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We propose a bio-inspired model for making handover decision in heterogeneous wireless networks. It is based on an extended
attractor selection model, which is biologically inspired by the self-adaptability and robustness of cellular response to the changes
in dynamic environments. The goal of the proposed model is to guarantee multiple terminals’ satisfaction by meeting the QoS
requirements of those terminals’ applications, and this model also attempts to ensure the fairness of network resources allocation,
in the meanwhile, to enable the QoS-oriented handover decision adaptive to dynamic wireless environments. Some numerical
simulations are preformed to validate our proposed bio-inspired model in terms of adaptive attractor selection in different
noisy environments. And the results of some other simulations prove that the proposed handover scheme can adapt terminals’
network selection to the varying wireless environment and benefits the QoS of multiple terminal applications simultaneously and
automatically. Furthermore, the comparative analysis also shows that the bio-inspiredmodel outperforms the utility function based
handover decision scheme in terms of ensuring a better QoS satisfaction and a better fairness of network resources allocation in
dynamic heterogeneous wireless networks.

1. Introduction

Recently, with the highly developed wireless communica-
tion technologies such as the wireless LANs (WLAN IEEE
802.11a/b/g/n/p standards), WiMAX (IEEE 802.16a/e stan-
dards), the third and fourth generation cellular wireless (3G
or 4G), and satellite communications, substantial significant
infrastructure of these wireless networks has been deployed
to support the dramatically increasing demand for mobile
terminals’ access to network services anywhere and any-
time. However, no single wireless access technology can be
efficient to guarantee various users’ demands for reliable
connection and quality of service (QoS) over all situations.
Consequently, the next generation wireless communication
system is evolving, which depends on those heterogeneous
wireless networks. In the nowadays heterogeneous wireless

networks, multiple wireless access technologies as well as
multiple radios have to interwork and to be used in a
cooperative manner to realize the “always best connected”
(ABC) concept in terms of high level of QoS satisfaction and
fairness resources allocation [1].

Handover decision is one of the most important issues
(including handover management, resource allocation, and
mobility support) related to the heterogeneous wireless net-
works and should be efficiently addressed for the realization
of the envisioned next generation communication system [2].
However, there exist some significant challenges in devel-
oping the essential functional components and in designing
the corresponding algorithms for handover decision such
as impracticality of centralized control, dynamic nature,
resources constraint, and heterogeneity in the heterogeneous
wireless environment [3].
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On the other hand, the bio-inspired paradigm provides
a novel approach to design a new powerful solution for
many engineering problems [4, 5]. Similar challenges met
by the heterogeneous wireless communication system arising
from dynamic nature, system complexity, heterogeneous
architectures, and absence of centralized control have been
well addressed by the biological system [6]. Many biolog-
ical mechanisms such as the adaptability to environmental
changes, inherent robustness to external perturbation, and
self-optimization are appealing to be introduced in the han-
dover decision solution to deal with those aforementioned
significant challenges. As some interdisciplinary studies have
argued, many biological mechanisms resulting from the
evolution of nature over millions of years always go far
away beyond the traditional technologies so that they are
promising to be used to settle some complex engineering
problems [7–9].

The attractor selection is one type of bio-inspired mech-
anism that induces cellular gene expression to adaptively
respond to the dynamically changing environment. Its related
model, that is, attractor selection model [10], has attracted
much attention and has been extended to be implemented
in many engineering domains consequently. For example, it
has been applied in the robust robot control [11], the error-
tolerant wireless sensor networks control [12], the adaptive
virtual network topology control [13], the adaptive routing
protocol in mobile ad hoc networks or overlay networks [14],
and the resources allocation among multiple users and mul-
tiple applications in the heterogeneous wireless environment
[15].

Motivated by the attractor selection of cellular gene
network, we adopt this bio-inspiredmechanism formodeling
the vertical handover decision in heterogeneous wireless net-
works.The goal of the paper is to deal with the varying hetero-
geneous wireless environmental conditions, at the same time,
to guarantee users’ satisfaction level, and to ensure the fair-
ness of network resources allocation among multiple mobile
terminals. We extend the basic attractor selection model
which has been proposed in [10] to a novel one with a higher
dimension formultiple attributes decisionmaking.Theupper
and lower bounds of QoS requirements of multiple applica-
tions are combined with the dynamic wireless network con-
ditions including bandwidth, end-to-end delay, and packet
loss ratio to formulate a function for evaluating the terminal’s
QoS satisfaction.This utility function is used to assist the bio-
inspired model in performing the attractor selection mech-
anism. And the handover decision induced by the attractor
selectionmechanism allows us to capture the dynamic nature
of the heterogeneous wireless environment and to evaluate
the goodness of accessing wireless networks, so as to enable
the handover decision adaptive to the wireless environmental
changes.

The remainder of this paper is organized as follows.
Section 2 formulates the handover decision problem to be
solved and introduces the basic attractor selection model
so as to extend it for making handover decision. The QoS-
oriented handover decision framework and the detailed
scheme based on the proposed bio-inspired handover model
are described in Section 3. Section 4 demonstrates some

comparative simulation results and gives the analysis of our
handover decision scheme. Finally, Section 5 concludes this
work.

2. System Model

In this section, the core problem to be solved in the handover
decision is described firstly, and then the basic attractor selec-
tion model as well as its corresponding biomechanism is pre-
sented. Following the mathematical form of the basic attrac-
tor selection model, we extend it to a novel form and apply
this extended model for multiple attributes decision making.

2.1. Problem Formulation. We assume that each mobile ter-
minalmoving in a given heterogeneous wireless environment
is equipped with a multimode communication device. These
terminals with multiple wireless interfaces are able to access
different wireless networks simultaneously. Namely, in this
assumption, a mobile user is allowed to assign different
wireless links to its different applications that are running
in the terminal device. We consider a heterogeneous wire-
less environment composed of a network set of multiple
heterogeneous wireless networks. We denote this network
set as NetSet = {net

1
, net
2
, . . . , net

𝑀
}. The parameter 𝑀,

here, denotes the total number of those considered wireless
networks. And then we consider that there are totally 𝑄

vehicular terminals moving in this given heterogeneous
wireless environment. All of these mobile terminals compose
a set that is denoted by User = {𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑄
}, and each one

𝑢
𝑘
∈ User has a certain number of applications running in its

terminal device. For instance, we denote those applications
simultaneously running in 𝑢

𝑘
as a set 𝑆

𝑢𝑘
= {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑁
}.

Thus, each 𝑢
𝑘
is required to make a decision to select the

most suitable wireless network for each of its applications.
Each application 𝑠

𝑖
∈ 𝑆
𝑢𝑘

may connect to the same network
or may use different wireless links. Each 𝑢

𝑘
performs the

handover decision process during every discrete period Δ𝑡.
When the network selection is done, the wireless interface of
each application in 𝑢

𝑘
is switched from the previous one to

the new determined network.

2.2. Basic Attractor Selection Model. The basic attractor
selection model is inspired from cell biology. It is used to
describe the adaptive response of the gene expression in an
Escherichia coli (E. coli) cell to the changes in its available
nutrients, especially when there is no enough molecular
machinery for signal transduction from the environment to
the DNA expression [10]. The basic mathematical model of
the attractor selection can be expressed by two nonlinear
differential equations with stochastic noise as follows:

𝑑𝑚
1

𝑑𝑡

=

𝑆 (𝐴)

1 + (𝑚
2
)

2
− 𝐷 (𝐴) × 𝑚

1
+ 𝜂
1
,

𝑑𝑚
2

𝑑𝑡

=

𝑆 (𝐴)

1 + (𝑚
1
)

2
− 𝐷 (𝐴) × 𝑚

2
+ 𝜂
2
,

(1)

where 𝑚
1
and 𝑚

2
represent two different mRNA concentra-

tions, respectively, corresponding to two different nutrients.
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𝑆(𝐴) and𝐷(𝐴) are, respectively, two different rate coefficients
of nutrient synthesis and degradation.They are defined as the
monotonously increasing function of cellular activity that is
represented by the parameter 𝐴. In [10], 𝑆(𝐴) = 6𝐴/(𝐴 + 2)

and 𝐷(𝐴) = 𝐴. 𝜂
1
and 𝜂

2
represent independent Gaussian

white noise which is inherent in cellular gene expression.
From the viewpoint of dynamics system, the variable

pair [𝑚
1
, 𝑚
2
]

𝑇 can be treated as a state of cellular metabolic
phenotype and (1) essentially represents a cell dynamics
system. An attractor is a stable state of the dynamics system to
which the phase space trajectory of the system will converge,
no matter what the initial conditions are. In fact, fluctuation
inherently exists in the actual biological system, so the gene
expression or other behaviors of a biological entity are not
purely deterministic. Even though the state of the cellular
dynamics system is perturbed by stochastic noise arising from
the external environmental fluctuations, the system is able to
gradually come to stability over time and finally stays at a new
growth rate as well as at a well living state. The adaption of
a cell to changes in its survival environment is analogous to
the attractor selection of the dynamics system given in (1), in
which the system will select and switch to a new stable and
suitable state when the environmental conditions have been
changed or perturbed to be unsuitable for previous state.

In addition, the cellular activity𝐴 is an important param-
eter that lumps the fitness of the environmental conditions
for the cell’s survival to a single real value and it ranges from
0 to 1. This parameter is used to comprehensively reflect the
information of the cell’s external environment, control the
influence of the noise on the behavior of the dynamics system,
and capture the phenotypic consequence that enables the
cellular adaptation.

2.3. Extended Attractor Selection Model. Following the basic
attractor selection model, we would like to introduce the
appealing bio-inspired attractor selectionmechanism to deci-
sion making under varying conditions in terms of improving
the robustness and adaptability of the decision solution. In
order to select the most appropriate wireless access network
net
𝑗

∈ NetSet for any one application 𝑠
𝑖
∈ 𝑆
𝑢𝑘

that is
running in the terminal device of a user 𝑢

𝑘
∈ User, we firstly

define a decision vector as X𝑠𝑖(𝑡) = [𝑥

𝑠𝑖

net𝑗(𝑡)]net𝑗∈NetSet
=

[𝑥

𝑠𝑖

net1(𝑡), 𝑥
𝑠𝑖

net2(𝑡), . . . , 𝑥
𝑠𝑖

net𝑀(𝑡)]
𝑇, for each application 𝑠

𝑖
∈ 𝑆
𝑢𝑘
.

Each state value 𝑥

𝑠𝑖

net𝑗(𝑡) in this decision vector refers to
the score or the goodness of the network net

𝑗
relevant to

the application 𝑠
𝑖
at time 𝑡. Therefore, any 𝑢

𝑘
∈ User

should maintain a set of |𝑆
𝑢𝑘
| decision vectors, since it has

|𝑆
𝑢𝑘
| applications (it should be noted that the notation |𝑆

𝑢𝑘
|

represents the number of elements in the set 𝑆
𝑢𝑘
). Then, we

use these decision vectors to construct a matrix as follows:

[X𝑠1 (𝑡) ,X𝑠2 (𝑡) , . . . ,X𝑠𝑁 (𝑡)]

=

[

[

[

[

[

𝑥

𝑠1

net1 (𝑡) 𝑥

𝑠2

net1 (𝑡) ⋅ ⋅ ⋅ 𝑥

𝑠𝑁

net1 (𝑡)

𝑥

𝑠1

net2 (𝑡) 𝑥

𝑠2

net2 (𝑡) ⋅ ⋅ ⋅ 𝑥

𝑠𝑁

net2 (𝑡)
...

... d
...

𝑥

𝑠1

net𝑀 (𝑡) 𝑥

𝑠2

net𝑀 (𝑡) ⋅ ⋅ ⋅ 𝑥

𝑠𝑁

net𝑀 (𝑡)

]

]

]

]

]

.

(2)

The matrix shown in (2) is called a “decision matrix” or a
“score matrix,” whose rows index different wireless networks
and columns index different applications. Each component
value 𝑥𝑠𝑖net𝑗(𝑡) in this decision matrix indicates the proportion
of selecting thewireless network net

𝑗
as the target network for

supporting the application 𝑠
𝑖
at time 𝑡. Furthermore, once the

decision matrix can be obtained, we can use (3) to determine
the target network for the application 𝑠

𝑖
:

net∗ (𝑠
𝑖
) = argmax

net𝑗∈NetSet
{𝑥

𝑠𝑖

net𝑗 (𝑡)} . (3)

Aiming to update the state of the decisionmatrix, we here
extend the basic attractor selection model to the new form
with a higher dimension. We propose the novel extended
model as follows:

𝑑𝑥

𝑠𝑖

net𝑗 (𝑡)

𝑑𝑡

=

syn (𝛼)

1 + [𝑥

𝑠𝑖

net∗(𝑠𝑖)
(𝑡) − 𝑥

𝑠𝑖

net𝑗 (𝑡)]
2

− deg (𝛼) × 𝑥𝑠𝑖net𝑗 (𝑡) + 𝜂
𝑠𝑖

net𝑗 (𝜇, 𝜎) ,

(4)

where 𝑠
𝑖
∈ 𝑆
𝑢𝑘
, net
𝑗
∈ NetSet and 𝑥𝑠𝑖net∗(𝑠𝑖)(𝑡) is the maximum

state value in the decision vector X𝑠𝑖(𝑡) corresponding to
the application 𝑠

𝑖
.𝜂𝑠𝑖net𝑗(𝜇, 𝜎) denotes the Gaussian white noise

whose mean value is 𝜇 and whose standard deviation is 𝜎.
According to the basic attractor selection model, syn(𝛼) and
deg(𝛼) should be designed as the monotonously increasing
functions of the activity 𝛼. Similar to [14], we adopt the
polynomial form to formulate syn(𝛼) and directly set deg(𝛼)
identical to 𝛼 as follows:

syn (𝛼) = 𝛼 × (𝛽 × 𝛼

𝑛
+ 𝑚) ,

deg (𝛼) = 𝛼,

(5)

where 𝛽 and 𝑚 are both the positive real values and 𝑛

is a positive integer. On the basis of (4), we can use the
model defined in (5) to dynamically and self-adaptively
update the decision matrix defined in (2). Thus, based on
the decision matrix, the handover decision can be made in
terms of guaranteeing the terminal QoS satisfaction and self-
adaptability.

2.4. Model Validation and Discussion. To analyze the pro-
posed model given by (4), we split the stochastic nonlinear
differential equation into two parts, that is, the determin-
istic term and the stochastic term. We define the notation
Φ

𝑠𝑖

net𝑗(𝛼, 𝑡) to represent the deterministic term

Φ

𝑠𝑖

net𝑗 (𝛼, 𝑡) =
syn (𝛼)

1 + [𝑥

𝑠𝑖

net∗(𝑠𝑖)
(𝑡) − 𝑥

𝑠𝑖

net𝑗 (𝑡)]
2

− deg (𝛼) × 𝑥𝑠𝑖net𝑗 (𝑡) .

(6)

Φ

𝑠𝑖

net𝑗(𝛼, 𝑡) is a complexmultivariate function of the determin-
istic parameters 𝛼 and 𝑡. Following the notation above, we
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then reshape the extended attractor selection model defined
in (4) into a more simple formulation which is composed
of the deterministic term Φ

𝑠𝑖

net𝑗(𝛼, 𝑡) and the stochastic term
𝜂

𝑠𝑖

net𝑗(𝜇, 𝜎):

𝑑𝑥

𝑠𝑖

net𝑗 (𝑡)

𝑑𝑡

= Φ

𝑠𝑖

net𝑗 (𝛼, 𝑡) + 𝜂
𝑠𝑖

net𝑗 (𝜇, 𝜎) .
(7)

From (7), it can be obviously observed that if the value
of the activity 𝛼 decreases due to some changes in the
external conditions of this dynamics system, the magnitude
of the deterministic term Φ

𝑠𝑖

net𝑗(𝛼, 𝑡) will become smaller
and it may decreasingly approach the magnitude of the
stochastic term 𝜂

𝑠𝑖

net𝑗(𝜇, 𝜎), which means that |Φ𝑠𝑖net𝑗(𝛼, 𝑡)| ≈
|𝜂

𝑠𝑖

net𝑗(𝜇, 𝜎)|. In this situation, (7) tells us that the influence
of the random noise becomes relatively enhanced and the
behavior of the dynamics system is expected to be mostly
dominated by the randomness of 𝜂𝑠𝑖net𝑗(𝜇, 𝜎). On the other
hand, when the activity 𝛼 increases to make the magnitude of
the deterministic termΦ

𝑠𝑖

net𝑗(𝛼, 𝑡)much larger than that of the
stochastic term 𝜂

𝑠𝑖

net𝑗(𝜇, 𝜎), the deterministic term will govern
this system so that its phase trajectory can asymptotically
approach a more stable state against the fluctuation resulting
from stochastic noise. At this point, the process of tending
to a stable state can be analogous to the adaptive attractor
selection in the gene expression of cells, since the dynamics of
gene expression switches between different patterns, which is
as well influenced by a combination of the deterministic and
the stochastic behavior of cellular system.

Additionally, when the stochastic term 𝜂

𝑠𝑖

net𝑗(𝜇, 𝜎) is
assumed to be zero, we can easily obtain the deterministic
maximum value of the system state variable by setting
Φ

𝑠𝑖

net𝑗(𝛼, 𝑡) = 0 and net
𝑗
= net∗(𝑠

𝑖
) as follows:

Φ

𝑠𝑖

net𝑗 (𝛼, 𝑡)

=

syn (𝛼)

1 + [𝑥

𝑠𝑖

net∗(𝑠𝑖)
(𝑡) − 𝑥

𝑠𝑖

net𝑗 (𝑡)]
2
− deg (𝛼) × 𝑥𝑠𝑖net𝑗 (𝑡)

= syn (𝛼) − deg (𝛼) 𝑥𝑠𝑖net∗(𝑠𝑖) (𝑡) = 0.

(8)

Therefore, the deterministic state of maximum value at
time 𝑡 derived from (8) is

𝑥

𝑠𝑖

net∗(𝑠𝑖)
(𝑡) =

syn (𝛼)
deg (𝛼)

. (9)

In the simple case, with considering the specific formula-
tions of syn(𝛼) and deg(𝛼) given by (5), we can get the closed-
form expression for 𝑥𝑠𝑖net∗(𝑠𝑖)(𝑡) as

𝑥

𝑠𝑖

max =
𝛼 (𝛽 × 𝛼

𝑛
+ 𝑚)

𝛼

= 𝛽 × 𝛼

𝑛
+ 𝑚,

(10)

where we use the notation 𝑥

𝑠𝑖

max to represent 𝑥𝑠𝑖net∗(𝑠𝑖)(𝑡) for
simplicity.

As mentioned before, we consider that these parameters
𝛽, 𝑛, and 𝑚 are positive real values. Thus, from (10), 𝑥𝑠𝑖max
is an increasing function of the activity 𝛼. This means that
when 𝛼 is increased, the maximum system state is also
increased along with this increasing 𝛼. From the biological
perspective, if cells successfully express their genes that are
able to make them well survive and optimally grow in an
uncertain and highly dynamic environment, their activity
is consequently expected to approach the best level. It can
be said that those cells select the adaptive attractor that
corresponds to their suitable gene expression pattern. From
this point, the level of themaximum system state given by (10)
can capture the fitness degree of the dynamics system in the
dynamic environment once the activity 𝛼 is correlated with
the varying environmental conditions.This also explains that
it is appropriate to adopt the form of increasing function to
represent syn(𝛼) and deg(𝛼).

Next, we come to consider the influence of random
noise on the dynamics system. In fact, it is impossible to
achieve the aforementioned selection of different attractors
when only considering the deterministic term Φ

𝑠𝑖

net𝑗(𝛼, 𝑡) in
the dynamics system defined in (7). The biological system
is always evolving along with inherent randomness. As
[16, 17] have discussed, the stochastic fluctuation in cell
systems is one of the most significant factors to drive the
process of gene expression switching between attractor states.
Some numerical simulations are done to validate how the
deterministic and the stochastic terms affect the behavior of
the dynamics system represented by the extended attractor
selection model.

Following the basic attractor selection model defined in
(1), we adopt the assumption of Gaussian white noise for the
stochastic term 𝜂

𝑠𝑖

net𝑗(𝜇, 𝜎), and then without loss of generality
we set 𝜇 = 0 in the following experiments. In the simulation,
the standard deviation 𝜎 is, respectively, set to be 0.5, 1,
and 2.5, and the parameters 𝛽, 𝑛, and 𝑚 are fixed at 5, 3,
and 5, respectively. These simulations allow us to perform
comparative analysis and investigate the properties of the
bio-inspired model in the dynamic environment of different
stochastic perturbation magnitudes.

Furthermore, because our goal here is to investigate
the properties of the proposed model in terms of different
random noises, without loss of generality we consider the
specific form of the model with only three state variables,
respectively, denoted by 𝑥

1
, 𝑥
2
, and 𝑥

3
:

𝑑𝑥
𝑖

𝑑𝑡

=

syn (𝛼)
1 + (𝑥max − 𝑥𝑖)

2
− deg (𝛼) × 𝑥

𝑖
+ 𝜂
𝑖
(0, 𝜎) , (11)

where 𝑖 = 1, 2, 3 and 𝑥max = max
𝑖=1,2,3

{𝑥
𝑖
}. Also, it is worth

pointing out that the state variables are all restricted in the
positive real number domain; that is, 𝑥

𝑖
≥ 0, for all 𝑖 = 1, 2,

and 3; since these state variables have actual meaning when
they are related to the level of cells gene expression, we will
reset them to 0 when any one state variable changes to be
lower than zero.

Now, we set the simulation time from 0 seconds to 3600
seconds. And then we employ a changing environment in the
simulations where a square wave with period 900 seconds is
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Figure 1: The varying activity 𝛼 in simulations.

adopted to simulate the time series for the varying activity 𝛼.
The maximum and the minimum peaks of the square wave
are set to be 1 and 0, respectively, and its duty cycle (i.e., the
percent of the period in which the signal is larger than 0) is
set to be 60%. The simulated varying activity 𝛼 is given in
Figure 1.

In Figure 2, the subgraphs (a), (b), and (c), respectively,
show the variation of the dynamics system. In the first case,
with the standard deviation of the random noise 𝜎 = 0.5,
the dynamics system composed of 𝑥

𝑖
(𝑖 = 1, 2, 3) stably

stays at the attractor whose maximum state is 𝑥
2
and whose

lower states are 𝑥
1
and 𝑥

3
. It is because the magnitude

of the stochastic term in the model is very small, while
the deterministic term always dominates the behavior of
the dynamics system even when the activity 𝛼 decreases
to 0 (see Figure 1). This means that the system is trapped
into one attractor and will not switch to another. When
the magnitude of the stochastic term increases (namely, the
standard deviation of the random noise is set to be larger
as shown in the cases of (b) and (c)), the state of the
dynamics system fluctuates more fiercely with the low value
of the activity 𝛼. However, when the activity 𝛼 jumps from
the minimum to the maximum peak, the dynamics system
always evolves to a stable state, that is, one attractor. For
instance, in the subgraph (c), the system stays at the attractor
whose maximum state value is 𝑥

1
and whose lower states

are 𝑥
2
and 𝑥

3
during the simulation time interval which is

from 70.5 seconds to 535 seconds (see Figure 1), whereas
this system switches to another attractor whose maximum
state value changes to be 𝑥

3
after a relatively shorter time

interval (535, 908.3 seconds). From the experimental results,
it is confirmed that the proposed bio-inspired model well
inherits the mechanism of attractor selection and is able
to dynamically capture the variation of the environmental
conditions.

3. QoS-Oriented Handover Decision

This section gives the handover framework used in this
work as well as the formulation for evaluating the terminal

QoS satisfaction. Following this, we also present the detailed
QoS-based handover decision scheme based on the extended
attractor selection model.

3.1. Handover Decision Framework Based on the Extended
Attractor Selection Model. Based on the extended attractor
selection model, we propose a distributed handover decision
making scheme framework. This framework is outlined in
Figure 3. At each time period Δ𝑡, each individual mobile
terminal 𝑢

𝑘
∈ User can perform the handover deci-

sion process independently. Because the extended attractor
selection model only needs the information on the QoS
requirements of the applications that belong to an individual
terminal and the information on the current wireless network
conditions, multiple terminals do not need to exchange their
decision information with each other. In our scheme, the
handover decision is made at the terminal side instead of
the network side. Therefore, it is not necessary to deploy
a centralized control entity for managing the handover
process.

Under the distributed handover decision framework
shown by Figure 3, each application of a mobile terminal
firstly provides its QoS requirements to its terminal during
each time period. In the meanwhile, the mobile terminal
needs to sense the current network conditions by making
some signaling messages interact with the networks through
air interface. Then the utility of each application is evaluated
by using the proposed utility function (the utility function is
developed in Section 3.2), that is, quantifying the degree in
which the QoS requirements of each application are satisfied
by its current wireless link. Based on the QoS satisfaction
degree of each application, we evaluate the terminal QoS
satisfaction so as to map the degree of the terminal’s QoS
satisfaction to the activity 𝛼. Furthermore, the activity 𝛼 is
inputted to the extended attractor selectionmodel and is used
to drive the model to update the handover decision matrix
given in (2) as well as determining the target networks by
using (3). Finally, the handover can be done according to the
determined target networks.

3.2. Quantification of Terminal’s QoS Satisfaction. In this
work, we take the upper and lower bounds of QoS require-
ments of each application into consideration. The QoS-
related attributes considered include bandwidth, end-to-end
delay, and packet loss ratio.The bandwidth, delay, and packet
loss ratio are, respectively, indexed by the notations 𝑏, 𝑑, and
𝑝. Based on this, we denote the upper bound of bandwidth,
delay, and packet loss ratio required by the application 𝑠

𝑖
∈

𝑆
𝑢𝑘

as 𝑈(𝑠
𝑖
, 𝑥) (𝑥 = 𝑏, 𝑑, 𝑝) and the lower bound of those

requirements as 𝐿(𝑠
𝑖
, 𝑥) (𝑥 = 𝑏, 𝑑, 𝑝). We assume that the

application 𝑠
𝑖
is currently connected to the network net

𝑗
∈

NetSet. Additionally, the current conditions (including avail-
able bandwidth, transmission delay, and packet loss ratio)
of the network net

𝑗
at time 𝑡 are denoted as 𝐶(net

𝑗
, 𝑥, 𝑡)

(𝑥 = 𝑏, 𝑑, 𝑝). Then we evaluate the utility of each attribute



6 Journal of Applied Mathematics

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

12

14

16

18

Simulation time (s)

St
at

e v
al

ue

x1(t)

x2(t)

x3(t)

(a) 𝜎 = 0.5

Simulation time (s)
0 500 1000 1500 2000 2500 3000 3500

0

2

4

6

8

10

12

14

16

St
at

e v
al

ue

x1(t)

x2(t)

x3(t)

(b) 𝜎 = 1

0 500 1000 1500 2000 2500 3000 3500
Simulation time (s)

0

10

20

30

40

50

60

70

St
at

e v
al

ue

x1(t)

x2(t)

x3(t)

(c) 𝜎 = 2.5

Figure 2: Evaluation of the impact of the random noise variability on the dynamics system.

perceived by the application 𝑠
𝑖
with the linear normalization

strategy as follows:

𝑅 (𝑠
𝑖
, 𝑥, 𝑡)

=

min {𝑈 (𝑠
𝑖
, 𝑥) , 𝐶 (net

𝑗
, 𝑥, 𝑡)} − 𝐿 (𝑠

𝑖
, 𝑥)

𝑈 (𝑠
𝑖
, 𝑥) − 𝐿 (𝑠

𝑖
, 𝑥)

; 𝑥 = 𝑏,

𝑅 (𝑠
𝑖
, 𝑥, 𝑡)

=

𝑈 (𝑠
𝑖
, 𝑥) −max {𝐿 (𝑠

𝑖
, 𝑥) , 𝐶 (net

𝑗
, 𝑥, 𝑡)}

𝑈 (𝑠
𝑖
, 𝑥) − 𝐿 (𝑠

𝑖
, 𝑥)

; 𝑥 = 𝑑, 𝑝.

(12)

In addition, we adopt the weighted sum method to lump
different 𝑅(𝑠

𝑖
, 𝑥, 𝑡) (𝑥 = 𝑏, 𝑑, 𝑝) to one variable as follows:

𝐺 (𝑠
𝑖
, 𝑡) = ∑

𝑥=𝑏,𝑑,𝑝

𝜔 (𝑠
𝑖
, 𝑥) × 𝑓 (𝑅 (𝑠

𝑖
, 𝑥, 𝑡)) , (13)

where𝜔(𝑠
𝑖
, 𝑥) is the positiveweight corresponding to theQoS

attribute 𝑥 (𝑥 = 𝑏, 𝑑, 𝑝), and they must satisfy the constraint
∑
𝑥=𝑏,𝑑,𝑝

𝜔(𝑠
𝑖
, 𝑥) = 1. 𝑓(⋅) is a monotonously increasing

function that can map 𝑅(𝑠
𝑖
, 𝑥, 𝑡) to [0, 1]. In this work, we

formulate the function as the sigmoid form:

𝑓 (V) =
1

1 + exp (−𝑐
1
× V + 𝑐

2
)

, (14)

where 𝑐
1
and 𝑐
2
are both positive real parameters.
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Figure 3: The handover decision framework based on the extended attractor selection model.
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Figure 4: The variation of the adopted sigmoid function with
different parameter settings.

In order to investigate the influence of 𝑐
1
and 𝑐
2
on 𝑓(V)

given in (14), we vary these parameters and plot the variation
of the function with respect to different parameter settings.
For simplicity but without loss of generality, we set 𝑐

1
= 2𝑐
2

and obtain the results shown in Figure 4. The figure shows
the slope of 𝑓(V) with considering different values of 𝑐

1
and

𝑐
2
. As we can see, the larger the parameters 𝑐

1
and 𝑐
2
are, the

steeper the slope of 𝑓(V) becomes. And the function value
can stably stay at a relatively low (or high) level when the
variable V approaches 0 (or 1). Because 𝑅(𝑠

𝑖
, 𝑥, 𝑡) represents

the degree of the wireless network satisfying the application

𝑠
𝑖
in terms of the requirements on bandwidth, transmission

delay and packet loss ratio, its value may change abruptly due
to the dynamic nature of the wireless environment. On the
basis of the results of Figure 4, we adopt𝑓(V) tomap𝑅(𝑠

𝑖
, 𝑥, 𝑡)

to the interval [0, 1] and fix the parameters 𝑐
1
and 𝑐
2
at 16 and

8, respectively, so that the weighted sum term 𝐺(𝑠
𝑖
, 𝑡) given

in (13) is limited in [0, 1] and its sensitivity is inhibited when
𝑅(𝑠
𝑖
, 𝑥, 𝑡) becomes either too much small or large.
On the other hand, the function value 𝐺(𝑠

𝑖
, 𝑡) compre-

hensively represents the degree of the QoS satisfaction of the
application 𝑠

𝑖
. In order to evaluate the QoS satisfaction of the

terminal 𝑢
𝑘
, we combine all of the 𝐺(𝑠

𝑖
, 𝑡) (𝑠
𝑖
∈ 𝑆
𝑢𝑘
) with the

cumulative product strategy and yield

𝐹 (𝑢
𝑘
, 𝑡) = ∏

𝑠𝑖∈𝑆𝑢𝑘

𝐺 (𝑠
𝑖
, 𝑡) . (15)

Since the terminal QoS satisfaction 𝐹(𝑢
𝑘
, 𝑡) may change

suddenly at the instant time 𝑡 along with the varying wireless
environment, it is not feasible to directly set the activity
𝛼 equal to 𝐹(𝑢

𝑘
, 𝑡) as the input of the extended attractor

selection model. We further adopt the weighted moving
averaging method to map 𝐹(𝑢

𝑘
, 𝑡) to 𝛼 as follows:

𝛼 =

∫

𝑡

𝑡−𝑇
𝜆 (𝜏) × 𝐹 (𝑢

𝑘
, 𝜏) 𝑑𝜏

𝑇

,

(16)

where 𝑇 is the fixed time window (0 < 𝑇 < 𝑡). 𝜆(𝜏) (𝜏 ∈

[𝑡 − 𝑇, 𝑡]) is the time-dependent positive weight that is used
to reflect the significance of 𝐹(𝑢

𝑘
, 𝜏) and needs to satisfy the

constraint of∫𝑇
𝑡−𝑇

𝜆(𝜏)𝑑𝜏/𝑇 = 1.𝜆(𝜏) should be the increasing
function of the time variable 𝜏, because the closer to the
current instant 𝑡 the time variable 𝜏 is, the more significant
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the information reflected from 𝐹(𝑢
𝑘
, 𝜏) becomes. Therefore,

for simplicity, we design 𝜆(𝜏) as follows:

𝜆 (𝜏) =

2𝜏

(2𝑡 − 𝑇)

. (17)

It is easy to validate that (17) satisfies the constraint
∫

𝑇

𝑡−𝑇
𝜆(𝜏)𝑑𝜏/𝑇 = 1 and 𝜆(𝜏) ≥ 0.
Based on (16), we can suppress the sensitivity of the

activity 𝛼 to the fierce changes in the dynamic wireless
environment. Once 𝛼 is obtained by (16), we treat 𝛼 as the
external input of the extended attractor selection model.
Consequently, the model is driven to update the decision
matrix in (2) so as to make the handover decision adaptively
and automatically. Since each individual mobile terminal
can independently process the extended attractor selection
model and can perform the handover decision according to
the aforementioned distributed framework, each individual
terminal is essentially analogous to a cellular system.

4. Performance Evaluation

We perform some comparative simulations to evaluate the
proposed bio-inspired handover decision scheme in this
section through a discrete event simulator that we have
developed in MATLAB with the object-oriented program-
ming. Firstly, we present a typical heterogeneous wireless
environment as the simulation scenario. And then we present
the performance evaluation of our bio-inspired scheme
and compare our scheme with the typical utility function
based scheme with the simple additive weighting (SAW)
[18].

4.1. Simulation Scenario. We consider a vehicular heteroge-
neous wireless environment where there exist three types of
wireless networks including 3G cellular network (WCDMA),
WiFi (IEEE 802.11n), and DSRC (IEEE 802.11p). This sim-
ulation scenario is given in Figure 5. The cellular network
and DSRC are both assumed to be able to coverage the
expressway denoted by the segment AE whose length is equal
to 1000 meters. There are totally 3 WiFi access points (APs)
deployed at the location of Points B, C, and D which are
along the expressway AE. The coverage of WiFi APs is set
to be 200 meters as illustrated in Figure 5. In the simulation,
multiple vehicular terminals are stochastically generated and
uniformly distributed on the expressway at the beginning of
the simulation. The direction of these vehicles is from A to E
and these vehicles are moving at a constant velocity during
the simulation. In addition, each of these vehicular terminals
runs three types of networking applications including the
voice application, the video application, and the data stream.
In addition, we set the time interval Δ𝑡 = 0.5 seconds as the
discrete period during which the decision matrix is updated
at a time through processing the extended attractor selection
model.

4.2. Simulation Settings. In this simulation, we use CDMA
based cellular network and IEEE 802.11 based WLAN access

Table 1: Network conditions settings.

Network Capacity
(Mbyte/s)

Delay
(ms)

Packet loss ratio
(%)

Cellular 1.3 25 0.08
WiFi (AP1) 25 8 0.04
WiFi (AP2) 25 25 0.04
WiFi (AP3) 25 45 0.04
DSRC 27 50 0.03

networks includingWiFi and DSRC.The network conditions
related settings are referred to in the work [19] and are given
in Table 1.

It is worth pointing out that the network conditions
are varying during simulation. Since the number of the
connections to a network changes all the time and has a
significant influence on the network resource, we assume
that the amount of the connections to one network is the
main factor to change this network’s conditions over time. In
order to simulate the dynamic nature of the heterogeneous
wireless networks, we vary those network QoS attributes
during simulation. Denote the amount of the applications
that are currently connected to a network net

𝑗
∈ NetSet

at time 𝑡 as num(net
𝑗
, 𝑡). For simplicity but without loss of

generality, we simulate the time-dependent QoS attributes by
using the following formulations:

𝐶 (net
𝑗
, 𝑏, 𝑡) = ⌊

Capacity (net
𝑗
)

num (net
𝑗
, 𝑡)

⌋ ,

𝐶 (net
𝑗
, 𝑑, 𝑡)

= Delay (net
𝑗
)

×
[

[

1 + 0.5 × 𝑓(

num (net
𝑗
, 𝑡)

∑net𝑗∈NetSet num (net
𝑗
, 𝑡)

)
]

]

,

𝐶 (net
𝑗
, 𝑝, 𝑡)

= Packet loss ratio (net
𝑗
)

×
[

[

1 + 0.5 × 𝑓(

num (net
𝑗
, 𝑡)

∑net𝑗∈NetSet num (net
𝑗
, 𝑡)

)
]

]

,

(18)

where the notations Capacity(net
𝑗
), Delay(net

𝑗
), and

Packet loss ratio(net
𝑗
), respectively, present the capacity,

delay, and packet loss ratio of the network net
𝑗
whose values

are given in Table 1, 𝑓(⋅) is also the sigmoid function as
shown by (14), and ⌊⋅⌋ is the floor function. From (18), it is
obvious that the more the amount of the users connected
to a network is, the worse the performance of this network
will become. Thus, we are allowed to simulate the dynamic
nature of the wireless network in the experiments.

Furthermore, Table 2 gives three typical applications and
the upper and lower bounds of their QoS requirements.
Their parameters settings are referred to in [20]. In our
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Figure 5: A simulation scenario.

Table 2: Applications settings.

QoS attributes Requirements Voice Video Data stream

Bandwidth (Kbyte/s) 𝑈(𝑠
𝑖
, 𝑏) 64 128 500

𝐿(𝑠
𝑖
, 𝑏) 9 30 128

Delay (ms) 𝑈(𝑠
𝑖
, 𝑑) 150 150 120

𝐿(𝑠
𝑖
, 𝑑) 0 0 0

Packet loss ratio (%) 𝑈(𝑠
𝑖
, 𝑝) 0.08 0.03 0.08

𝐿(𝑠
𝑖
, 𝑝) 0 0 0

simulations, the total number of the applications run by
each terminal is limited to three, and the applications of
each terminal are generated from Table 2 at random. For
example, a vehicular terminal may run all the three types
of the applications including voice, video, and data stream
while one other terminal may run two voice applications and
a video application.

Additionally, we adopt the model settings illustrated in
Table 3 for our extended attractor selection model. Since
different applications are sensitive to different QoS attributes,
the weights of the QoS attributes required by different appli-
cations are also different from each other. For instance, the
voice applicationmay require lower end-to-end delay and the
video application needs more bandwidth for transmission.
We use the detailed settings on 𝜔(𝑠

𝑖
, 𝑥) (𝑥 = 𝑏, 𝑑, 𝑝) given

in Table 4 for our experiments.

4.3. Numerical Evaluation. In order to analyze the process
of the handover decision driven by the attractor selection
mechanism from the extended attractor selection model, we
initially set the number of the total vehicular terminals to be
equal to 90 and the initial velocity of those terminals is set
to be 45 km/h. We randomly choose one of those terminals
and illustrate its relevant simulation results in Figure 6. This
vehicular terminal has two types of applications, one of
which is the voice-related application and the other two are
the video-related applications. Subgraphs (a), (b), and (c)

Table 3: Model settings.

Parameter Value
𝜇 0
𝜎 1
𝛽 5
𝑚 5
𝑛 3
𝑐
1

16
𝑐
2

8
𝑇 25 s

Table 4: Settings on the weights.

𝜔(𝑠
𝑖
, 𝑥) 𝑥

𝑏 (bandwidth) 𝑑 (delay) 𝑝 (packet loss ratio)

𝑠
𝑖

Voice 0.3 0.5 0.2
Video 0.5 0.3 0.2

Data stream 0.4 0.3 0.3

in Figure 6, respectively, show the variation of the decision
vector state corresponding to each application against the
simulation time. For example, in subgraph (a), the blue
dashed line plots the variation of 𝑥voiceCelluar(𝑡) that represents the
variation of the fitness of the cellular network for the voice
application against the simulation time.

From these results, it is observed that the applications of
this terminal are able to adapt its wireless access link accord-
ing to the varying network conditions. According to subgraph
(a), the voice application stably accesses to the cellular net-
work during the whole simulation time, while the other two
video applications switch their connections between different
wireless networks in order to guarantee their QoS require-
ments. Even though these two applications are of the same
type, their decision behaviors are different from each other.
As shown in subgraphs (b) and (c), the accessing link of the
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Figure 6: The variation of the decision vector states of the different applications.

first video application switches to the cellular network from
the first WiFi network when this terminal moves out of the
coverage of the first access point (marked as “WiFi (AP1)” in
Figure 5), while the second video application switches its con-
nection to the secondWiFi network and maintains this wire-
less connection for a while; after that, it also selects and stably
connects to the cellular network. Since the heterogeneous
network conditions are changing all the time, this terminal

selects different appropriate networks for each of its applica-
tions according to the real-time network conditions so that it
can ensure well QoS satisfaction. The average activity of this
terminal reaches 0.98962. According to the definition of the
activity illustrated by (16), the larger value of the activity indi-
cates the higher degree of the terminalQoS satisfaction.Thus,
this result implies that this terminal achieves a good QoS
satisfaction during the process of handover decision making.
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Figure 7: The simulation results under different vehicular terminals.

Next, we compare the simulation results obtained by our
proposed bio-inspired handover decision scheme with those
obtained by the utility function based scheme with SAW.
Additionally, in order to perform the comparative evaluation
in terms of the fairness of network resources allocation, we
refer to the concept of the fairness index of the resource
allocation among multiple entities in [21] and then define the
following equation for calculating the fairness metric:

The Allocation Fairness =
[∑
𝑢𝑘∈User 𝛼 (𝑢𝑘)]

2

𝑄 × [∑
𝑢𝑘∈User (𝛼 (𝑢𝑘))

2

]

, (19)

where 𝑄 is the number of the total vehicular terminals and
𝛼(𝑢
𝑘
) is the average activity corresponding to 𝑢

𝑘
that can be

calculated by averaging all the values of the activity obtained
at every time period Δ𝑡.

Firstly, we comparatively analyze the results of the two
schemes under the specific simulation condition where the
initial velocity is set to be 45 km/h and the number of total
vehicular terminals discretely ranges from 10 to 160 so as to
simulate the specific scenarios of different traffic densities.
We calculate the average value and standard deviation of
the activity 𝛼 per individual terminal against different total
numbers of vehicular terminals and the fairness of the overall
network resources allocation according to (19). These results
are illustrated in Figure 7. Since the amount of total vehicular
terminals increases and the overall network resources are
limited, the competition among multiple terminals becomes
much fiercer so that the terminal QoS satisfaction and the
fairness metric obtained by both schemes decreases along
with increasing the amount of terminals. However, from
subgraphs (a) and (b) in Figure 7, it can be found that
the proposed scheme achieves a better activity and a better

fairness of network resources allocation on average when
compared with the results obtained by the compared scheme.

Furthermore, we perform the comparative simulations
under different initial terminal velocity. We fix the number
of vehicular terminals at 100 and vary the terminal velocity.
The initial velocity is discretely set to be 15 km/h, 45 km/h,
75 km/h, and 100 km/h so as to simulate different mobility
scenarios. We also calculate the average value and standard
deviation of the activity 𝛼 per individual terminal against
different initial terminal velocity as well as the average
value of the fairness metric. Figure 8 demonstrates those
numerical results. Because the faster the vehicular terminal
moves the shorter the duration when the applications of
each terminal maintain their wireless links will last; a rel-
atively high mobility may increase the times of switching
wireless connection.Thiswill reduce the efficiency of network
resources allocation.Thus, the performance of both handover
decision schemes degrades along with increasing the velocity.
On the other hand, as shown in Figure 8, the activity on
average obtained by our proposed scheme is larger than the
compared scheme. Furthermore, the average degree of the
fairness of the network resources allocation obtained by our
scheme is larger than the compared scheme.

In fact, the utility function based handover decision with
SAW selects the access link for each application in a deter-
ministic manner. It ranks the networks based on the terminal
utility and attempts to maximize every terminal’s QoS satis-
faction. Under the distributed framework, each application of
these terminals tends to access the best network. Then, when
large amount of applications accesses the same best network
at the same time, this network will become congested and
its performance will deteriorate rapidly. Consequently, this
network becomes nonoptimal and its users will again switch
to another same best network simultaneously. Thus, multiple
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Figure 8: The simulation results under different initial velocity.

terminals may switch their connection between the optimal
and the suboptimal networks much frequently. Therefore,
the compared scheme potentially increases the handover
times and reduces the efficiency of network resources
allocation as well as the overall level of multiple termi-
nals’ QoS satisfaction. Unlike the deterministic optimization
that behaves in a greedy manner, the attractor selection
mechanism searches the attractor with stochastic optimiza-
tion, that is, searching the optimal or suboptimal state with
some certain noises. Although the attractor selection mecha-
nism cannot guarantee that an application is connected to the
best network all the time, it drives themultiple applications to
select their appropriate access wireless links in a collaborative
manner and makes these applications’ connection adapt to
the varying wireless network conditions, meanwhile meeting
their QoS requirements to some extent. The mechanism
drives multiple terminals to make handover decision in the
way that is similar to the coexistence and self-adaptability of
multiple cells behaving in a dynamic environment.Therefore,
the bio-inspired attractor selection model is able to achieve a
better performance from a global perspective.

5. Conclusions

In this paper, we propose a bio-inspired model for making
handover decision in dynamic heterogeneous wireless envi-
ronment. Our scheme provides a QoS-oriented handover
solution for selecting an appropriate wireless network that
can well satisfy the QoS requirements of each of the indi-
vidual terminal applications in the dynamic context. For
supporting adaptive and automatic decisionmaking, we have
introduced the attractor selection mechanism and proposed
the distributed handover decision framework based on this
bio-inspiredmodel.Then, wemodel the activity parameter in
terms of the individual terminal QoS satisfaction by a novel

utility function, treat each individual terminal as a cellular
system by analogy, and use the activity as the input of the
extended attractor selection model to drive the process of
updating the state value of the decision matrix as well as
making handover decision.

The experimental results prove that the QoS-oriented
handover decision scheme induced by the bio-inspired
attractor selection model achieves better adaptation to the
varying heterogeneous wireless environment and has better
performance in terms of guaranteeing better QoS satisfaction
and ensuring better fairness of network resources allocation
when compared with the traditional utility function based
scheme. In the future, we will extend our scheme by taking
more decision factors into account such as the user profile
related and terminal related decision factors, and we will
validate the proposed scheme under some more complex
heterogeneous environments where more dynamic charac-
teristics are considered.
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