝑥, 𝑢)‖ ≤ 𝑘(‖𝑥‖ + 1).

Definition 1. Suppose that 𝑥
0
∈ 𝑊ad and 𝑢 ∈ 𝑈, the set

of admissible initial-state-control pairs (𝑥
0
, 𝑢) is denoted by

𝐻 := 𝑊ad ×𝑈, and 𝑥(⋅; 𝑥0, 𝑢) is said to be a solution of (16), if
it satisfies the following integral equation:

𝑥 (𝑡; 𝑥
0
, 𝑢) = 𝑥

0
+ ∫

𝑡

0

𝑓 (𝑠, 𝑥, 𝑢) 𝑑𝑠, 𝑡 ∈ 𝐼. (31)

Property 2. For any (𝑥
0
, 𝑢) ∈ 𝐻, the system (16) has a unique

solution 𝑥(⋅; 𝑥
0
, 𝑢) ∈ 𝐶

𝑏
(𝐼, 𝑅

8

) and 𝑥(⋅; 𝑥
0
, 𝑢) is continuous in

𝑢 on 𝑈.

Proof. Firstly, it is easy to prove the existence of the solution.
Then we will prove that the system (16) has a unique solution.

Suppose that 𝑥
1
(⋅; 𝑥
0
, 𝑢) and 𝑥

2
(⋅; 𝑥
0
, 𝑢) are two solutions of

system (16); it follows from formula (31) and the fact that 𝑓 is
Lipschitz continuous in 𝑥 that





𝑥
1
(𝑡; 𝑥
0
, 𝑢) − 𝑥

2
(𝑡; 𝑥
0
, 𝑢)






≤ ∫

𝑡

0






𝑓 (𝑠, 𝑥
1
, 𝑢) − 𝑓 (𝑠, 𝑥

2
, 𝑢)






𝑑𝑠

≤ 𝐿∫

𝑡

0






𝑥
1
(𝑠; 𝑥
0
, 𝑢) − 𝑥

2
(𝑠; 𝑥
0
, 𝑢)






𝑑𝑠, ∀𝑡 ∈ 𝐼.

(32)

By Bellman Gronwall inequality, it is proved that
‖𝑥
1
(⋅; 𝑥
0
, 𝑢) − 𝑥

2
(⋅; 𝑥
0
, 𝑢)‖
𝑐

= 0; that is, system (16) has
a unique solution.

By Definition 1, it is easy to know that the solution
𝑥(⋅; 𝑥
0
, 𝑢) is continuous. At last, applying the classical theory

of differential equation, we can easily obtain the continuity
dependence of the solution on the parameter vector 𝑢.

4. Biological Robustness Analysis
and Identification Model

In order to evaluate the reliability of system (16), we should
give an evaluation criterion.The real data of extracellular sub-
stances has beenmeasured by some experiments. In a general
way, the computational results should be in accordance with
experimental data. So we construct an identification model
in which 𝑢 ∈ 𝑈 are the parameters to be identified.

To identify the optimal parameters, we give two perfor-
mance indexes. One is the relative errors between experi-
mental data and computational values of the extracellular
concentration and the other is the biological robustness.
Robustness is one of the fundamental properties of biological
system. Then we will present two definitions: one is the
relative error of extracellular substances and the other is the
relative deviationwith respect to parameters perturbation. To
beginwith, on the basis of the actual experiment, wemake the
following assumptions:

(H3) given 𝑥
0
∈ 𝑊ad, system (16) is controllable and

observable;
(H4) the set 𝑈 is nonempty in 𝑅27.

Definition 2. Let 𝑦
𝑖
(𝑡
𝑗
) and 𝑥

𝑖
(𝑡
𝑗
, 𝑢), 𝑖 ∈ 𝐼

3
, be the 𝑖th

experimental extracellular concentration and the computa-
tional value at the 𝑡

𝑗
, 𝑗 ∈ 𝐼

7
moment. Then, the relative

error of extracellular substances’ concentration (i.e., biomass,
glycerol, and 1,3-PD) is defined as

SSD (𝑢) := 1
3

3

∑

𝑖=1

7

∑

𝑗=1

(𝑥
𝑖
(𝑡
𝑗
, 𝑢) − 𝑦

𝑖
(𝑡
𝑗
))

2

7(𝑦
𝑖
(𝑡
𝑗
))

2

. (33)

In the above equation, 3 denotes three extracellular sub-
stances (i.e., biomass, glycerol, and 1,3-PD). Since the feeding
of alkali into the reactor during the fermentation process,
whose purpose is tomaintain the pH value at 7.0 or so, it leads
to the inaccuracy of the extracellular concentrations of acetic
acid and ethanol. This paper is concerned with the relative
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error between experimental data and computational values of
the first three substances. 𝑡

1
= 1, 𝑡
2
= 2, 𝑡
3
= 3, 𝑡
4
= 4, 𝑡
5
= 5,

𝑡
6
= 6, and 𝑡

7
= 6.92 are the measurement time points of the

extracellular concentration in the experimental process.
Because of the current experiment conditions, the intra-

cellular material concentrations are commonly difficult to
measure accurately. On the other hand, the main purpose of
the model concerned with the intracellular concentration is
for the explanation of biological mechanisms to understand
the metabolic processes. Therefore, the intracellular model
should consider some basic characteristics of the biological
system.

The quantified biological robustness is a feasible method
to evaluate the validity of the computational concentrations
of intracellular substances. Robustness is one of the fun-
damental characteristics of biological systems and it is a
property that allows a system tomaintain its functions against
internal and external perturbations [19]. Perc and Marhl
defined biological robustness, which is usually evaluated by
the sensitivity analysis [20] and frequency [21], via a given
parameter and a dependant variable.With increasing interest
in system biology, robustness has attracted serious scientific
research [22–24]. However, the quantitative descriptions of
the biological system’s robustness and the corresponding
mathematical models concerning concentration changes of
intracellular substances are seldom found. The definition
of biological robustness for batch culture should meet the
case: for the overall process of batch culture, the changes
of state variables provoked by parameters distribution are
smaller and the system’s performance is more robust [22].
Consequently, owing to that the state variables of the system
are the important factors to determine the system’s main
function, we define the distribution level as the robustness of
the system after the disturbance of 𝑢 ∈ 𝑈. The robustness of
the system (16) is as follows.

Definition 3. For any 𝑢 ∈ 𝑈, suppose that 𝐵(𝑢, 𝛿) := {V |
‖V − 𝑢‖ ≤ 𝛿} is the disturbance neighborhood of 𝑢 (𝛿 > 0);
then for any V ∈ 𝐵(𝑢, 𝛿), the relative deviation with respect to
parameter 𝑢 is defined as

MSD (𝑢, V) :=
8

∑

𝑖=6

∫

𝑡𝑓

0






𝑥
𝑖
(𝑡, 𝑢) − 𝑥

𝑖
(𝑡, V)








𝑥
𝑖
(𝑡, 𝑢)






𝑑𝑡. (34)

Definition 4. For any 𝑢 ∈ 𝑈, suppose that 𝐵(𝑢, 𝛿) := {V |
‖V−𝑢‖ ≤ 𝛿} is the disturbance neighborhood of 𝑢 (𝛿 > 0); we
extract randomly 𝑛

𝑝
sampling points following the uniform

distribution.The distribution set is {V
𝑗
| V
𝑗
∈ 𝐵(𝑢, 𝛿), 𝑗 ∈ 𝐼

𝑛𝑝
}.

Then the average relative deviationwith respect to parameters
𝑢 is defined as

MSDav (𝑢) :=
1

𝑛
𝑝

𝑛𝑝

∑

𝑗=1

8

∑

𝑖=6

∫

𝑡𝑓

0







𝑥
𝑖
(𝑡, 𝑢) − 𝑥

𝑖
(𝑡, V
𝑗
)












𝑥
𝑖
(𝑡, 𝑢)






𝑑𝑡. (35)

Based on the previous study the parameter identification
model can be formulated as follows:

IP:

min 𝐽 (𝑢) := SSD (𝑢) +MSDav (𝑢)

s.t 𝑢 ∈ 𝑈, �̇� = 𝑓 (𝑡, 𝑥, 𝑢) , 𝑥 ∈ 𝑊ad, 𝑡 ∈ [0, 𝑡𝑓] .

(36)

Now, we define the set 𝑆 in order to discuss the following
problem easily, given that 𝑥

0
∈ 𝑊ad, 𝑆 := {𝑥(⋅; 𝑥

0
, 𝑢) |

𝑥(⋅; 𝑥
0
, 𝑢) is the solution of the system (16), and 𝑥(⋅; 𝑥

0
, 𝑢) ∈

𝑊ad, 𝑢 ∈ 𝑈}.

Lemma 5. Given 𝑥
0
∈ 𝑊
𝑎𝑑
, the set 𝑆 defined above is compact

on 𝐶(𝐼, 𝑅8).

Theorem 6. There exists an optimal solution of IP; that is,
there exists an 𝑢∗ ∈ 𝑈 such that

𝐽 (𝑢

∗

) ≤ 𝐽 (𝑢) , ∀𝑢 ∈ 𝑈. (37)

Proof. It follows from Property 2 that the mapping from
𝑢 ∈ 𝑈 to 𝑥(⋅; 𝑥

0
, 𝑢) ∈ 𝑆 is continuous. Therefore, 𝐽(𝑢) is

continuous in 𝑢. By the compactness of 𝑆, we can conclude
that (IP) has an optimal solution, denoted by 𝑢∗ such that

𝐽 (𝑢

∗

) ≤ 𝐽 (𝑢) , ∀𝑢 ∈ 𝑈. (38)

5. Particle Swarm Optimization Algorithm and
Numerical Results

Since IP would be hard to solve directly and it contains a huge
number of numerical computations of differential equations
and judgments of the approximately stable solutions, solving
the whole IP is intolerable for a personal computer. In other
words, it is impossible to work out within an acceptable
time. Therefore, we construct the improved particle swarm
optimization algorithm.

Remark 7. In order to achieve the following algorithm, we
calculate the formula (34) as follows approximatively:

MSD (𝑢, V) ≈
8

∑

𝑖=6

𝑚

∑

𝑗=1






𝑥
𝑖
(ℎℎ ∗ 𝑗, 𝑢) − 𝑥

𝑖
(ℎℎ ∗ 𝑗, V)








𝑥
𝑖
(𝑡, 𝑢)






∗ ℎℎ.

(39)

Here, we use the thought of definite integral and segment
the interval [0, 𝑡

𝑓
] into 𝑚 = 𝑡

𝑓
/ℎℎ parts, where ℎℎ is the

step size. Furthermore, we take the right endpoint as the
approximate value and hence we get the above equation.

Algorithm 1. Particle swarm optimization algorithm.

Step 1 (initialization). The number of particles is denoted by
num, learning factors are 𝑐1, 𝑐2, themaximum andminimum
inertia weights are 𝑤𝑠, 𝑤𝑒, the maximum iteration is 𝑇max,



Journal of Applied Mathematics 7

and the iterations are𝑚. Let𝑚 = 1; the control factors are 𝑑1,
𝑑2, the inertia weight is 𝑤, the search scope of the particle is
𝑈 ∈ 𝑅

27, the individual optimal value of the particle is 𝑝best,
the optimization position of the particle is 𝑝best

𝑢
, the group

optimal value is 𝑔best, and the group optimal position of the
particle is 𝑔best

𝑢
; then go to Step 2.

Step 2. Define the maximum speed particle 𝑉max and the
minimum speed 𝑉min in 𝑈 ∈ 𝑅

27; let 𝑉max = (𝑢max − 𝑢min)/5
and the minimum speed 𝑉min = −𝑉max; then go to Step 3.

Step 3. Generate numparticles randomly in𝑈 ∈ 𝑅27 between
𝑉min and 𝑉max; denote the speed and the position of the 𝑖th
particle by V𝑖 = (V𝑖

1

, V𝑖
2

, . . . , V𝑖
27

) and 𝑢𝑖 = (𝑢

𝑖

1

, 𝑢

𝑖

2

, . . . , 𝑢

𝑖

27

);
then go to Step 4.

Step 4. Compute 𝐽(𝑢𝑖) of the IP for 𝑖 = 1, 2, . . . , num. If
𝐽(𝑢

𝑖

) ≤ 𝑝best, then 𝑝best = 𝐽(𝑢

𝑖

). If 𝑝best ≤ 𝑔best, then
𝑔best = 𝑝best; then go to Step 5.

Step 5. Let 𝑚 = 𝑚 + 1; if 𝑚 > 𝑇max, then terminate the
algorithm; otherwise, update the speed and the position of
the particle according to the following formula:

V𝑖
𝑗

(𝑚 + 1) = 𝑤 (𝑚) V𝑖
𝑗

(𝑚) + 𝑐
1
𝑟
1𝑗
(𝑝best𝑖

𝑢𝑗

(𝑚) − 𝑢

𝑖

𝑗

(𝑚))

+ 𝑐
2
𝑟
2𝑗
(𝑔best

𝑢𝑗
(𝑚) − 𝑢

𝑖

𝑗

(𝑚)) ,

𝑢

𝑖

𝑗

(𝑚 + 1) = 𝑢

𝑖

𝑗

(𝑚) + V𝑖
𝑗

(𝑚 + 1) .

(40)

In the above equation, 𝑖 = 1, 2, . . . , num, 𝑗 =

1, 2, . . . , 27, V𝑖
𝑗

(𝑚), 𝑢𝑖
𝑗

(𝑚) denote the speed and the position
of the 𝑖th particle in the𝑚th iteration, and 𝑟

1𝑗
and 𝑟
2𝑗
denote

the random number in the interval (0, 1). Meanwhile, the
expression of 𝑤 is

𝑤 = (𝑤𝑠 − 𝑤𝑒 − 𝑑1) ∗ exp( 1

1 + 𝑑2 ∗ (𝑚 − 1) /𝑇max
) . (41)

Then go to Step 4.

Algorithm 2. Compute 𝐽(𝑢) using the following algorithm.

Step 1 (initialization). The step size is ℎ, ℎℎ and the initial time
is 𝑡; go to Step 2.

Step 2. For 𝑢𝑖
1

, 𝑢

𝑖

2

, . . . , 𝑢

𝑖

27

, solve the equations according
to the trapezoidal method; if 𝑥

𝑖
is in the allowable range,

compute SSD; otherwise, return SSD = 10000; then go to
Step 3.

Step 3. Let 𝑛
𝑝
= 0 and flag = 0; then go to Step 4.

Step 4. Disturb 𝑢
𝑖
(𝑖 ∈ 𝐼

27
). Let disturbed value ΔV𝑖 = 𝑢𝑖 +

rand(0.8 ∗ 𝑢𝑖, 1.2 ∗ 𝑢𝑖).

Step 5. Solve the equations according to the trapezoidal
method for the parameters 𝑢𝑖 and V𝑖, respectively. Denote the
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0
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0
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Figure 2: Comparison of extracellular concentration between
computational results and the experimental data.

calculated value by 𝑥
𝑘
and 𝑥

𝑘1
. For 𝑘 = 1, . . . , 8, if 𝑥

𝑘
∈

[𝑥
𝑘∗
, 𝑥

∗

𝑘

], 𝑥
𝑘1
∈ [𝑥
𝑘∗
, 𝑥

∗

𝑘

], let flag = flag + 1 and compute
MSD; otherwise, return MSD = 10000.

Step 6. Let 𝑛
𝑝
= 𝑛
𝑝
+ 1. If 𝑛

𝑝
≤ 3000, then go to Step 4;

otherwise, go to Step 7.

Step 7. Compute MSDav = MSD/flag and then stop.

According to the above algorithm, the parameters chosen
in the above method are as follows: num = 50, 𝑐1 = 2.0,
𝑐2 = 2.0, 𝑤𝑠 = 0.9, 𝑤𝑒 = 0.4, 𝑇max = 1000, 𝑑1 = 0.2, 𝑑2 = 0.7,
ℎ = 1/3600, the initial time 𝑡 = 0.0, and𝑊ad = [0.01, 15] ∗
[15, 2039] ∗ [0, 1036] ∗ [0, 1026] ∗ [0, 360.9] ∗ [0, 2000] ∗

[0, 80] ∗ [0, 1000]. The identification model IP includes 27
variables.

Using the above algorithm, we obtain that the optimal
parameters are listed as shown in Table 3.

Figure 2 denotes the comparisons about the experimental
value and the computational value of biomass, glycerol, and
1,3-PD, respectively, where the real lines denote computa-
tional curves and the scatter grams denote experimental
results. The minimum value of IP is 0.837383

6. Conclusion

The current work deals with the problem of modelling and
system identification of the dynamical system in batch culture
but there are many deficiencies in our work. In a future
work, on the one hand, we will consider sensitivity analysis of
kinetic parameters in our model, so as to reduce the number
of thesemodel parameters to be identified and concentrate on
identifying these relatively sensitive parameters; on the other
hand, we will consider three transmembrane ways to confirm
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Table 3: Optimal dynamical parameter vector.

𝑢

∗∗

1

𝑢

∗∗

2

𝑢

∗∗

3

𝑢

∗∗

4

𝑢

∗∗

5

𝑢

∗∗

6

𝑢

∗∗

7

60 4.0012 300 100 2.20094 62.971 7.5
𝑢

∗∗

8

𝑢

∗∗

9

𝑢

∗∗

10

𝑢

∗∗

11

𝑢

∗∗

12

𝑢

∗∗

13

𝑢

∗∗

14

50 1.29593 2000 18.0101 253.832 32.0629 0.768834
𝑢

∗∗

15

𝑢

∗∗

16

𝑢

∗∗

17

𝑢

∗∗

18

𝑢

∗∗

19

𝑢

∗∗

20

𝑢

∗∗

21

13.4747 28.6098 88.9932 2.53822 −0.780765 4.5 0.009
𝑢

∗∗

22

𝑢

∗∗

23

𝑢

∗∗

24

𝑢

∗∗

25

𝑢

∗∗

26

𝑢

∗∗

27

29.4872 11.9978 40.6361 9.02496 1.95709 3.01177

which one is the most appropriate one in this improved
model.
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