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We obtain inequalities of Hölder andMinkowski type with weights generalizing both the case of weights with alternating signs and
the classical case of nonnegative weights.

1. Introduction

Recently Chunaev [1] obtained Hölder and Minkowski type
inequalities with alternating signs. His results are a sup-
plement to Jensen type inequalities with alternating signs
obtained earlier by Szegö [2], Bellman [3, 4], Brunk [5], and
others (see [6–11], [12, Section 5.38], and also Remark 7).

In this paper, we intend to give inequalities of Hölder and
Minkowski type with more general weights, including both
the case ofweightswith alternating signs and the classical case
of nonnegative weights (see, e.g., [12, Section 4.2] and [1, 13]).
Namely, weights 𝑝𝑘, 𝑘 = 1, . . . , 𝑛, satisfying the property

𝑃𝑘 ⩾ 0, where 𝑃𝑘 :=
𝑘

∑

𝑚=1

𝑝𝑚, 𝑘 = 1, . . . , 𝑛, (1)

are considered. We follow proofs in [1] with several changes
in order to obtain our results.

In what follows, we denote nonnegative sequences of real
numbers in bold print; for example, a = {𝑎𝑘}

𝑛

𝑘=1
orb = {𝑏𝑘}

𝑛

𝑘=1
,

where 𝑛 is a positive integer or infinity. Expressions like a ≡ 1
mean that all elements of a equal 1. In proofs we use several
well-known inequalities for 𝛼, 𝛽 ⩾ 0 and 𝑝 ⩾ 1:

(𝛼 + 𝛽)
𝑝
⩽ 2
𝑝−1

(𝛼
𝑝
+ 𝛽
𝑝
) (Jensen󸀠s inequality) , (2)

𝛼𝛽 ⩽
𝛼
𝑝

𝑝
+
𝛽
𝑞

𝑞
,

1

𝑝
+
1

𝑞
= 1 (Young󸀠s inequality) , (3)

𝑝𝛽
𝑝−1

⩽
𝛼
𝑝
− 𝛽
𝑝

𝛼 − 𝛽
⩽ 𝑝𝛼
𝑝−1

, 𝛼 > 𝛽 (see [14]) . (4)

2. Hölder Type Inequalities

In this section, we show that there is not a direct analog of
Hölder’s inequality in the case of our weights, but one of
reverseHölder’s inequalities exists. Note that reverseHölder’s
inequalities for nonnegative weights are well studied (see
[13]).

Theorem 1. Let a and b be nonincreasing such that

0 < 𝑎 ⩽ 𝑎𝑘 ⩽ 𝐴 < ∞, 0 < 𝑏 ⩽ 𝑏𝑘 ⩽ 𝐵 < ∞, (5)

where 𝑘 = 1, . . . , 𝑛. If, moreover, 𝑃𝑘 ⩾ 0, and 𝑝, 𝑞 > 1, 1/𝑝 +
1/𝑞 = 1, then

0 ⩽
(∑
𝑛

𝑘=1
𝑝𝑘𝑎
𝑞

𝑘
)
1/𝑞
(∑
𝑛

𝑘=1
𝑝𝑘𝑏
𝑝

𝑘
)
1/𝑝

∑
𝑛

𝑘=1
𝑝𝑘𝑎𝑘𝑏𝑘

⩽ (𝑝𝐴/𝑎)
1/𝑝
(𝑞𝐵/𝑏)

1/𝑞
.

(6)

The left hand side of (6) should be read as there exists no
positive constant, depending on 𝑎, 𝐴, 𝑏, 𝐵, 𝑝, or 𝑞, which bounds
the fraction in (6) from below.

Before the proof of Theorem 1, we establish the following
fact.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 915635, 5 pages
http://dx.doi.org/10.1155/2014/915635

http://dx.doi.org/10.1155/2014/915635


2 Abstract and Applied Analysis

Lemma 2. Let a be nonincreasing and b nondecreasing such
that 𝑏𝑘 ⩽ 𝐵 for 𝑘 = 1, . . . , 𝑛. If, moreover, 𝑃𝑘 ⩾ 0 for 𝑘 =

1, . . . , 𝑛, then
𝑛

∑

𝑘=1

𝑝𝑘𝑎𝑘𝑏𝑘 ⩽ 𝐵

𝑛

∑

𝑘=1

𝑝𝑘𝑎𝑘. (7)

Proof. Applying the Abel transformation, we have

𝐵

𝑛

∑

𝑘=1

𝑝𝑘𝑎𝑘 −

𝑛

∑

𝑘=1

𝑝𝑘𝑎𝑘𝑏𝑘

=

𝑛−1

∑

𝑘=1

𝑃𝑘 (𝑎𝑘 (𝐵 − 𝑏𝑘) − 𝑎𝑘+1 (𝐵 − 𝑏𝑘+1))

+ 𝑃𝑛𝑎𝑛 (𝐵 − 𝑏𝑛) ,

(8)

where the latter expression is nonnegative since the sequences
a and {𝐵 − 𝑏𝑘} are nonincreasing, and 𝑃𝑘 ⩾ 0. The equality
holds, for example, if b ≡ 𝐵.

Proof. Wedenote the fraction in (6) by𝐹𝐻. Applying the Abel
transformation to the numerator and the denominator of 𝐹𝐻
easily yields 𝐹𝐻 ⩾ 0. But we prove even more, namely, that
there exist no positive constants bounding 𝐹𝐻 from below.
Following [1], let 𝑝𝑘 = (−1)

𝑘+1, 𝑘 = 1, . . . , 𝑛, where 𝑛 is
even, and let a = {𝑎1, 𝑎1, 𝑎3, 𝑎3, . . . , 𝑎𝑛, 𝑎𝑛, . . .} be positive and
nondecreasing. The sequence b is arbitrary except such that
𝑏2𝑘−1 − 𝑏2𝑘 = 0 for all 𝑘 = 1, . . . , 𝑛/2. It follows that

𝐹𝐻 =
0 ⋅ (∑

𝑛

𝑘=1
(−1)
𝑘+1
𝑏
𝑝

𝑘
)
1/𝑝

∑
𝑛/2

𝑘=1
𝑎2𝑘−1 (𝑏2𝑘−1 − 𝑏2𝑘)

= 0. (9)

Thus𝐹𝐻 cannot be bounded frombelowby a positive absolute
constant or a constant depending on 𝑝,𝑞, maximum or
minimum elements of a and b.

Nowwe prove the right hand side of (6). Here𝑁𝐻 denotes
the numerator of 𝐹𝐻. First we apply the Abel transformation:

𝑁𝐻 = (

𝑛−1

∑

𝑘=1

𝑃𝑘 (𝑎
𝑞

𝑘
− 𝑎
𝑞

𝑘+1
) + 𝑃𝑛𝑎

𝑞

𝑛
)

1/𝑞

× (

𝑛−1

∑

𝑘=1

𝑃𝑘 (𝑏
𝑝

𝑘
− 𝑏
𝑝

𝑘+1
) + 𝑃𝑛𝑏

𝑝

𝑛
)

1/𝑝

.

(10)

By the right hand side of (4) and the Abel transformation

𝑁𝐻 ⩽
(𝑞𝐴
𝑞−1
)
1/𝑞

(𝑝𝐵
𝑝−1

)
1/𝑝

𝐶1/𝑞𝐷1/𝑝

× (

𝑛

∑

𝑘=1

𝐶𝑝𝑘𝑎𝑘)

1/𝑞

(

𝑛

∑

𝑘=1

𝐷𝑝𝑘𝑏𝑘)

1/𝑝

,

(11)

where𝐶 and𝐷 are arbitrary positive constants.Therefore, (3)
after several simplifications gives

𝑁𝐻 ⩽
(𝑝𝐴)
1/𝑝
(𝑞𝐵)
1/𝑞

𝐶1/𝑞𝐷1/𝑝
(

𝑛

∑

𝑘=1

𝑝𝑘 (
𝐶

𝑞𝑏𝑘
+

𝐷

𝑝𝑎𝑘
)𝑎𝑘𝑏𝑘) . (12)

In the latter expression, {𝐶/(𝑞𝑏𝑘)+𝐷/(𝑝𝑎𝑘)} is nondecreasing
and {𝑎𝑘𝑏𝑘} is nonincreasing, because a and b are nonincreas-
ing. Hence by Lemma 2

𝑁𝐻 ⩽
(𝑝𝐴)
1/𝑝
(𝑞𝐵)
1/𝑞

𝐶1/𝑞𝐷1/𝑝
max
𝑘

{
𝐶

𝑞𝑏𝑘
+

𝐷

𝑝𝑎𝑘
}

𝑛

∑

𝑘=1

𝑝𝑘𝑎𝑘𝑏𝑘

⩽ (𝑝𝐴)
1/𝑝
(𝑞𝐵)
1/𝑞

(
1

𝑞𝑏
(
𝐶

𝐷
)

1/𝑝

+
1

𝑝𝑎
(
𝐷

𝐶
)

1/𝑞

)

×

𝑛

∑

𝑘=1

𝑝𝑘𝑎𝑘𝑏𝑘.

(13)

It is easily seen that, in order to get the smallest constant in
the latter inequality, we must choose 𝐶/𝐷 = 𝑏/𝑎. It gives the
right hand side of (6). Note that the constant there belongs to
(1;∞).

Remark 3. FromTheorem 1, it is seen that the constant in the
right hand side of (6) tends to infinity as 𝑎 → 0 or 𝑏 → 0

(note that this constant is better than in [1]). Now we give an
example of sequences confirming this [1]. In Theorem 1 we
suppose that 𝑝𝑘 = (−1)

𝑘+1, 𝑛 = 2𝑚 + 1, a ≡ 1, and 𝑏 =

𝑏2𝑚+1 → 0 in b. It gives

𝐹𝐻 =
(∑
2𝑚+1

𝑘=1
(−1)
𝑘+1
𝑎
𝑞

𝑘
)
1/𝑞

(∑
2𝑚+1

𝑘=1
(−1)
𝑘+1
𝑏
𝑝

𝑘
)
1/𝑝

∑
2𝑚+1

𝑘=1
(−1)
𝑘+1
𝑎𝑘𝑏𝑘

=
(∑
2𝑚

𝑘=1
(−1)
𝑘+1
𝑏
𝑝

𝑘
)
1/𝑝

∑
2𝑚

𝑘=1
(−1)
𝑘+1
𝑏𝑘

.

(14)

From the left hand side of (4) we deduce

𝐹𝐻 =
(∑
𝑚

𝑘=1
(𝑏
𝑝

2𝑘−1
− 𝑏
𝑝

2𝑘
))
1/𝑝

∑
𝑚

𝑘=1
(𝑏2𝑘−1 − 𝑏2𝑘)

⩾ 𝑝
1/𝑝
(

𝑏2𝑚

∑
𝑚

𝑘=1
(𝑏2𝑘−1 − 𝑏2𝑘)

)

1−1/𝑝

,

(15)

where 1 − 1/𝑝 > 0. Therefore, for a fixed positive 𝑏2𝑚 the
sum in the denominator can be made sufficiently small by an
appropriate choice of b. Consequently, 𝐹𝐻 can be arbitrarily
large. The same is for 𝑎 = 𝑎2𝑚+1 → 0.

It is clear that if 𝑝 = 𝑞 = 2 then the constant in the right
hand side of (6) equals 2√𝐴𝐵(𝑎𝑏)−1 ⩾ 2. Nowwe give amore
precise constant belonging to [1;∞) for the case when a and
b satisfy several additional conditions.

Proposition 4. Let a and b be nonincreasing such that the
sequence {𝑎𝑘/𝑏𝑘} is monotone and 0 < 𝑚 ⩽ 𝑎𝑘/𝑏𝑘 ⩽ 𝑀 < ∞.
If, moreover, 𝑃𝑘 ⩾ 0 for 𝑘 = 1, . . . , 𝑛, then

0 ⩽
∑
𝑛

𝑘=1
𝑝𝑘𝑎
2

𝑘
∑
𝑛

𝑘=1
𝑝𝑘𝑏
2

𝑘

(∑
𝑛

𝑘=1
𝑝𝑘𝑎𝑘𝑏𝑘)

2
⩽
1

4
(
𝑚

𝑀
+
𝑀

𝑚
)

2

. (16)
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The left hand side of (16) should be read as there exists no
positive constant, depending on 𝑚 and 𝑀, which bounds the
fraction in (16) from below.

Proof. The left hand side inequality follows by the same
method as in the proof of Theorem 1. To prove the right
hand side we denote the numerator of the fraction in (16)
by 𝑁𝐶. First we suppose {𝑎𝑘/𝑏𝑘} to be nondecreasing, so 1 ⩽
𝑎𝑘/(𝑚𝑏𝑘) ⩽ 𝑀/𝑚. Applying (3) with 𝑝 = 𝑞 = 2 yields

𝑁𝐶 ⩽
1

4𝑚2
(

𝑛

∑

𝑘=1

𝑝𝑘 (𝑎
2

𝑘
+ (𝑚𝑏𝑘)

2
))

2

=
1

4
(

𝑛

∑

𝑘=1

𝑝𝑘 (
𝑎𝑘

𝑚𝑏𝑘
+
𝑚𝑏𝑘

𝑎𝑘
)𝑎𝑘𝑏𝑘)

2

.

(17)

In the latter expression, the sequence {𝑐𝑘 + 1/𝑐𝑘}, where 𝑐𝑘 =
𝑎𝑘/(𝑚𝑏𝑘), is nondecreasing. Indeed, {𝑐𝑘} is nondecreasing and
moreover 𝑐1 ⩾ 1. Since 𝑓(𝑥) = 𝑥 + 1/𝑥 is convex for 𝑥 ∈

(0;∞) and has a minimum at 𝑥 = 1, the sequence {𝑓(𝑐𝑘)} is
nondecreasing. From this by Lemma 2

𝑁𝐶 ⩽
1

4
(max
𝑘

{𝑓(𝑐𝑘)})

2

(

𝑛

∑

𝑘=1

(−1)
𝑘+1
𝑎𝑘𝑏𝑘)

2

, (18)

where max𝑘{𝑓(𝑐𝑘)} = 𝑚/𝑀 + 𝑀/𝑚. Supposing {𝑎𝑘/𝑏𝑘}

to be nonincreasing and taking into account that 𝑚/𝑀 ⩽

𝑎𝑘/(𝑀𝑏𝑘) ⩽ 1, we obtain the right hand side of (16) by the
same technique.

It is easily seen that equality in (16) holds, for example, if
a ≡ b. The fact that the constant in the right hand side of (16)
belongs to [1;∞) is obvious.

From the well-known weighted inequality of arithmetic
and geometric means (see, e.g., [14, Chapter 2]) supposing
𝑎𝑚 ⩾ 0 and V𝑚 > 0, we have

𝑀

∏

𝑚=1

𝑎𝑚 ⩽

𝑀

∑

𝑚=1

V𝑚𝑎
1/V
𝑚

𝑚
,

𝑀

∑

𝑚=1

V𝑚 = 1. (19)

This is a multivariable version of Young’s inequality (3). From
this we obtain a multivariable version ofTheorem 1 (but with
less precise constant).

Proposition 5. Let x𝑚 := {𝑥𝑚,𝑘}
𝑛

𝑘=1
be nonincreasing

sequences such that 0 < 𝑎𝑚 ⩽ 𝑥𝑚,𝑘 ⩽ 𝐴𝑚 < ∞, where
𝑚 = 1, . . . ,𝑀. If, moreover, 𝑃𝑘 ⩾ 0, 𝑘 = 1, . . . , 𝑛, and 𝑤𝑘 > 0,
𝑘 = 1, . . . , 𝑛, are such that ∑𝑀

𝑚=1
𝑤𝑚 = 1, then

0 ⩽
∏
𝑀

𝑚=1
(∑
𝑛

𝑘=1
𝑝𝑘𝑥
1/𝑤
𝑚

𝑚,𝑘
)
𝑤
𝑚

∑
𝑛

𝑘=1
𝑝𝑘∏
𝑀

𝑚=1
𝑥𝑚,𝑘

⩽

𝑀

∑

𝑚=1

𝐴
1/𝑤
𝑚
−1

𝑚

𝑀

∏

𝑗=1,𝑗 ̸=𝑚

𝐴
1/𝑤
𝑗
−1

𝑗

𝑤𝑗𝑎𝑗
.

(20)

The left hand side of (20) should be read as there exists no
positive constant, depending on 𝑎𝑚,𝐴𝑚, and𝑤𝑚, which bounds
the fraction in (20) from below.

Proof. Set 𝐹𝐻 is the fraction in (20). Nonexistence of a
positive constant bounding 𝐹𝐻 from below follows from
Theorem 1. To prove the right hand side we denote the
numerator of 𝐹𝐻 by𝑁𝐻. By the Abel transformation

𝑁𝐻 =

𝑀

∏

𝑚=1

(

𝑛−1

∑

𝑘=1

𝑃𝑘 (𝑥
1/𝑤
𝑚

𝑚,𝑘
− 𝑥
1/𝑤
𝑚

𝑚,𝑘+1
) + 𝑃𝑛𝑥

1/𝑤
𝑚

𝑚,𝑛
)

𝑤
𝑚

. (21)

The right hand side of (4) and the Abel transformation yields

𝑁𝐻 ⩽

𝑀

∏

𝑚=1

𝐴
1/𝑤
𝑚
−1

𝑚

𝑤𝑚

𝑀

∏

𝑚=1

(

𝑛

∑

𝑘=1

𝑝𝑘𝑥𝑚,𝑘)

𝑤
𝑚

. (22)

Supposing V𝑚 = 𝑤𝑚 in (19), we obtain

𝑁𝐻 ⩽

𝑀

∏

𝑚=1

𝐴
1/𝑤
𝑚
−1

𝑚

𝑤𝑚

× (

𝑛

∑

𝑘=1

𝑝𝑘(

𝑀

∑

𝑚=1

𝑤𝑚

𝑀

∏

𝑚=1,𝑚 ̸= 𝑘

𝑥
−1

𝑚,𝑘
)

𝑀

∏

𝑚=1

𝑥𝑚,𝑘) ,

(23)

where it is obvious that {∑𝑀
𝑚=1

𝑤𝑚∏
𝑀

𝑚=1,𝑚 ̸= 𝑘
𝑥
−1

𝑚,𝑘
}
𝑛

𝑘=1
is non-

decreasing and that {∏𝑀
𝑚=1

𝑥𝑚,𝑘}
𝑛

𝑘=1
is nonincreasing.Thus by

Lemma 2

𝑁𝐻 ⩽

𝑀

∏

𝑚=1

𝐴
1/𝑤
𝑚
−1

𝑚

𝑤𝑚
max
𝑘

{

{

{

𝑀

∑

𝑚=1

𝑤𝑚

𝑀

∏

𝑚=1,𝑗 ̸=𝑚

𝑥
−1

𝑗,𝑘

}

}

}

×

𝑛

∑

𝑘=1

𝑝𝑘

𝑀

∏

𝑚=1

𝑥𝑚,𝑘.

(24)

Several simplifications give the right hand side of (20).

3. Minkowski Type Inequalities

In this section we prove precise Minkowski type inequalities
with our weights. As we have already mentioned, these
generalize both the case of weight with alternating signs and
the case of nonnegative weights (see [1]).

Theorem 6. Let a and b be nonnegative nonincreasing
sequences, and 𝑃𝑘 ⩾ 0 for 𝑘 = 1, . . . , 𝑛. Then for 𝑝 ⩾ 1

0 ⩽
(∑
𝑛

𝑘=1
𝑝𝑘𝑎
𝑝

𝑘
)
1/𝑝

+ (∑
𝑛

𝑘=1
𝑝𝑘𝑏
𝑝

𝑘
)
1/𝑝

(∑
𝑛

𝑘=1
𝑝𝑘(𝑎𝑘 + 𝑏𝑘)

𝑝
)
1/𝑝

⩽ 2
1−1/𝑝

, (25)

The constant 21−1/𝑝 is best possible. The left hand side of (25)
should be read as there exists no positive constant, depending
on only 𝑝, which bounds the fraction in (25) from below.

Proof. Throughout the proof,𝐹𝑀 denotes the fraction in (25).
Applying the Abel transformation for the numerator and
the denominator of 𝐹𝑀 easily yields 𝐹𝑀 ⩾ 0. Moreover,
there exists no positive constant depending on 𝑝 only that
bounds 𝐹𝑀 from below. Indeed [1], for each 𝑝 > 1 there
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exists a sequence such that 𝐹𝑀 tends to zero. Supposing that
𝑝𝑘 = (−1)

𝑘+1, 𝑛 ⩾ 2, a = {1, 1, 0, . . . , 0, . . .} and b =

{𝑏, 0, . . . , 0, . . .} with some 𝑏 > 0, from the left hand side
of (4) we deduce

𝐹𝑀 =
𝑏

((1 + 𝑏)
𝑝
− 1)
1/𝑝

⩽
𝑏

(𝑝𝑏)
1/𝑝

< 𝑏
1−1/𝑝

. (26)

In this way 𝐹𝑀 → 0 as 𝑏 → 0 since 1−1/𝑝 > 0 for all 𝑝 > 1.
Now we prove the right hand side of (25). From (2) we

have

((

𝑛

∑

𝑘=1

𝑝𝑘𝑎
𝑝

𝑘
)

1/𝑝

+ (

𝑛

∑

𝑘=1

𝑝𝑘𝑏
𝑝

𝑘
)

1/𝑝

)

𝑝

⩽ 2
𝑝−1

(

𝑛

∑

𝑘=1

𝑝𝑘 (𝑎
𝑝

𝑘
+ 𝑏
𝑝

𝑘
)) .

(27)

Now, before extraction of the 𝑝th root, it is enough to show
that

𝑛

∑

𝑘=1

𝑝𝑘 (𝑎
𝑝

𝑘
+ 𝑏
𝑝

𝑘
) ⩽

𝑛

∑

𝑘=1

𝑝𝑘(𝑎𝑘 + 𝑏𝑘)
𝑝
, 𝑝 ⩾ 1. (28)

Inequality (28) by the Abel transformation is equivalent to

𝑛

∑

𝑘=1

𝑝𝑘𝑐𝑘 =

𝑛−1

∑

𝑘=1

𝑃𝑘 (𝑐𝑘 − 𝑐𝑘+1) + 𝑃𝑛𝑐𝑛 ⩾ 0, (29)

where 𝑐𝑘 := (𝑎𝑘 + 𝑏𝑘)
𝑝
− (𝑎
𝑝

𝑘
+ 𝑏
𝑝

𝑘
). The latter inequality holds

since 𝑃𝑘 ⩾ 0 for all 𝑘 and 𝑐𝑘 ⩾ 𝑐𝑘+1 for 𝑘 = 1, . . . , 𝑛−1. Indeed,
for the function 𝑓(𝑥, 𝑦) = (𝑥 + 𝑦)𝑝 − (𝑥𝑝 + 𝑦𝑝), where 𝑥 ⩾ 0,
𝑦 ⩾ 0, and 𝑝 ⩾ 1, we have 𝑓󸀠

𝑥
⩾ 0 and 𝑓󸀠

𝑦
⩾ 0. Therefore,

𝑓 (𝑎𝑘, 𝑦) ⩾ 𝑓 (𝑎𝑘+1, 𝑦) ,

𝑓 (𝑥, 𝑏𝑘) ⩾ 𝑓 (𝑥, 𝑏𝑘+1) 󳨐⇒ 𝑓 (𝑎𝑘, 𝑏𝑘) ⩾ 𝑓 (𝑎𝑘+1, 𝑏𝑘+1) .

(30)

This completes the proof of (28).
The precision of the constant 21−1/𝑝 comes out from

the following observation from [1]. If 𝑝𝑘 = 1 for all 𝑘,
a = {1, . . . , 1, 0, . . . , 0} (first 𝑛 elements are units) and b =

{𝑛
1/𝑝
, 0, . . . , 0}, then after several simplifications we get

(∑
𝑛

𝑘=1
𝑎
𝑝

𝑘
)
1/𝑝

+ (∑
𝑛

𝑘=1
𝑏
𝑝

𝑘
)
1/𝑝

(∑
𝑛

𝑘=1
(𝑎𝑘 + 𝑏𝑘)

𝑝
)
1/𝑝

= 2(1 −
1

𝑛
+ (1 +

1

𝑛1/𝑝
)

𝑝

)

−1/𝑝

= 2
1−1/𝑝

− 𝜀𝑛,

(31)

where positive 𝜀𝑛 → 0 as 𝑛 → ∞.

Remark 7. The following Jensen-Steffensen type statement
was proved in [15] (see also [12, Section 2.2]).

Let a be a nonincreasing positive sequence and 𝜑 a
function convex on [𝑎𝑛; 𝑎1] such that 𝜑(0) = 0. Then the
necessary and sufficient condition onweights 𝑝𝑘 in order that

𝜑(

𝑛

∑

𝑘=1

𝑝𝑘𝑎𝑘) ⩽

𝑛

∑

𝑘=1

𝑝𝑘𝜑 (𝑎𝑘) , 𝑃𝑘 =

𝑘

∑

𝑚=1

𝑝𝑚, (32)

is 0 ⩽ 𝑃𝑘 ⩽ 1, 𝑘 = 1, . . . , 𝑛.

From this point of view, the sufficient condition 𝑃𝑘 ⩾ 0,
𝑘 = 1, . . . , 𝑛, in Theorems 1 and 6 seems to be quite close to
the necessary one.

4. Further Generalizations

Now we give integral versions of Lemma 2 and Theorems 1
and 6. In what follows, we use the notation

𝑃 (𝑥) := ∫

𝑥

𝛼

𝑝 (𝑡) 𝑑𝑡, 𝑥 ∈ [𝛼; 𝛽] , (33)

and suppose that all functions of 𝑥 are integrable and
differentiable on [𝛼; 𝛽].

Lemma 8. For 𝑥 ∈ [𝛼; 𝛽], let 𝑓(𝑥) be nonnegative and
nonincreasing, and let 𝑔(𝑥) be nondecreasing such that 0 ⩽

𝑔(𝑥) ⩽ 𝐵, and 𝑃(𝑥) ⩾ 0. Then

∫

𝛽

𝛼

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑃 (𝑥) ⩽ 𝐵∫

𝛽

𝛼

𝑓 (𝑥) 𝑑𝑃 (𝑥) . (34)

Proof. Applying integration by parts gives

𝐵∫

𝛽

𝛼

𝑓 (𝑥) 𝑑𝑃 (𝑥) − ∫

𝛽

𝛼

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑃 (𝑥)

= 𝑃 (𝑥) 𝑓 (𝑥) (𝐵 − 𝑔 (𝑥))
󵄨󵄨󵄨󵄨
𝛽

𝛼

− ∫

𝛽

𝛼

𝑃 (𝑥) 𝑑 (𝑓 (𝑥) (𝐵 − 𝑔 (𝑥)))

= 𝑃 (𝛽) 𝑓 (𝛽) (𝐵 − 𝑔 (𝛽))

+ ∫

𝛽

𝛼

𝑃 (𝑥) (𝑓 (𝑥) 𝑔
󸀠
(𝑥) − 𝑓

󸀠
(𝑥) (𝐵 − 𝑔 (𝑥))) 𝑑𝑥 ⩾ 0.

(35)

Here we took into account that 𝑃(𝛼) = 0; 𝑃(𝑥), 𝑓(𝑥), 𝑔󸀠(𝑥),
𝐵 − 𝑔(𝑥) are nonnegative and 𝑓󸀠(𝑥) is nonpositive for 𝑥 ∈

[𝛼; 𝛽]. It is easily seen that equality holds, for example, if
𝑔(𝑥) ≡ 𝐵.

Using Lemma 8 and integration by parts instead of the
Abel transformation, we obtain the following results by
essential repeating proofs ofTheorems 1 and 6.We emphasize
that 𝑑𝑃(𝑥) may be negative here in contrast to the classical
case.

Theorem9. For𝑥 ∈ [𝛼; 𝛽], let𝑓(𝑥) and𝑔(𝑥) be nonincreasing
and let

0 < 𝑎 ⩽ 𝑓 (𝑥) ⩽ 𝐴 < ∞, 0 < 𝑏 ⩽ 𝑔 (𝑥) ⩽ 𝐵 < ∞. (36)
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If, moreover,𝑃(𝑥) ⩾ 0, 𝑥 ∈ [𝛼; 𝛽], and𝑝, 𝑞 > 1, 1/𝑝 + 1/𝑞 = 1,
then

0 ⩽

(∫
𝛽

𝛼
𝑓
𝑞
(𝑥) 𝑑𝑃 (𝑥))

1/𝑞

(∫
𝛽

𝛼
𝑔
𝑝
(𝑥) 𝑑𝑃 (𝑥))

1/𝑝

∫
𝛽

𝛼
𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑃 (𝑥)

⩽ (𝑝𝐴/𝑎)
1/𝑝
(𝑞𝐵/𝑏)

1/𝑞
.

(37)

The left hand side of (37) should be read as there exists
no positive constant, depending on 𝑎, 𝐴, 𝑏, 𝐵, 𝑝, and 𝑞, which
bounds the fraction in (37) from below.

Theorem 10. For 𝑥 ∈ [𝛼; 𝛽], let 𝑓(𝑥) and 𝑔(𝑥) be nonnegative
and nonincreasing, and 𝑃(𝑥) ⩾ 0. Then

0 ⩽

(∫
𝛽

𝛼
𝑓
𝑝
(𝑥) 𝑑𝑃 (𝑥))

1/𝑝

+ (∫
𝛽

𝛼
𝑔
𝑝
(𝑥) 𝑑𝑃 (𝑥))

1/𝑝

(∫
𝛽

𝛼
(𝑓 (𝑥) + 𝑔 (𝑥))

𝑝
𝑑𝑃 (𝑥))

1/𝑝

⩽ 2
1−1/𝑝

, 𝑝 ⩾ 1.

(38)

The constant 21−1/𝑝 is best possible. The left hand side of (38)
should be read as there exists no positive constant, depending
only on 𝑝, which bounds the fraction in (38) from below.

In conclusion we give several examples concerning The-
orems 9 and 10. Let 𝑝(𝑡) = sin 𝑡 and 𝑥 ∈ [0;∞) in (33); then
𝑃(𝑥) = 1 − cos𝑥 ⩾ 0, and thus

0 ⩽
(∫
∞

0
𝑓
𝑞
(𝑥) sin𝑥𝑑𝑥)

1/𝑞

(∫
∞

0
𝑔
𝑝
(𝑥) sin𝑥 𝑑𝑥)

1/𝑝

∫
∞

0
𝑓 (𝑥) 𝑔 (𝑥) sin𝑥 𝑑𝑥

⩽ (𝑝𝐴/𝑎)
1/𝑝
(𝑞𝐵/𝑏)

1/𝑞
,

0 ⩽
(∫
∞

0
𝑓
𝑝
(𝑥) sin𝑥𝑑𝑥)

1/𝑝

+ (∫
∞

0
𝑔
𝑝
(𝑥) sin𝑥𝑑𝑥)

1/𝑝

(∫
∞

0
(𝑓(𝑥) + 𝑔(𝑥))

𝑝 sin𝑥 𝑑𝑥)
1/𝑝

⩽ 2
1−1/𝑝

, 𝑝 ⩾ 1.

(39)

Appropriate discretization yields inequalities with alternating
signs obtained earlier in [1] (the case 𝑝𝑘 = (−1)

𝑘+1 in
Theorems 1 and 6).

If 𝑃(𝑥) is nondecreasing for 𝑥 ∈ [𝛼; 𝛽] (i.e., 𝑑𝑃(𝑥) is
nonnegative), Theorems 9 and 10 give the classical case of
nonnegative weights, for which we can put 1 instead of 0
in the left hand sides of (37) and (38) due to Hölder’s and
Minkowski’s inequalities.
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