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This paper presents some results concerning the properties of distances and existence and uniqueness of best proximity points
of p-cyclic proximal, weak proximal contractions, and some of their generalizations for the non-self-mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→

⋃
𝑖∈𝑝
𝐵
𝑖
(𝑝 ≥ 2), where 𝐴

𝑖
and 𝐵

𝑖
, ∀𝑖 ∈ 𝑝 = {1, 2, . . . , 𝑝}, are nonempty subsets of 𝑋 which satisfy 𝑇 (𝐴

𝑖
) ⊆ 𝐵

𝑖
, ∀𝑖 ∈ 𝑝, such that

(𝑋, 𝑑) is a metric space.The boundedness and the convergence of the sequences of distances in the domains and in their respective
image sets of the cyclic proximal and weak cyclic proximal non-self-mapping, and of some of their generalizations are investigated.
The existence and uniqueness of the best proximity points and the properties of convergence of the iterates to such points are also
addressed.

1. Introduction

The characterization and study of existence and uniqueness
of best proximity points is an important tool in fixed point
theory concerning cyclic nonexpansive mappings including
the problems of (strict) contractions, asymptotic contrac-
tions, contractive, weak-contractive mappings, and cyclic
mappings and also in related problems of proximal contrac-
tions, weak proximal contractions, and approximation results
and methods [1–15]. The application of the theory of fixed
points in stability issues of dynamic systems, [16–21] has been
proved to be a very useful tool. See, for instance, [22–26]
and references therein. Some best approximation problems
in semiconvex and locally convex structures and Hyers-
Ulam type stability in multivalued functions and in additive-
quadratic functional equations are investigated in [27–30]
and some of the references therein. Recent trends concerning
best proximity points and related problems are dealt with
in [31–35] and some references therein. In particular, the
problem of best proximity points of two mappings in a

cyclic disposal is investigated in [31] under a nonlinear
contractive condition. In [32], several results are obtained for
proximal and weak proximal contractions of several types
as well as for generalized proximal nonexpansive mappings.
A modified Suzuki 𝛼 − 𝜓 proximal contraction is proposed
and discussed in [33] and “ad hoc” best proximity and
fixed point results are obtained. Generalizations of proximal
contractions of first and second kinds are given in [34, 35] for
non-self-mappings and related optimal approximate solution
theorems are obtained.

This paper is devoted to formulating and proving some
results being concerned with the boundedness and conver-
gence properties of distances and the convergence of the built
iterated sequences to unique existing best proximity points
of 𝑝-cyclic proximal and weak proximal contractions of the
form 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
(𝑝 ≥ 2) where 𝐴

𝑖
and 𝐵

𝑖
, for

all 𝑖 ∈ 𝑝 = {1, 2, . . . , 𝑝}, are nonempty subsets of 𝑋 which
satisfy 𝑇(𝐴

𝑖
) ⊆ 𝐵

𝑖
, for all 𝑖 ∈ 𝑝, with (𝑋, 𝑑) being a metric

space. In the most general case, all the 𝐴
𝑖
and 𝐵

𝑖
pairs of

subsets, for all 𝑖 ∈ 𝑝, are assumed to be pairwise disjoint.
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The results are also extended to a class of generalized 𝑝-
cyclic proximal and weak proximal contractions in the sense
that the contractiveness constraints are referred to finite sets
of consecutive iterations rather than to each iteration. The
boundedness and convergence of the sequences of distances
in the domains and image sets of the cyclic proximal and
weak cyclic proximal non-self-mappings are investigated.
The existence and uniqueness of the best proximity points
and their allocation as limit points, or limit cycles of best
proximity points, are also addressed.These last properties are
achieved if the metric space is complete under approximative
compactness’ assumptions of the image subsets of the cyclic
mapping with respect to the domain subsets.

2. 𝑝-Cyclic Proximal Contractions, Extensions,
Boundedness, and Convergence of Distances

Consider the metric space (𝑋, 𝑑) and subsets 𝐴
𝑖
and 𝐵

𝑖
of

𝑋 for 𝑖 ∈ 𝑝, where 𝑝 = {1, 2, . . . , 𝑝} with 𝑝 ≥ 2. Consider
also a non-self-mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
, satisfying

𝑇(𝐴
𝑖
) ⊆ 𝐵
𝑖
, for all 𝑖 ∈ 𝑝. Assume that𝐷

𝑖
= 𝑑(𝐴

𝑖+1
, 𝐵
𝑖
), 𝐷
𝐴
=

𝑑(𝐴
𝑖
, 𝐴
𝑖+1
), and 𝐷

𝐵
= 𝑑(𝐵

𝑖
, 𝐵
𝑖+1
), for all 𝑖 ∈ 𝑝 by assuming

also that 𝐴
𝑛𝑝+𝑖
= 𝐴
𝑖
and 𝐵

𝑛𝑝+𝑖
= 𝐵
𝑖
, for all 𝑖 ∈ 𝑝, for all 𝑛 ∈

Z
0+
. If the pair (𝑎

𝑖
, 𝑎
𝑖+1
) ∈ 𝐴
𝑖
×𝐴
𝑖+1

satisfies 𝑑(𝑎
𝑖+1
, 𝑇𝑎
𝑖
) = 𝐷

𝑖

for any 𝑖 ∈ 𝑝, then 𝑎
𝑖+1
∈ 𝐴
𝑖+1

and𝑇𝑎
𝑖
∈ 𝐵
𝑖
are best proximity

points in 𝐴
𝑖+1

and 𝐵
𝑖
with respect to 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐵
𝑖
.

In the following, the fact that the best proximity points
are best proximity points with respect to the mapping is not
mentioned explicitly.
𝐴
0𝑖
⊆ 𝐴
𝑖
is the set of best proximity points of 𝐴

𝑖
and

𝐵
0𝑖
⊆ 𝐵
𝑖
is the set of best proximity points of 𝐵

𝑖
. Through

the paper, it is assumed that 𝐴
0𝑖
̸= ⌀ and 𝐵

0𝑖
̸= ⌀, for all

𝑖 ∈ 𝑝. An important remark is that the above statement can
be considered for the particular case that 𝐵

𝑖
≡ 𝐴
𝑖+1

which
is well known in the context of 𝑝-cyclic self-mappings 𝑇 :
⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
with 𝑇(𝐴

𝑖
) ⊆ 𝐵

𝑖
for all 𝑖 ∈ 𝑝. However,

the proposed statement is more general in the sense of the
following illustrative example.

Example 1. Consider ametric space (𝑋, 𝑑) and𝑇 : 𝐴
1
∪𝐴
2
→

𝐵
1
∪𝐵
2
such that𝐴

𝑖
, 𝐵
𝑖
⊂ 𝑋 are nonempty with 𝑇(𝐴

0𝑖
) ⊆ 𝐵
0𝑖
,

𝐷
𝑖
= 𝑑(𝐴

𝑖+1
, 𝐵
𝑖
) = 𝑑(𝐴

0,𝑖+1
, 𝐵
0𝑖
), 𝐷
𝐴
= 𝑑(𝐴

𝑖
, 𝐴
𝑖+1
) =

𝑑(𝐴
0𝑖
, 𝐴
0,𝑖+1
), and 𝐷

𝐵
= 𝑑(𝐵

𝑖
, 𝐵
𝑖+1
) = 𝑑(𝐵

0𝑖
, 𝐵
0,𝑖+1
) for

𝑖 = 1, 2. Assume also that 𝐴
01
= {𝑥
1
, 𝑥
3
} ⊂ 𝐴

1
, 𝐵
01
=

{𝑇𝑥
1
, 𝑇𝑥
3
} ⊂ 𝐵

1
, 𝐴
02
= {𝑥
2
} ⊂ 𝐴

2
, and 𝐵

02
= {𝑇𝑥

2
} ⊂

𝐵
2
. Then, we can formulate the following simple 2-cyclic

proximal-type problem. Fix 𝑥
1
∈ 𝐴
01

as a best proximity
point of 𝐴

1
and then compute 𝑥

2
∈ 𝐴
02
and 𝑥

3
∈ 𝐴
01
, best

proximity points of 𝐴
2
and 𝐴

1
, such that

𝑑(𝑥
2
, 𝑇𝑥
1
) = 𝑑(𝐴

2
, 𝐵
1
) = 𝑑(𝐴

02
, 𝐵
01
) = 𝐷

1
(2-cyclic

proximal constraint, first step);

𝑑(𝑥
3
, 𝑇𝑥
2
) = 𝑑(𝐴

1
, 𝐵
2
) = 𝑑(𝐴

01
, 𝐵
02
) = 𝐷

2
(2-cyclic

proximal constraint, second step);

𝑑(𝐴
1
, 𝐴
2
) = 𝑑(𝐴

01
, 𝐴
02
) = 𝑑(𝑥

1
, 𝑥
2
) = 𝑑(𝑥

2
, 𝑥
3
) =

𝐷
𝐴
(2-cyclic best proximity constraints);

𝑑(𝑇𝑥
2
, 𝑇𝑥
1
) = 𝑑(𝑇𝑥

3
, 𝑇𝑥
2
) = 𝐷

𝐵
= 𝑑(𝐵

1
, 𝐵
2
) =

𝑑(𝐵
01
, 𝐵
02
) (2-cyclic associate best proximity con-

straints for the images).

Note that there are four potentially distinct constraints
related to 𝐷

1
, 𝐷
2
, 𝐷
𝐴
, and 𝐷

𝐵
which can be distinct so that

the problem is more general than the simple use of 𝐷 =

𝑑(𝐴
𝑖
, 𝐴
𝑖+1
) for 𝑖 = 1, 2 for the 2-cyclic self-mapping 𝑇 :

𝐴
1
∪𝐴
2
→ 𝐴
1
∪𝐴
2
. A variant proximal-type problem arises

if 𝐴
1
= 𝐵
2
and 𝐴

2
= 𝐵
1
and the best proximity points are

taken as follows:
𝑥
1
∈ 𝐴
01
, 𝑇𝑥
1
∈ 𝐴
02
, 𝑥
2
∈ 𝐴
01
, 𝑇𝑥
2
∈ 𝐴
02
, 𝑥
3
∈ 𝐴
01
, and

then 𝑑(𝑥
2
, 𝑇𝑥
1
) = 𝑑(𝑥

3
, 𝑇𝑥
2
) = 𝐷

𝐴
= 𝑑(𝐴

1
, 𝐴
2
).

The following definitions will be then used through the
paper.

Definition 2. 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is said to be a 𝑝-cyclic

proximal contraction with respect to its domain (CPD
𝑝
) if

there are real constants 𝛼
𝑖
∈ [0, 1), for all 𝑖 ∈ 𝑝, such that any

two sequences {𝑥
𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
and {𝑥

𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
, for all 𝑖 ∈ 𝑝,

satisfy the constraints

𝑑 (𝑥
𝑛𝑝+𝑖+1

, 𝑥
𝑛𝑝+𝑖
) ≤ 𝛼
𝑖
𝑑 (𝑥
𝑛𝑝+𝑖
, 𝑥
𝑛𝑝+𝑖−1

) + (1 − 𝛼
𝑖
)𝐷
𝐴
,

∀𝑖 ∈ 𝑝, ∀𝑛 ∈ Z
0+
,

(1)

𝑑 (𝑥
𝑛𝑝+𝑖+1

, 𝑥
𝑛𝑝+𝑖+1

) ≤ 𝛼
𝑖
𝑑 (𝑥
𝑛𝑝+𝑖
, 𝑥
𝑛𝑝+𝑖
) ,

∀𝑖 ∈ 𝑝, ∀𝑛 ∈ Z
0+
,

(2)

provided that 𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
, for any given 𝑗 ∈ 𝑝 with

𝐴
𝑖+𝑗
= 𝐴
𝑖+𝑗−𝑝

if 𝑖 > 𝑝 − 𝑗 and that 𝑑(𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) =

𝑑(𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝑑(𝐴

𝑖+1
, 𝐵
𝑖
) = 𝐷

𝑖
, for all 𝑖 ∈ 𝑝.

Definition 3. 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is said to be a weak

𝑝-cyclic proximal contraction with respect to its domain
(WCPD

𝑝
) if there are 𝑝 real constants 𝛼

𝑖
≥ 0, for all 𝑖 ∈ 𝑝,

subject to 𝛼 = ∏𝑝
𝑖=1
[𝛼
𝑖
] ∈ [0, 1), such that any two sequences

{𝑥
𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
and {𝑥

𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
, for all 𝑖 ∈ 𝑝, satisfy the

constraints (1) and (2) provided that 𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
for any given

𝑗 ∈ 𝑝 and that 𝑑(𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝑑(𝑥

𝑛𝑝+𝑖+1
, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝐷

𝑖
,

for all 𝑖 ∈ 𝑝.

Definition 4. 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is said to be a

generalized 𝑝-cyclic proximal contraction with respect to its
domain (GCPD

𝑝
) if there are 𝑝 bounded real functions 𝛼

𝑖
:

𝐴
𝑖
→ R
0+
, for all 𝑖 ∈ 𝑝, such that any sequences {𝑥

𝑛𝑝+𝑖
} ⊆

𝐴
𝑖+𝑗

and {𝑥
𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
, for all 𝑖 ∈ 𝑝, satisfy the constraints

(1) and (2) with the replacements 𝛼
𝑖
→ sup

𝑥∈𝐴𝑖
𝛼
𝑖
(𝑥), for all

𝑖 ∈ 𝑝, provided that 𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
for any given 𝑗 ∈ 𝑝 and that

𝑑(𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝑑(𝑥

𝑛𝑝+𝑖+1
, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝐷

𝑖
, for all 𝑖 ∈ 𝑝.

Definition 5. 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is said to be a

generalized weak 𝑝-cyclic proximal contraction with respect
to its domain (GWCPD

𝑝
) if there are 𝑝 bounded real

functions 𝛼
𝑖
: 𝐴
𝑖
→ R

0+
, for all 𝑖 ∈ 𝑝, and a strictly

increasing sequence of integers {𝑛
𝑘
}, subject to 𝑛

0
≤ 𝑁
0
<
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+∞, lim sup
𝑘→∞

(𝑛
𝑘+1
− 𝑛
𝑘
) ≤ 𝑁 < +∞, and 𝛼 =

sup
𝑘∈Z0+𝛼(𝑛𝑘, 𝑛𝑘+1) ∈ [0, 1), where

𝛼 (𝑛
𝑘
, 𝑛
𝑘+1
) =

𝑛𝑘+1−1

∏

𝑗=𝑛𝑘

𝑝

∏

𝑖=1

[ sup
𝑥𝑗+𝑖∈𝐴𝑖

𝛼
𝑗𝑝+𝑖
(𝑥
𝑗𝑝+𝑖
)] , ∀𝑘 ∈ Z

0+
,

(3)

such that any two sequences {𝑥
𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
and {𝑥

𝑛𝑝+𝑖
} ⊆

𝐴
𝑖+𝑗
, for all 𝑖 ∈ 𝑝, provided that 𝑥

0
, 𝑥
0
∈ 𝐴
𝑗
for any given

𝑗 ∈ 𝑝, satisfy the constraints

𝑑 (𝑥
𝑛𝑘+1𝑝
, 𝑥
𝑛𝑘+1𝑝−1

)

≤ 𝛼 (𝑛
𝑘
, 𝑛
𝑘+1
) 𝑑 (𝑥

𝑛𝑘𝑝+1
, 𝑥
𝑛𝑘𝑝
) + (1 − 𝛼 (𝑛

𝑘
, 𝑛
𝑘+1
))𝐷
𝐴
,

∀𝑘 ∈ Z
0+
,

(4)

𝑑 (𝑥
𝑛𝑘+1𝑝+𝑖

, 𝑥
𝑛𝑘+1𝑝+𝑖−1

)

≤ (

𝑖−1

∏

𝑗=1

[sup
𝑥∈𝐴𝑖

𝛼
𝑖 (𝑥)])𝑑 (𝑥𝑛𝑘+1𝑝

, 𝑥
𝑛𝑘+1𝑝−1

)

+

𝑖−1

∑

𝑗=1

(

𝑖−1

∏

𝑘=𝑗+1

[ sup
𝑥∈𝐴𝑘

𝛼
𝑘 (𝑥)])(1 − sup

𝑥∈𝐴𝑗

𝛼
𝑗 (𝑥))𝐷𝐴,

∀𝑘 ∈ Z
0+
,

(5)

𝑑 (𝑥
𝑛𝑘+1𝑝+𝑖

, 𝑥
𝑛𝑘+1𝑝+𝑖

)

≤ (

𝑖−1

∏

𝑗=1

[sup
𝑥∈𝐴𝑖

𝛼
𝑖 (𝑥)])𝛼 (𝑛𝑘, 𝑛𝑘+1) 𝑑 (𝑥𝑛𝑘𝑝

, 𝑥
𝑛𝑘𝑝
) ,

∀𝑘 ∈ Z
0+
,

(6)

and the constraints (1) and (2) provided that 𝑥
0
, 𝑥
0
∈

𝐴
𝑗
for any given 𝑗 ∈ 𝑝 and that 𝑑(𝑥

𝑛𝑝+𝑖+1
, 𝑇𝑥
𝑛𝑝+𝑖
) =

𝑑(𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝐷

𝑖
, for all 𝑖 ∈ 𝑝.

The following assertions are obvious without proof from
Definitions 2–5.

Assertions 1. If 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is CPD

𝑝
, then it is

WCPD
𝑝
.

If 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐵
𝑖
is WCPD

𝑝
, then it is GCPD

𝑝
.

If 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐵
𝑖
is GCPD

𝑝
, then it is GWCPD

𝑝
.

Note that the converse implications of those in Assertions
1 are not true in general. The relevant distances satisfy the
following convergence and boundedness result.

Lemma 6. Consider a metric space (𝑋, 𝑑) with subsets
𝐴
𝑖
, 𝐵
𝑖
⊂ 𝑋 and a 𝑝-cyclic mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖

which is 𝐺𝑊𝐶𝑃𝐷
𝑝
, subject to 𝐷

𝑖
= 𝑑(𝐴

𝑖+1
, 𝐵
𝑖
), 𝐷
𝐴
=

𝑑(𝐴
𝑖
, 𝐴
𝑖+1
), and 𝐷

𝐵
= 𝑑(𝐵

𝑖
, 𝐵
𝑖+1
), with 𝑇(𝐴

0𝑖
) ⊆ 𝐵

0𝑖
, for all

𝑖 ∈ 𝑝 such that 𝐴
0𝑖
⊆ 𝐴
𝑖
and 𝐵

0𝑖
⊆ 𝐵
𝑖
are nonempty, for all

𝑖 ∈ 𝑝. Consider also any sequences {𝑥
𝑛𝑝+𝑗
}, {𝑥
𝑛𝑝+𝑗
} ⊆ ⋃

𝑖∈𝑝
𝐴
𝑖

which satisfy 𝑑(𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝑑(𝑥

𝑛𝑝+𝑖+1
, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝐷

𝑖
, for

all 𝑖 ∈ 𝑝. Then, the following properties hold.
(i) The sequences of distances {𝑑(𝑥

𝑛
, 𝑥
𝑛+1
)} → 𝐷

𝐴
, {𝑑(𝑥

𝑛
,

𝑥
𝑛
)} → 0 and they are bounded for any given initial points

𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
, for any given 𝑗 ∈ 𝑝.

If, furthermore, 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is continuous

in cl𝑇(𝐴
0𝑖
), for all 𝑖 ∈ 𝑝, then {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛
)} → 0 and

{𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1
)} → 𝐷

𝐵
and both sequences of distances are

bounded for any given initial points 𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
, for

any given 𝑗 ∈ 𝑝.
If the sets of best proximity points 𝐴

0𝑖
and 𝐵

0𝑖
, for all 𝑖 ∈

𝑝, are bounded, then the sequences {𝑑(𝑥
𝑛
, 𝑥
𝑛+1
)}, {𝑑(𝑥

𝑛
, 𝑥
𝑛
)},

{𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
)}, and {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)} are uniformly bounded for

any initial points 𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
for some 𝑗 ∈ 𝑝.

(ii) The sequences {𝑥
𝑛𝑝+𝑖
} ⊆ cl𝐴

𝑖+𝑗
, for all 𝑖 ∈ 𝑝 (note

that 𝐴
𝑖+𝑗
= 𝐴
𝑖+𝑗−𝑝

and 𝐵
𝑖+𝑗
= 𝐵
𝑖+𝑗−𝑝

for 𝑖 > 𝑝 − 𝑗) are
Cauchy sequences for any initial points any given initial point
𝑥
0
∈ ⋃
𝑖∈𝑝
𝐴
𝑖
for any arbitrary given 𝑗 ∈ 𝑝. The corresponding

image sequences {𝑇𝑥
𝑛𝑝+𝑖
} ⊆ cl𝐵

𝑖+𝑗
, for all 𝑖 ∈ 𝑝, are also

Cauchy sequences if 𝑇(𝐴
0𝑖
) ⊆ 𝐵

0𝑖
, for all 𝑖 ∈ 𝑝, and 𝑇 :

⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐵
𝑖
is continuous in cl𝑇(𝐴

0𝑖
), for all 𝑖 ∈ 𝑝.

Proof. Note that, for any 𝑖 ∈ 𝑝, ⌀ ̸= 𝐴
0𝑖
⊆ 𝐴
𝑖
implies

𝐴
𝑖
̸= ⌀ and ⌀ ̸= 𝐵

0𝑖
⊆ 𝐵
𝑖
implies 𝐵

𝑖
̸= ⌀. Take sequences

with initial points 𝑥
0
, 𝑥
0
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
such that 𝑥

0
∈ 𝐴
𝑗
and

𝑥
0
∈ 𝐴
𝑖
for some 𝑖, 𝑗 ∈ 𝑝. The problem of boundedness

and convergence of distances can be described equivalently
from initial points 𝑥

0
, 𝑥


0
∈ 𝐴
𝑗
(i.e., both initial conditions

at the same set), with 𝑥
0
= 𝑇
ℓ
𝑥
0
and denoting 𝑥

0
→ 𝑥
0

for some ℓ ∈ 𝑝 − 1 ∪ {0} (in particular, ℓ = 0 if 𝑖 = 𝑗 for
the set of both initial points) since ℓ ≤ 𝑝 − 1. One has from
(1)-(2) and (3)–(6) that, for any sequences {𝑥

𝑛𝑝+𝑗+𝑖
} ⊆ 𝐴

𝑗+𝑖

and {𝑥
𝑛𝑝+𝑗+𝑖

} ⊆ 𝐴
𝑗+𝑖

fulfilling {𝑥
0
} ∈ 𝐴

𝑗
, {𝑥
0
} ∈ 𝐴

𝑗
and

𝑑(𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝑑(𝑥

𝑛𝑝+𝑖+1
, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝐷

𝑖
, for all 𝑗, 𝑖 ∈ 𝑝,

such that 𝐴
𝑗+𝑖
= 𝐴
𝑗+𝑖−𝑝

if 𝑖 > 𝑝 − 𝑗 and

𝐷
𝐴
≤ 𝑑 (𝑥

𝑛𝑝+𝑗+1
, 𝑥
𝑛𝑝+𝑗
) ≤ ( sup

𝑥∈𝐴𝑗

𝛼
𝑗 (𝑥))𝑑 (𝑥𝑛𝑝+𝑗, 𝑥𝑛𝑝+𝑗−1)

+ (1 − sup
𝑥∈𝐴𝑗

𝛼
𝑗 (𝑥))𝐷𝐴, ∀𝑗 ∈ 𝑝, ∀𝑛 ∈ Z

0+
,

𝐷
𝐴
≤ 𝑑 (𝑥

𝑛𝑝+𝑗+2
, 𝑥
𝑛𝑝+𝑗+1

) ≤ ( sup
𝑥∈𝐴𝑗+1

𝛼
𝑗+1 (𝑥))

× (( sup
𝑥∈𝐴𝑗

𝛼
𝑗 (𝑥))𝑑 (𝑥𝑛𝑝+𝑗, 𝑥𝑛𝑝+𝑗−1)

+(1 − sup
𝑥∈𝐴𝑗

𝛼
𝑗 (𝑥))𝐷𝐴)

+ (1 − sup
𝑥∈𝐴𝑗

𝛼
𝑗+1 (𝑥))𝐷𝐴
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= 𝐷
𝐴
+ ( sup
𝑥∈𝐴𝑗+1

𝛼
𝑗+1 (𝑥))( sup

𝑥∈𝐴𝑗

𝛼
𝑗 (𝑥))

× (𝑑 (𝑥
𝑛𝑝+𝑗
, 𝑥
𝑛𝑝+𝑗−1

) − 𝐷
𝐴
) ,

𝐷
𝐴
≤ 𝑑 (𝑥

𝑛𝑝+𝑗+3
, 𝑥
𝑛𝑝+𝑗+2

)

≤ 𝐷
𝐴
+ ( sup
𝑥∈𝐴𝑗+2

𝛼
𝑗+1 (𝑥))

× ( sup
𝑥∈𝐴𝑗+1

𝛼
𝑗+1 (𝑥))( sup

𝑥∈𝐴𝑗

𝛼
𝑗 (𝑥))

× (𝑑 (𝑥
𝑛𝑝+𝑗
, 𝑥
𝑛𝑝+𝑗−1

) − 𝐷
𝐴
) ,

(7)

𝐷
𝐴
≤ 𝑑 (𝑥

𝑛𝑘+1𝑝
, 𝑥
𝑛𝑘+1𝑝−1

) ≤ 𝛼 (𝑛
𝑘
, 𝑛
𝑘+1
) 𝑑 (𝑥

𝑛𝑘𝑝+1
, 𝑥
𝑛𝑘𝑝
)

+ (1 − 𝛼 (𝑛
𝑘
, 𝑛
𝑘+1
))𝐷
𝐴

≤ 𝐷
𝐴
+ 𝛼 (𝑛

𝑘
, 𝑛
𝑘+1
) 𝛼 (𝑛
𝑘−1
, 𝑛
𝑘−2
)

× (𝑑 (𝑥
𝑛𝑘−1𝑝+1

, 𝑥
𝑛𝑘−1𝑝
) − 𝐷
𝐴
)

≤ 𝐷
𝐴
+ (

𝑘

∏

𝑗=0

[𝛼 (𝑛
𝑗
, 𝑛
𝑗+1
)]) (𝑑 (𝑥

𝑛0𝑝+1
, 𝑥
𝑛0𝑝
) − 𝐷
𝐴
)

≤ 𝐷
𝐴
+ 𝛼
𝑘+1
(𝑑 (𝑥
𝑛0𝑝+1

, 𝑥
𝑛0𝑝
) − 𝐷
𝐴
)

(8a)

< 𝑑 (𝑥
𝑛0𝑝+1

, 𝑥
𝑛0𝑝
) < +∞, ∀𝑘 ∈ Z

0+
, (8b)

𝐷
𝐴
≤ 𝑑 (𝑥

𝑛𝑘+1𝑝+𝑖
, 𝑥
𝑛𝑘+1𝑝+𝑖−1

)

≤ 𝐷
𝐴
+ (

𝑖−1

∏

𝑗=1

[

[

sup
𝑥∈⋃
𝑗∈𝑝
𝐴𝑗

𝛼
𝑗 (𝑥)
]

]

)

× (

𝑘

∏

𝑗=0

[𝛼 (𝑛
𝑗
, 𝑛
𝑗+1
)]) (𝑑 (𝑥

𝑛0𝑝+1
, 𝑥
𝑛0𝑝
) − 𝐷
𝐴
)

≤ 𝐷
𝐴
+ (

𝑖−1

∏

𝑗=1

[

[

sup
𝑥∈⋃
𝑗∈𝑝
𝐴𝑗

𝛼
𝑗 (𝑥)
]

]

)

× 𝛼
𝑘+1
(𝑑 (𝑥
𝑛0𝑝+1

, 𝑥
𝑛0𝑝
) − 𝐷
𝐴
)

≤ 𝐷
𝐴
+ 𝛼
𝑘+1
(1 + 𝑁 + 𝑁



) �̂�
𝑀
(𝑑 (𝑥
𝑛0𝑝+1

, 𝑥
𝑛0𝑝
) − 𝐷
𝐴
)

(9a)

< 𝐷
𝐴
+ (

𝑖−1

∏

𝑗=1

[

[

sup
𝑥∈⋃
𝑗∈𝑝
𝐴𝑗

𝛼
𝑗 (𝑥)
]

]

)

× (𝑑 (𝑥
𝑛0𝑝+1

, 𝑥
𝑛0𝑝
) − 𝐷
𝐴
)

≤ max(1,
𝑖−1

∏

𝑗=1

[

[

sup
𝑥∈⋃
𝑗∈𝑝
𝐴𝑗

𝛼
𝑗 (𝑥)
]

]

)𝑑 (𝑥
𝑛0𝑝+1

, 𝑥
𝑛0𝑝
)

≤ (1 + 𝑁 + 𝑁


) �̂�
𝑀
𝑑 (𝑥
𝑛0𝑝+1

, 𝑥
𝑛0𝑝
) , ∀𝑘 ∈ Z

0+
,

(9b)

for all 𝑖 ∈ (1,max(𝑛
𝑘+1
− 𝑛
𝑘
)) ∩ Z

0+
since 𝛼 ∈ [0, 1),

lim sup
𝑘→∞

(𝑛
𝑘+1
− 𝑛
𝑘
) ≤ 𝑁 < +∞ and 𝛼

𝑖
∈ 𝐵(𝐴

𝑖
;R
0+
) with

max
𝑖∈𝑝
(sup
𝑥∈𝐴𝑖
𝛼
𝑖
(𝑥)) ≤ �̂�

𝑀
< +∞.

Thus, ∃lim
𝑘→∞

𝑑(𝑥
𝑛𝑘+1𝑝+𝑖

, 𝑥
𝑛𝑘+1𝑝+𝑖−1

) = lim
𝑘→∞

𝑑(𝑥
𝑛𝑘𝑝+𝑖
,

𝑥
𝑛𝑘+1𝑝+𝑖−1

) = lim
𝑘→∞

𝑑(𝑥
𝑛𝑘+1𝑝+𝑖

, 𝑥
𝑛𝑘𝑝+𝑖−1

) = 𝐷
𝐴
, for all

𝑖 ∈ (1,max(𝑛
𝑘+1
− 𝑛
𝑘
)) ∩ Z

0+
from (9a) and the distance

subsequence {𝑑(𝑥
𝑛𝑘+1𝑝+𝑖

, 𝑥
𝑛𝑘+1𝑝+𝑖−1

)}, for all 𝑖 ∈ (1,max(𝑛
𝑘+1
−

𝑛
𝑘
)) ∩ Z

0+
is bounded from (9b) for any given initial points

𝑥
0
, 𝑥
0
∈ ⋃
𝑖∈𝑝
𝐴
𝑖
. Also, one gets from (6), subject to (3), that

∃ lim
𝑘→∞

𝑑 (𝑥
𝑛𝑘+1𝑝+𝑖

, 𝑥
𝑛𝑘+1𝑝+𝑖

)

= lim
𝑘→∞

𝑑 (𝑥
𝑛𝑘𝑝+𝑖
, 𝑥
𝑛𝑘+1𝑝+𝑖

) = lim
𝑘→∞

𝑑 (𝑥
𝑛𝑘𝑝+𝑖
, 𝑥
𝑛𝑘+1𝑝+𝑖

) = 0,

(10)

for all 𝑖 ∈ (1,max(𝑛
𝑘+1
− 𝑛
𝑘
)) ∩ Z

0+
. Those results also

imply that the sequences of distances {𝑑(𝑥
𝑛
, 𝑥
𝑛+1
)} →

𝐷
𝐴
, {𝑑(𝑥
𝑛
, 𝑥
𝑛
)} → 0. It is now proved by contradiction that

{𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1
)} → 𝐷

𝐵
and {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛
)} → 0. Assume

that, for each given 𝑥
0
∈ 𝐴
0𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
for some 𝑗 ∈ 𝑝

and any 𝜀 ∈ R
+
, there are some 𝛿 ∈ R

+
, some 𝑖 ∈ 𝑝, some

𝑘
0
= 𝑘
0
(𝜀, 𝑥
0
) ∈ Z
0+
, sequences of integers {𝑛

𝑘ℓ
} ⊆ {𝑛

𝑘
} ⊆ Z
0+
,

and sequences of best proximity points {𝑥∗
𝑛𝑘𝑝+𝑖
} ⊆ cl(𝐴

0,𝑖+𝑗
)

and {𝑇𝑥∗
𝑛𝑘𝑝+𝑖
} ⊆ cl(𝐵

0,𝑖+𝑗
) for 𝑘 > 𝑘

0
, such that {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛
)}

does not converge to zero so that it has some subsequence
which does not converge either:

𝑑 (𝐴
𝑖
, 𝐴
𝑖+1
) = 𝑑 (𝐴

0𝑖
, 𝐴
0,𝑖+1
) = 𝐷

𝐴
,

𝑑 (𝑇 (𝐴
0𝑖
) , 𝑇 (𝐴

0,𝑖+1
)) = 𝑑 (𝐵

𝑖
, 𝐵
𝑖+1
) = 𝑑 (𝐵

0𝑖
, 𝐵
0,𝑖+1
) = 𝐷

𝐵
,

∀𝑖 ∈ 𝑝,

𝑑 (𝑥
𝑛𝑘𝑝+𝑖
, 𝑥
∗

𝑛𝑘𝑝+𝑖−1
) < 𝐷

𝐴
+ 𝜀,

𝑑 (𝑇𝑥
𝑛𝑘ℓ
𝑝+𝑖
, 𝑇𝑥
∗

𝑛𝑘ℓ
𝑝+𝑖−1

) ≥ 𝛿 + 𝐷
𝐵
,

∀𝑘 > 𝑘
0
,

𝑑 (𝑥
𝑛𝑘𝑝+𝑖
, 𝑥
∗

𝑛𝑘𝑝+𝑖
) < 𝜀, 𝑑 (𝑇𝑥

𝑛𝑘ℓ
𝑝+𝑖
, 𝑇𝑥
∗

𝑛𝑘ℓ
𝑝+𝑖
) ≥ 𝛿,

∀𝑘 > 𝑘
0
,
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𝑇𝑥
∗

𝑛𝑘𝑝+𝑖
∈ cl𝐵
0,𝑖+𝑗
⊆ cl𝐵

𝑖+𝑗
,

𝑇𝑥
𝑛𝑝+𝑖−1

∈ cl𝐵
0,𝑖+𝑗−1

⊆ cl𝐵
𝑖+𝑗−1
,

∀𝑗 ∈ 𝑝

(11)

since 𝑇(𝐴
0𝑖
) ⊆ 𝐵

0𝑖
, for all 𝑖 ∈ 𝑝. This implies that {𝑥

𝑛𝑘ℓ
𝑝+𝑖
−

𝑥
∗

𝑛𝑘ℓ𝑝+𝑖
} → 0while {𝑇𝑥

𝑛𝑘ℓ
𝑝+𝑖
−𝑇𝑥
∗

𝑛𝑘ℓ𝑝+𝑖
} does not converge to

zero.
Since {𝑥

𝑛𝑘ℓ
𝑝+𝑖
− 𝑥
∗

𝑛𝑘ℓ𝑝+𝑖
} → 0, {𝑥∗

𝑛𝑘𝑝+𝑖
} ⊆ cl(𝐴

0,𝑖+𝑗
),

{𝑇𝑥
∗

𝑛𝑘𝑝+𝑖
} ⊆ cl(𝑇(𝐴

0,𝑖+𝑗
)) ⊆ cl(𝐵

0,𝑖+𝑗
), and 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→

⋃
𝑖∈𝑝
𝐵
𝑖
is continuous in cl(𝐴

0,𝑖+𝑗
), for all 𝑗 ∈ 𝑝 and any given

𝑗 ∈ 𝑝, then {𝑇𝑥
𝑛𝑘ℓ
𝑝+𝑖
− 𝑇𝑥
∗

𝑛𝑘ℓ𝑝+𝑖
} → 0. Also, {𝑥∗

𝑛𝑘𝑝+𝑖−1
} ⊆

cl(𝐴
0,𝑖+𝑗−1

), {𝑇𝑥
∗

𝑛𝑘𝑝+𝑖−1
} ⊆ cl(𝑇(𝐴

0,𝑖+𝑗−1
)) ⊆ cl(𝐵

0,𝑖+𝑗−1
), for all

𝑖 ∈ 𝑝 and any given 𝑗 ∈ 𝑝; then {𝑑(𝑇𝑥
𝑛𝑘ℓ
𝑝+𝑖
, 𝑇𝑥
∗

𝑛𝑘ℓ
𝑝+𝑖−1

)} →

𝐷
𝐵
, {𝑑(𝑇𝑥

𝑛𝑘ℓ
𝑝+𝑖−1

, 𝑇𝑥
∗

𝑛𝑘ℓ
𝑝+𝑖
)} → 𝐷

𝐵
. Thus, {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛
)} →

0 and {𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1
)} → 0 if 𝑥

0
, 𝑥
0
∈ 𝐴
𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
, for any

given 𝑗 ∈ 𝑝.
On the other hand, {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛
)} and {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)} are

bounded, since {𝑑(𝑥
𝑛
, 𝑥
𝑛
)} is bounded from (6) because 𝑇 :

⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐵
𝑖
is GWCPD

𝑝
and since one has for some

positive real constant𝑀 = 𝑀(𝑑(𝑥
0
, 𝑥
0
)) that

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) ≤ 𝑑 (𝑇𝑥

𝑛
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛
)

≤ 2max
1≤𝑖≤𝑝

𝐷
𝑖
+𝑀, ∀𝑛 ∈ Z

0+
,

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1
)

≤ 𝑑 (𝑇𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑇𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+1
)

≤ 2max
1≤𝑖≤𝑝

𝐷
𝑖
+𝑀, ∀𝑛 ∈ Z

0+
.

(12)

If the sets of best proximity points 𝐴
0𝑖

for all 𝑖 ∈ 𝑝

are bounded, then the sequences of distances {𝑑(𝑥
𝑛
, 𝑥
𝑛+1
)},

{𝑑(𝑥
𝑛
, 𝑥
𝑛
)}, {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛
)}, and {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)} are uniformly

bounded for any initial best proximity points 𝑥
0
, 𝑥
0
∈

𝐴
0𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
for some 𝑗 ∈ 𝑝 which follows by taking

𝑀 = 𝑀 sup
𝑥0 ,𝑥0∈⋃𝑖∈𝑝 𝐴𝑖

(𝑑(𝑥
0
, 𝑥
0
)). Property (i) has been fully

proved.
To prove Property (ii), take any sequences {𝑥

𝑛𝑝+𝑖
} ⊆ 𝐴

0,𝑖+𝑗

and {𝑥
𝑛𝑝+𝑖
} ⊆ 𝐴

0,𝑖+𝑗
, for all 𝑖 ∈ 𝑝, for given initial points

𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
for some 𝑗 ∈ 𝑝. Note, from (6) for

{𝑥
𝑛𝑘+1𝑝+𝑖

} = {𝑥
𝑛𝑘𝑝+𝑖
}, for all 𝑖 ∈ 𝑝, that

𝑑 (𝑥
𝑛𝑘+1𝑝+𝑖

, 𝑥
𝑛𝑘𝑝+𝑖
)

≤ 𝐻𝑑 (𝑥
𝑛𝑘𝑝
, 𝑥
𝑛𝑘−1𝑝
) ≤ ℎ
0
𝛼𝑑 (𝑥

𝑛𝑘𝑝
, 𝑥
𝑛𝑘−1𝑝
) ,

∀𝑘 ∈ Z
0+
, ∀𝑖 ∈ 𝑝, (13)

𝑑 (𝑥
𝑛𝑘+1𝑝+𝑖+ℓℎ

, 𝑥
𝑛𝑘𝑝+𝑖
)

≤ ℎ
0
𝛼 (1 + 𝛼 + ⋅ ⋅ ⋅ + 𝛼

ℓ
) 𝑑 (𝑥

𝑛𝑘𝑝
, 𝑥
𝑛𝑘−1𝑝
)

𝑑 (𝑥
𝑛𝑘+1𝑝+𝑖+ℓℎ

, 𝑥
𝑛𝑘𝑝+𝑖
)

≤ ℎ
0

𝛼 (1 − 𝛼
ℓ+1
)

1 − 𝛼
𝑑 (𝑥
𝑛𝑘𝑝
, 𝑥
𝑛𝑘−1𝑝
)

≤ ℎ
0

𝛼

1 − 𝛼
𝑑 (𝑥
𝑛𝑘𝑝
, 𝑥
𝑛𝑘−1𝑝
) , ∀𝑘, ℓ ∈ Z

0+
, ∀𝑖 ∈ 𝑝,

(14)

with the given upper bound being independent of the integers
ℓ and 𝑖. Thus, one has for any Z

0+
that

𝑑 (𝑥
𝑛𝑘+𝑚+1𝑝+𝑖+ℓ𝑗

, 𝑥
𝑛𝑘+𝑚𝑝+𝑖

) ≤ 𝛼
𝑚
ℎ
0

𝛼

1 − 𝛼
𝑑 (𝑥
𝑛𝑘𝑝
, 𝑥
𝑛𝑘−1𝑝
) ,

∀𝑘 ∈ Z
0+
, ∀𝑖 ∈ 𝑝, ∀𝑗 (≤ ℎ) , ℓ ∈ Z0+,

(15)

where 𝐻 = sup
𝑘∈Z0+(∏

𝑝

𝑗=1
[sup
𝑥∈𝐴𝑖
𝛼
𝑖
(𝑥)]𝛼(𝑛

𝑘
, 𝑛
𝑘+1
)) ≤ ℎ

0
𝛼,

with ℎ
0
≥ sup

𝑘∈Z0+(∏
𝑝

𝑗=1
[sup
𝑥∈𝐴𝑖
𝛼
𝑖
(𝑥)]) and 1 ≤ 𝑗 ≤ ℎ =

max(1, sup
𝑘∈Z0+(𝑛𝑘+1 − 𝑛𝑘)), since Definition 5 holds for 𝛼 =

sup
𝑘∈Z0+𝛼(𝑛𝑘, 𝑛𝑘+1) ∈ [0, 1). Thus, one gets from (15) that,

for any given real 𝜀 ∈ R
+
, 𝑑(𝑥
𝑛𝑘+𝑚+1𝑝+𝑖+ℓ𝑗

, 𝑥
𝑛𝑘+𝑚𝑝+𝑖

) < 𝜀, for
all 𝑘, ℓ, 𝑗(≤ ℎ) ∈ Z

0+
for any 𝑖 ∈ 𝑝 and any given integers

𝑛
𝑘−1
, 𝑛
𝑘
∈ Z
0+

if 𝑚(∈ Z
0+
) > ln(ℎ

0
𝑑(𝑥
𝑛𝑘𝑝
, 𝑥
𝑛𝑘−1𝑝
)/(1 −

𝛼)𝜀)/| ln𝛼| − 1. Thus, the sequences {𝑥
𝑛𝑝+𝑖
} ⊆ cl𝐴

0𝑖
, for

all 𝑖 ∈ 𝑝, are Cauchy sequences for any given initial point
𝑥
0
∈ 𝐴
0𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
and any 𝑗 ∈ 𝑝. This implies also that

the sequences of images of the above points are also Cauchy
sequences since 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is contractive and

then continuous.

From Assertions 1, we also have the subsequent parallel
result to Lemma 6.

Lemma 7. Assume that 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖

is either 𝐺𝐶𝑃𝐷
𝑝
or 𝑊𝐶𝑃𝐷

𝑝
or 𝐶𝑃𝐷

𝑝
with the assump-

tions of Lemma 6, and consider any sequences {𝑥
𝑛𝑝+𝑗
},

{𝑥
𝑛𝑝+𝑗
} ⊆ ⋃

𝑖∈𝑝
𝐴
𝑖
which satisfy 𝑑(𝑥

𝑛𝑝+𝑖+1
, 𝑇𝑥
𝑛𝑝+𝑖
) =

𝑑(𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝐷

𝑖
, for all 𝑖 ∈ 𝑝. Then, the following

properties hold.
(i) The sequences of distances {𝑑(𝑥

𝑛
, 𝑥
𝑛+1
)} → 𝐷

𝐴
,

{𝑑(𝑥
𝑛
, 𝑥
𝑛
)} → 0 and they are bounded for any given initial

points 𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
for any given 𝑗 ∈ 𝑝.

If, furthermore, 𝑇(𝐴
0𝑖
) ⊆ 𝐵

0𝑖
, for all 𝑖 ∈ 𝑝, and 𝑇 :

⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is continuous in clT(𝐴

0𝑖
), for all 𝑖 ∈ 𝑝,

then {𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
)} → 0 and {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)} → 𝐷

𝐵
and

it is bounded for any initial points for any given initial points
𝑥
0
, 𝑥
0
∈ 𝐴
0𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
, for some 𝑗 ∈ 𝑝.

If the sets of best proximity points 𝐴
0𝑖
and 𝐵

0𝑖
, for all 𝑖 ∈

𝑝, are bounded, then the sequences {𝑑(𝑥
𝑛
, 𝑥
𝑛+1
)}, {𝑑(𝑥

𝑛
, 𝑥
𝑛
)},

{𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
)}, and {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)} are uniformly bounded for

any initial best proximity points 𝑥
0
, 𝑥
0
∈ 𝐴
0𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
for

some 𝑗 ∈ 𝑝.
(ii) The sequences {𝑥

𝑛𝑝+𝑖
} ⊆ cl𝐴

0,𝑖+𝑗
, for all 𝑖 ∈ 𝑝, are

Cauchy sequences for any given initial point 𝑥
0
∈ 𝐴
0𝑗
⊂
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⋃
𝑖∈𝑝
𝐴
𝑖
for any given 𝑗 ∈ 𝑝. The corresponding image

sequences {𝑇𝑥
𝑛𝑝+𝑖
} ⊆ cl𝐵

0,𝑖+𝑗
, for all 𝑖 ∈ 𝑝, are also convergent,

then Cauchy sequences if 𝑇(𝐴
0𝑖
) ⊆ 𝐵

0𝑖
, for all 𝑖 ∈ 𝑝, and 𝑇 :

⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐵
𝑖
is continuous in cl𝑇(𝐴

0𝑖
), for all 𝑖 ∈ 𝑝.

Definition 8. 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is said to be a 𝑝-cyclic

proximal contraction with respect to its image (CPI
𝑝
) if there

are real constants 𝛽
𝑖
∈ [0, 1), for all 𝑖 ∈ 𝑝, such that any two

sequences {𝑇𝑥
𝑛𝑝+𝑖
} ⊆ 𝑇(𝐴

𝑖+𝑗
) ⊆ 𝐵
𝑖+𝑗

and {𝑥
𝑛𝑝+𝑖
} ⊆ 𝑇(𝐴

𝑖+𝑗
) ⊆

𝐵
𝑖+𝑗
, for all 𝑖 ∈ 𝑝, being point-to-point images of sequences

{𝑥
𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
and {𝑥

𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
for any given 𝑗 ∈ 𝑝 which

satisfy 𝑑(𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝑑(𝑥

𝑛𝑝+𝑖+1
, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝐷

𝑖
, for all 𝑖 ∈

𝑝, where 𝐵
𝑖+𝑗
= 𝐵
𝑖+𝑗−𝑝

if 𝑖 > 𝑝 − 𝑗 such that the initial points
𝑇𝑥
0
, 𝑇𝑥
0
∈ 𝑇(𝐴

𝑗
) ⊆ 𝐵
𝑗
are the images of points 𝑥

0
, 𝑥
0
∈ 𝐴
𝑗
,

for any given 𝑗 ∈ 𝑝, satisfy the constraints

𝑑 (𝑇𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
)

≤ 𝛽
𝑖
𝑑 (𝑇𝑥

𝑛𝑝+𝑖
, 𝑇𝑥
𝑛𝑝+𝑖−1

) + (1 − 𝛽
𝑖
)𝐷
𝐵
,

∀𝑖 ∈ 𝑝, ∀𝑛 ∈ Z
0+
,

(16)

𝑑 (𝑇𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖+1

) ≤ 𝛽
𝑖
𝑑 (𝑇𝑥

𝑛𝑝+𝑖
, 𝑇𝑥
𝑛𝑝+𝑖
) ,

∀𝑖 ∈ 𝑝, ∀𝑛 ∈ Z
0+
.

(17)

Definition 9. 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is said to be a

weak 𝑝-cyclic proximal contraction with respect to its image
(WCPI

𝑝
) if there are 𝑝 real constants 𝛽

𝑖
≥ 0, for all 𝑖 ∈ 𝑝,

subject to 𝛽 = ∏𝑝
𝑖=1
[𝛽
𝑖
] ∈ [0, 1), such that any two sequences

{𝑇𝑥
𝑛𝑝+𝑖
} ⊆ 𝑇(𝐴

𝑖+𝑗
) ⊆ 𝐵
𝑖+𝑗

and {𝑇𝑥
𝑛𝑝+𝑖
} ⊆ 𝑇(𝐴

𝑖+𝑗
) ⊆ 𝐵
𝑖+𝑗
, for

all 𝑖 ∈ 𝑝, being point-to-point images of sequences {𝑥
𝑛𝑝+𝑖
} ⊆

𝐴
𝑖+𝑗

and {𝑥
𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
for any given 𝑗 ∈ 𝑝, where 𝐵

𝑖+𝑗
=

𝐵
𝑖+𝑗−𝑝

for 𝑖 > 𝑝 − 𝑗, for all 𝑖 ∈ 𝑝, such that the initial points
𝑇𝑥
0
, 𝑇𝑥
0
∈ 𝑇(𝐴

𝑗
) ⊆ 𝐵
𝑗
are the images of points 𝑥

0
, 𝑥
0
∈ 𝐴
𝑗
,

for any given 𝑗 ∈ 𝑝, satisfy constraints (16) and (17).

Definition 10. 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is said to be a

generalized 𝑝-cyclic proximal contraction with respect to its
image (GCPI

𝑝
) if there are 𝑝 bounded real functions 𝛽

𝑖
:

𝐴
𝑖
→ R
0+
, for all 𝑖 ∈ 𝑝, such that any sequences {𝑇𝑥

𝑛𝑝+𝑖
} ⊆

𝑇(𝐴
𝑖+𝑗
) ⊆ 𝐵

𝑖+𝑗
and {𝑇𝑥

𝑛𝑝+𝑖
} ⊆ 𝑇(𝐴

𝑖+𝑗
) ⊆ 𝐵

𝑖+𝑗
, for all 𝑖 ∈ 𝑝,

being point-to-point images of sequences {𝑥
𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
and

{𝑥
𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
for any given 𝑗 ∈ 𝑝, where 𝐵

𝑖+𝑗
= 𝐵
𝑖+𝑗−𝑝

for 𝑖 > 𝑝 − 𝑗, for all 𝑖 ∈ 𝑝, such that the initial points
𝑇𝑥
0
, 𝑇𝑥
0
∈ 𝑇(𝐴

𝑗
) ⊆ 𝐵
𝑗
are the images of points 𝑥

0
, 𝑥
0
∈ 𝐴
𝑗
,

satisfy the constraints (16) and (17) with the replacements
𝛽
𝑖
→ sup

𝑥∈𝐴𝑖
𝛽
𝑖
(𝑇𝑥), for all 𝑖 ∈ 𝑝.

Definition 11. 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is said to be a gener-

alized weak 𝑝-cyclic proximal contraction with respect to its
image (GWCPI

𝑝
) if there are 𝑝 bounded real functions 𝛽

𝑖
:

𝐴
𝑖
→ R
0+
, for all 𝑖 ∈ 𝑝, and a strictly increasing sequence of

integers {𝑛
𝑘
}, subject to 𝑛

0
≤ 𝑁
0
< +∞, lim sup

𝑘→∞
(𝑛
𝑘+1
−

𝑛
𝑘
) ≤ 𝑁 < +∞, and 𝛼 = sup

𝑘∈Z0+𝛽(𝑛𝑘, 𝑛𝑘+1) ∈ [0, 1), where

𝛽 (𝑛
𝑘
, 𝑛
𝑘+1
) =

𝑛𝑘+1−1

∏

𝑗=𝑛𝑘

𝑝

∏

𝑖=1

[ sup
𝑥𝑗+𝑖∈𝐴𝑖

𝛽
𝑗𝑝+𝑖
(𝑇𝑥
𝑗𝑝+𝑖
)] , ∀𝑘 ∈ Z

0+
,

(18)

such that any two sequences {𝑇𝑥
𝑛𝑝+𝑖
} ⊆ 𝑇(𝐴

𝑖+𝑗
) ⊆ 𝐵

𝑖+𝑗
and

{𝑥
𝑛𝑝+𝑖
} ⊆ 𝑇(𝐴

𝑖+𝑗
) ⊆ 𝐵

𝑖+𝑗
, for all 𝑖 ∈ 𝑝, being point-to-point

images of sequences {𝑥
𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
and {𝑥

𝑛𝑝+𝑖
} ⊆ 𝐴

𝑖+𝑗
for any

given 𝑗 ∈ 𝑝, where 𝐵
𝑖+𝑗
= 𝐵
𝑖+𝑗−𝑝

for 𝑖 > 𝑝 − 𝑗, for all 𝑖 ∈ 𝑝,
such that the initial points 𝑇𝑥

0
, 𝑇𝑥
0
∈ 𝑇(𝐴

𝑗
) ⊆ 𝐵

𝑗
are the

images of points 𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
, for any given 𝑗 ∈ 𝑝, satisfy the

following constraints:

𝑑 (𝑇𝑥
𝑛𝑘+1𝑝
, 𝑇𝑥
𝑛𝑘+1𝑝−1

)

≤ 𝛽 (𝑛
𝑘
, 𝑛
𝑘+1
) 𝑑 (𝑇𝑥

𝑛𝑘𝑝+1
, 𝑇𝑥
𝑛𝑘𝑝
) + (1 − 𝛽 (𝑛

𝑘
, 𝑛
𝑘+1
))𝐷
𝐵
,

∀𝑘 ∈ Z
0+
,

(19)

𝑑 (𝑇𝑥
𝑛𝑘+1𝑝+𝑖

, 𝑇𝑥
𝑛𝑘+1𝑝+𝑖−1

)

≤ (

𝑖−1

∏

𝑗=1

[sup
𝑥∈𝐴𝑖

𝛽
𝑖 (𝑇𝑥)])𝑑 (𝑇𝑥𝑛𝑘+1𝑝

, 𝑇𝑥
𝑛𝑘+1𝑝−1

)

+

𝑖−1

∑

𝑗=1

(

𝑖−1

∏

𝑘=𝑗+1

[ sup
𝑥∈𝐴𝑘

𝛽
𝑘 (𝑇𝑥)])(1 − sup

𝑥∈𝐴𝑗

𝛽
𝑗 (𝑥))𝐷𝐵,

∀𝑘 ∈ Z
0+
,

(20)

𝑑 (𝑇𝑥
𝑛𝑘+1𝑝+𝑖

, 𝑇𝑥
𝑛𝑘+1𝑝+𝑖

)

≤ (

𝑖−1

∏

𝑗=1

[sup
𝑥∈𝐴𝑖

𝛽
𝑖 (𝑇𝑥)])𝛽 (𝑛𝑘, 𝑛𝑘+1) 𝑑 (𝑇𝑥𝑛𝑘𝑝

, 𝑇𝑥
𝑛𝑘𝑝
) ,

∀𝑘 ∈ Z
0+
,

(21)

and constraints (16) and (17) with the replacements 𝛽
𝑖
→

sup
𝑥∈𝐴𝑖
𝛽
𝑖
(𝑇𝑥), for all 𝑖 ∈ 𝑝.

The following assertions are obvious without proof from
Definitions 8–11 and are a parallel result to Assertions 1.

Assertions 2. If 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is CPI

𝑝
, then it is

WCPI
𝑝
.

If 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐵
𝑖
is WCPI

𝑝
, then it is GCPI

𝑝
.

If 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐵
𝑖
is GCPI

𝑝
, then it is GWCPI

𝑝
.

Note that the converse implications of those in Assertions
1 are not true in general.

The relevant distances satisfy the following convergence
and boundedness result which is a counterpart of Lemmas 6
and 7. Its proof is close to that of Lemma 6 and Assertions 2
by using (16) and (17) for Definition 11 and their variants for
Definitions 8–10.
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Lemma 12. Assume that 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖

is either 𝐺𝑊𝐶𝑃𝐼
𝑝

or 𝐺𝐶𝑃𝐼
𝑝

or 𝑊𝐶𝑃𝐼
𝑝

or 𝐶𝑃𝐼
𝑝

under
the assumptions of Lemma 6, and consider any sequences
{𝑥
𝑛𝑝+𝑗
}, {𝑥
𝑛𝑝+𝑗
} ⊆ ⋃

𝑖∈𝑝
𝐴
𝑖
which satisfy 𝑑(𝑥

𝑛𝑝+𝑖+1
, 𝑇𝑥
𝑛𝑝+𝑖
) =

𝑑(𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝐷

𝑖
, for all 𝑖 ∈ 𝑝. Then, the following

properties hold.
(i) The sequences of distances {𝑑(𝑥

𝑛
, 𝑥
𝑛+1
)} → 𝐷

𝐴
,

{𝑑(𝑥
𝑛
, 𝑥
𝑛
)} → 0 and they are bounded for any given initial

points 𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
, for some 𝑗 ∈ 𝑝.

If, furthermore, 𝑇(𝐴
0𝑖
) ⊆ 𝐵

0𝑖
, for all 𝑖 ∈ 𝑝, and 𝑇 :

⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is continuous in cl𝑇(𝐴

0𝑖
), for all 𝑖 ∈ 𝑝,

then {𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
)} → 0 and {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)} → 𝐷

𝐵
and it

is bounded any given initial points 𝑥
0
, 𝑥
0
∈ 𝐴
0𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
for

some 𝑗 ∈ 𝑝.
If the sets of best proximity points 𝐴

0𝑖
and 𝐵

0𝑖
, for all 𝑖 ∈

𝑝, are bounded, then the sequences {𝑑(𝑥
𝑛
, 𝑥
𝑛+1
)}, {𝑑(𝑥

𝑛
, 𝑥
𝑛
)},

{𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
)}, and {𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)} are uniformly bounded for

any initial best proximity points 𝑥
0
, 𝑥
0
∈ 𝐴
0𝑗
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
for

some 𝑗 ∈ 𝑝.
(ii) The sequences {𝑥

𝑛𝑝+𝑖
} ⊆ cl𝐴

0,𝑖+𝑗
, for all 𝑖 ∈ 𝑝, are

Cauchy sequences for any given initial point 𝑥
0
∈ 𝐴
0𝑗
⊂

⋃
𝑖∈𝑝
𝐴
𝑖
for any given 𝑗 ∈ 𝑝. The corresponding image

sequences {𝑇𝑥
𝑛𝑝+𝑖
} ⊆ cl𝐵

0,𝑖+𝑗
, for all 𝑖 ∈ 𝑝, are also convergent;

then Cauchy sequences if 𝑇(𝐴
0𝑖
) ⊆ 𝐵

0𝑖
, for all 𝑖 ∈ 𝑝, and

𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
are continuous in cl𝑇(𝐴

0𝑖
), for

all 𝑖 ∈ 𝑝.

Remark 13. The result {𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1
)} → 𝐷

𝐵
of Lemma 12,

as well as Lemma 12(ii), obtained under the assumption that
𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is continuous in cl𝑇(𝐴

0𝑖
) and also

holds without such a continuity assumption if the contractive
conditions (16) and (17) become modified to the right limits
as follows:

𝑑 (𝑇𝑥
+

𝑛𝑝+𝑖+1
, 𝑇𝑥
+

𝑛𝑝+𝑖
)

≤ 𝛽
𝑖
𝑑 (𝑇𝑥

+

𝑛𝑝+𝑖
, 𝑇𝑥
+

𝑛𝑝+𝑖−1
) + (1 − 𝛽

𝑖
)𝐷
𝐵
,

∀𝑖 ∈ 𝑝, ∀𝑛 ∈ Z
0+
,

(22)

𝑑 (𝑇𝑥
+

𝑛𝑝+𝑖+1
, 𝑇𝑥
+

𝑛𝑝+𝑖+1
) ≤ 𝛽
𝑖
𝑑 (𝑇𝑥

+

𝑛𝑝+𝑖
, 𝑇𝑥
+

𝑛𝑝+𝑖
) ,

∀𝑖 ∈ 𝑝, ∀𝑛 ∈ Z
0+
,

(23)

provided that any discontinuity points in ⋃
𝑖∈𝑝

clT(𝐴
0𝑖
),

if any, are of first-class finite-jump type under right best
proximity constraints

𝑑 (𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
+

𝑛𝑝+𝑖
) = 𝑑 (𝑥

𝑛𝑝+𝑖+1
, 𝑇𝑥
+

𝑛𝑝+𝑖
) = 𝐷

𝑖
, ∀𝑖 ∈ 𝑝.

(24)

In the same way, the result {𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1
)} → 𝐷

𝐵
of

Lemmas 6 and 7, aswell as their properties (ii) obtainedunder
the assumption that 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐵
𝑖
, is continuous in

cl𝑇(𝐴
0𝑖
) and also holds under finite-jump discontinuities in

cl𝑇(𝐴
0𝑖
) for sequences {𝑥

𝑛
}, {𝑥
𝑛
}, {𝑇𝑥

𝑛
}, and {𝑇𝑥

𝑛
} satisfying

the contractive proximal conditions (1) and (2) ifDefinition 2,
or their counterparts of Definitions 3–5 for right values 𝑇𝑥+

𝑛

and 𝑇𝑥+
𝑛
under right best proximity constraints (24).

3. Best Proximity Points and Related
Convergence Results

We first recall the subsequent useful definition [2–4, 7] as
follows.

Definition 14. Let 𝐴 and 𝐵 be two nonempty subsets of a
metric space (𝑋, 𝑑) and let 𝑑(𝑦, 𝐴) = inf{𝑑(𝑦, 𝑥) : 𝑥 ∈ 𝐴} for
𝑦 ∈ 𝑋. 𝐴 is said to be approximately compact with respect to
𝐵 if each sequence {𝑥

𝑛
} ⊂ 𝐴 satisfying {𝑑(𝑦, 𝑥

𝑛
)} → 𝑑(𝑦, 𝐴)

for some 𝑦 ∈ 𝐵 has a convergent subsequence.

Note that if the sets of best proximity points 𝐴
0
⊆ 𝐴

and 𝐵
0
⊆ 𝐵 are nonempty if Definition 14 holds, then 𝐴 is

approximately compact with respect to 𝐵 if every sequence
{𝑥
𝑛
} ⊂ 𝐴 such that {𝑑(𝑦, 𝑥

𝑛
)} → 𝐷 for some 𝑦 ∈ 𝐵

0

has a convergent subsequence {𝑥
𝑛𝑘
} ⊆ {𝑥

𝑛
} since 𝐷 =

𝑑(𝑦, 𝐴) = 𝑑(𝐵
0
, 𝐴) = 𝑑(𝐵

0
, 𝐴
0
). Note that every set is

approximately compact with respect to itself and that every
compact set is approximately compact with respect to any
nonempty subset of a metric space. Also, if 𝐵 is compact and
𝐴 is approximately compact with respect to 𝐵, each sequence
{𝑥
𝑛
} ⊂ 𝐴 has a convergent sequence. If𝐴 and 𝐵 are nonempty

and closed and 𝐴 is approximately compact with respect to
𝐵, then 𝐵

0
is closed. See, for instance, [2–4, 7]. A result on

existence and uniqueness of best proximity points follows for
𝑝-cyclic proximal contraction fulfillingDefinitions 2–5 under
Lemmas 6 and 7 follows.

Theorem 15. Consider a complete metric space (𝑋, 𝑑) with
nonempty closed subsets 𝐴

𝑖
, 𝐵
𝑖
⊂ 𝑋 and a 𝑝-cyclic mapping

𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
being either 𝐺𝑊𝐶𝑃𝐷

𝑝
or 𝐺𝐶𝑃𝐷

𝑝

or𝑊𝐶𝑃𝐷
𝑝
or 𝐶𝑃𝐷

𝑝
, subject to set distances𝐷

𝑖
= 𝑑(𝐴

𝑖+1
, 𝐵
𝑖
),

𝐷
𝐴
= 𝑑(𝐴

𝑖
, 𝐴
𝑖+1
), and𝐷

𝐵
= 𝑑(𝐵

𝑖
, 𝐵
𝑖+1
), for all 𝑖 ∈ 𝑝 such that

𝐴
0𝑖
is nonempty and 𝐵

𝑖
is approximately compact with respect

to 𝐴
𝑖
and 𝑇(𝐴

0𝑖
) ⊆ 𝐵
0𝑖
, for all 𝑖 ∈ 𝑝. The following properties

hold.

(i) 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
has a unique best proximity

point 𝑥∗
𝑖
at 𝐴
𝑖
such that 𝑑(𝑥∗

𝑖
, 𝑥
∗

𝑖+1
) = 𝐷

𝐴
, for all 𝑖 ∈

𝑝, and all the sequences {𝑥
𝑛
} ⊂ ⋃

𝑖∈𝑝
𝐴
𝑖
converge to a

unique limit cycle {𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑝
}.

(ii) Furthermore, if 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
either

is continuous, respectively, has eventual finite-jump
discontinuity points, then 𝑧∗

𝑖
= 𝑇𝑥

∗

𝑖
, for all 𝑖 ∈ 𝑝,

respectively, 𝑧∗
+

𝑖
= (𝑇𝑥

∗

𝑖
)
+, for all 𝑖 ∈ 𝑝, are unique

best proximity points such that 𝑑(𝑇𝑥∗
𝑖
, 𝑇𝑥
∗

𝑖+1
) = 𝐷

𝐵
,

for all 𝑖 ∈ 𝑝, respectively, 𝑑(𝑇𝑥∗
+

𝑖
, 𝑇𝑥
∗
+

𝑖+1
) = 𝐷

𝐵
, for

all 𝑖 ∈ 𝑝, and all the sequences {𝑥
𝑛
} ⊂ ⋃

𝑖∈𝑝
𝐴
𝑖
converge

to a unique limit cycle {𝑇𝑥∗
+

1
, 𝑇𝑥
∗
+

2
, . . . , 𝑇𝑥

∗
+

𝑝
}.

Proof. Since 𝐴
0𝑖
is nonempty and 𝑇(𝐴

0𝑖
) ⊆ 𝐵
0𝑖
, for all 𝑖 ∈ 𝑝,

then 𝑇(𝐴
0𝑖
) and 𝐵

0𝑖
are nonempty, for all 𝑖 ∈ 𝑝. Also, 𝐴

0𝑖

is closed since 𝐵
𝑖
is approximately compact with respect to
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𝐴
𝑖
. Consider any sequences {𝑥

𝑛𝑝+𝑗
}, {𝑥
𝑛𝑝+𝑗
} ⊆ ⋃

𝑖∈𝑝
𝐴
𝑖
which

satisfy

𝑑 (𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝑑 (𝑥

𝑛𝑝+𝑖+1
, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝐷

𝑖
, ∀𝑖 ∈ 𝑝.

(25)

One gets, from Lemma 6(i), if the mapping 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→

⋃
𝑖∈𝑝
𝐵
𝑖
is GWCPD

𝑝
and, from Lemma 7(i), if the mapping

𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐵
𝑖
is either GCPD

𝑝
orWCPD

𝑝
or CPD

𝑝

that, since 𝑇(𝐴
0𝑖
) ⊆ 𝐵
0𝑖
, for all 𝑖 ∈ 𝑝,

{𝑑 (𝑥
𝑝(𝑛+1)+𝑖+𝑗

, 𝑥
𝑝𝑛+𝑖+𝑗

)} → 0,

{𝑑 (𝑥
𝑝(𝑛+1)+𝑖+𝑗+1

, 𝑥
𝑝𝑛+𝑖+𝑗+1

)} → 0,

(26)

{𝑑 (𝑥
𝑝𝑛+𝑖+𝑗

, 𝑥
𝑝𝑛+𝑖+𝑗+1

)}

→ 𝐷
𝐴
= 𝑑 (𝑦

𝑖+𝑗
, 𝐴
𝑖+1
) = 𝑑 (𝑦

𝑖+𝑗
, 𝐴
0,𝑖+1
)

= 𝑑 (𝑦
𝑖+𝑗
, 𝑥
𝑝𝑛𝑘+𝑖+𝑗+1

) ,

(27)

{𝑑 (𝑥
𝑝𝑛+𝑖+𝑗+1

, 𝑇𝑥
𝑝𝑛+𝑖+𝑗

)}

→ 𝐷
𝑖
= 𝑑 (𝑦

𝑖+𝑗+1
, 𝐵
𝑖
) = 𝑑 (𝑦

𝑖+𝑗+1
, 𝑇 (𝐴

𝑖
))

= 𝑑 (𝑦
𝑖+𝑗+1
, 𝑇 (𝐴

0𝑖
)) = 𝑑 (𝑦

𝑖+𝑗+1
, 𝐵
0𝑖
)

= 𝑑 (𝑦
𝑖+𝑗+1
, 𝑇𝑥
𝑝𝑛𝑘+𝑖+𝑗

) , ∀𝑖 ∈ 𝑝,

(28)

for some 𝑦
𝑖+𝑗
∈ 𝐴
0,𝑖+𝑗

and 𝑦
𝑖+𝑗+1

∈ 𝐴
0,𝑖+𝑗+1

since 𝐷
𝐴
=

𝑑(𝐴
𝑖
, 𝐴
𝑖+1
) = 𝑑(𝐴

0𝑖
, 𝐴
0,𝑖+1
) and 𝐷

𝑖
= 𝑑(𝐴

𝑖+1
, 𝐵
𝑖
) =

𝑑(𝐴
0𝑖+1
, 𝐵
0𝑖
), for all 𝑖 ∈ 𝑝, and some subsequences

{𝑥
𝑝𝑛𝑘+𝑖+𝑗+1

} , {𝑥
𝑝𝑛𝑘+𝑖+𝑗+1

} ⊆ 𝐴
0,𝑖+𝑗+1

,

{𝑥
𝑝𝑛𝑘+𝑖+𝑗

} , {𝑥
𝑝𝑛𝑘+𝑖+𝑗

} ⊆ 𝐴
0,𝑖+𝑗

(29)

of the sequences {𝑥
𝑝𝑛+𝑖+𝑗+1

}, {𝑥
𝑝𝑛+𝑖+𝑗+1

} ⊆ 𝐴
𝑖+𝑗+1

and
{𝑥
𝑝𝑛+𝑖+𝑗

}, {𝑥
𝑝𝑛+𝑖+𝑗

} ⊆ 𝐴
𝑖+𝑗
, for all 𝑖 ∈ 𝑝, respectively, for any

given initial points 𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
for any given 𝑗 ∈ 𝑝. The

following results hold.
(1) From (26) and by taking {𝑥}

𝑛
≡ {𝑥

𝑛
} and

{𝑑(𝑥
𝑝(𝑛+1)+𝑖+𝑗

, 𝑥
𝑝𝑛+𝑖+𝑗

)} → 0, for all 𝑖 ∈ 𝑝 for 𝑥
0
∈ 𝐴
𝑗
for

any given 𝑗 ∈ 𝑝, one gets {𝑥
𝑝𝑛+𝑖+𝑗

} → 𝑥
∗

𝑖
, since𝐴

0𝑖
is closed,

for all 𝑖 ∈ 𝑝 and, from (27), 𝑑(𝑥∗
𝑖
, 𝑥
∗

𝑖+1
) = 𝐷

𝐴
, for all 𝑖 ∈ 𝑝.

(2) Again, from (26) {𝑑(𝑥
𝑝(𝑛+1)+𝑖+𝑗

, 𝑥
𝑝𝑛+𝑖+𝑗

)} → 0, for
all 𝑖 ∈ 𝑝 for 𝑥

0
∈ 𝐴
𝑗
for any given 𝑗 ∈ 𝑝, {𝑥

𝑝𝑛+𝑖+𝑗
} → 𝑥

∗

𝑖
, for

all 𝑖 ∈ 𝑝.
(3) Combining results (1) and (2) with (26), it follows that

𝑥
∗

𝑖
= 𝑥
∗

𝑖
, for all 𝑖 ∈ 𝑝.

(4) Results (1)–(3) hold irrespective of the subset 𝐴
𝑗
for

𝑗 ∈ 𝑝 where the initial conditions of the sequences belong
to, so for any 𝑥

0
, 𝑥
0
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
(see the beginning of the

proof of Lemma 6). Thus, from result (3), there are unique
limit points 𝑥∗

𝑖
at each subset 𝐴

𝑖
of all the sequences {𝑥

𝑛
} ⊂

⋃
𝑖∈𝑝
𝐴
𝑖
such that any such sequence converges to a unique

limit cycle {𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑝
} consisting of best proximity points

of adjacent subsets 𝐴
𝑖
, for all 𝑖 ∈ 𝑝.

(5) Since 𝐵
𝑖
is closed and approximately compact with

respect to 𝐴
𝑖
, for all 𝑖 ∈ 𝑝, one gets from (28) that a

subsequence of {𝑇𝑥
𝑝𝑛+𝑖+𝑗

} is convergent for each 𝑖 ∈ 𝑝; say
{𝑇𝑥
𝑝𝑛𝑘+𝑖+𝑗

} → 𝑧
∗

𝑖
∈ 𝑇(𝐴

𝑖
) ⊆ 𝐵

0𝑖
⊂ 𝐵
𝑖
, for all 𝑖 ∈ 𝑝.

Since {𝑥
𝑝𝑛+𝑖+𝑗

} → 𝑥
∗

𝑖
, all its subsequences converge to the

same limit so that {𝑥
𝑝𝑛𝑘+𝑖+𝑗

} → 𝑥
∗

𝑖
and then 𝑧∗

𝑖
= 𝑇𝑥
∗

𝑖
is

unique, since each 𝑥∗
𝑖
is unique, within each 𝐵

𝑖
, for all 𝑖 ∈

𝑝 and, again, from (28), 𝐷
𝑖
= 𝑑(𝑥

∗

𝑖+1
, 𝑇𝑥
∗

𝑖
), for all 𝑖 ∈ 𝑝

if 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is continuous at 𝑥∗

𝑖
and 𝐷

𝑖
=

𝑑(𝑥
∗

𝑖+1
, 𝑇𝑥
∗
+

𝑖
) if 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
has a finite-jump

discontinuity at 𝑥∗
𝑖
, then 𝑧∗

+

𝑖
= 𝑇𝑥
∗
+

𝑖
(see Remark 13). The

result has been proved.

A further result on the existence and uniqueness of best
proximity points follows for 𝑝-cyclic proximal contractions
subject to Definitions 8–11 under Lemma 12 and whose proof
is very close to that of Theorem 15.

Theorem 16. Consider a complete metric space (𝑋, 𝑑) with
nonempty subsets 𝐴

𝑖
, 𝐵
𝑖
⊂ 𝑋 and a 𝑝-cyclic mapping 𝑇 :

⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐵
𝑖
being either𝐺𝑊𝐶𝑃𝐼

𝑝
or𝐺𝐶𝑃𝐼

𝑝
or𝑊𝐶𝑃𝐼

𝑝

or 𝐶𝑃𝐼
𝑝
, subject to set distances 𝐷

𝑖
= 𝑑(𝐴

𝑖+1
, 𝐵
𝑖
), 𝐷
𝐴
=

𝑑(𝐴
𝑖
, 𝐴
𝑖+1
), and 𝐷

𝐵
= 𝑑(𝐵

𝑖
, 𝐵
𝑖+1
), for all 𝑖 ∈ 𝑝, such that

𝐴
0𝑖
is nonempty and closed and 𝐵

0𝑖
is nonempty and 𝐴

𝑖
is

approximately compact with respect to 𝐵
𝑖
and 𝑇(𝐴

0𝑖
) ⊆ 𝐵

0𝑖
,

for all 𝑖 ∈ 𝑝. The following properties hold.

(i) 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
has a unique best proximity

point 𝑥∗
𝑖
at 𝐴
𝑖
such that 𝑑(𝑥∗

𝑖
, 𝑥
∗

𝑖+1
) = 𝐷

𝐴
, for all 𝑖 ∈

𝑝, and all the sequences {𝑥
𝑛
} ⊂ ⋃

𝑖∈𝑝
𝐴
𝑖
converge to a

unique limit cycle {𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑝
}.

(ii) Furthermore, if 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
either

is continuous, respectively, has eventual finite-jump
discontinuity points, then 𝑧∗

𝑖
= 𝑇𝑥

∗

𝑖
, for all 𝑖 ∈ 𝑝,

respectively, 𝑧∗
+

𝑖
= (𝑇𝑥

∗

𝑖
)
+, for all 𝑖 ∈ 𝑝, are unique

best proximity points such that 𝑑(𝑇𝑥∗
𝑖
, 𝑇𝑥
∗

𝑖+1
) = 𝐷

𝐵
,

for all 𝑖 ∈ 𝑝, respectively, 𝑑(𝑇𝑥∗
+

𝑖
, 𝑇𝑥
∗
+

𝑖+1
) = 𝐷

𝐵
,

for all 𝑖 ∈ 𝑝, and all the sequences {𝑥
𝑛
} ⊂ ⋃

𝑖∈𝑝
𝐴
𝑖
con-

verge to a unique limit cycle {𝑇𝑥∗
+

1
, 𝑇𝑥
∗
+

2
, . . . , 𝑇𝑥

∗
+

𝑝
}.

Proof. Since 𝑇(𝐴
0𝑖
) ⊆ 𝐵

0𝑖
, for all 𝑖 ∈ 𝑝, then 𝑇(𝐴

0𝑖
)

and 𝐵
0𝑖

are nonempty, since 𝐴
0𝑖

is nonempty, for all 𝑖 ∈
𝑝. 𝐵
0𝑖

is, furthermore, closed since 𝐴
𝑖
is approximately

compact with respect to 𝐵
𝑖
. Thus, 𝐴

0𝑖
, 𝑇(𝐴

0𝑖
), and 𝐵

0𝑖
are

nonempty and closed, for all 𝑖 ∈ 𝑝. Consider any sequences
{𝑥
𝑛𝑝+𝑗
}, {𝑥
𝑛𝑝+𝑗
} ⊆ ⋃

𝑖∈𝑝
𝐴
𝑖
which satisfy

𝑑 (𝑥
𝑛𝑝+𝑖+1

, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝑑 (𝑥

𝑛𝑝+𝑖+1
, 𝑇𝑥
𝑛𝑝+𝑖
) = 𝐷

𝑖
, ∀𝑖 ∈ 𝑝.

(30)

One gets from Lemma 12 that, since 𝑇(𝐴
0𝑖
) ⊆ 𝐵
0𝑖
, for all 𝑖 ∈

𝑝,
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{𝑑 (𝑇𝑥
𝑝(𝑛+1)+𝑖+𝑗

, 𝑇𝑥
𝑝𝑛+𝑖+𝑗

)} → 0,

{𝑑 (𝑇𝑥
𝑝(𝑛+1)+𝑖+𝑗+1

, 𝑇𝑥
𝑝𝑛+𝑖+𝑗+1

)} → 0,

(31)

{𝑑 (𝑇𝑥
𝑝𝑛+𝑖+𝑗

, 𝑇𝑥
𝑝𝑛+𝑖+𝑗+1

)}

→ 𝐷
𝐵
= 𝑑 (𝑦

𝑖+𝑗
, 𝐵
𝑖+1
) = 𝑑 (𝑦

𝑖+𝑗
, 𝐵
0,𝑖+1
)

= 𝑑 (𝑦
𝑖+𝑗
, 𝑥
𝑝𝑛𝑘+𝑖+𝑗+1

) ,

(32)

{𝑑 (𝑥
𝑝𝑛+𝑖+𝑗+1

, 𝑇𝑥
𝑝𝑛+𝑖+𝑗

)}

→ 𝐷
𝑖
= 𝑑 (𝑦

𝑖+𝑗+1
, 𝐵
𝑖
) = 𝑑 (𝑦

𝑖+𝑗+1
, 𝑇 (𝐴

𝑖
))

= 𝑑 (𝑦
𝑖+𝑗+1
, 𝑇 (𝐴

0𝑖
)) = 𝑑 (𝑦

𝑖+𝑗+1
, 𝐵
0𝑖
)

= 𝑑 (𝑦
𝑖+𝑗+1
, 𝑇𝑥
𝑝𝑛𝑘+𝑖+𝑗

) , ∀𝑖 ∈ 𝑝,

(33)

for some 𝑦
𝑖+𝑗

∈ 𝐵
0,𝑖+𝑗

, 𝑦
𝑖+𝑗+1

∈ 𝐵
0,𝑖+𝑗+1

since 𝐷
𝐵
=

𝑑(𝐵
𝑖
, 𝐵
𝑖+1
) = 𝑑(𝐵

0𝑖
, 𝐵
0,𝑖+1
) and 𝐷

𝑖
= 𝑑(𝐴

𝑖+1
, 𝐵
𝑖
) =

𝑑(𝐴
0𝑖+1
, 𝐵
0𝑖
), for all 𝑖 ∈ 𝑝, and some subsequences

{𝑇𝑥
𝑝𝑛𝑘+𝑖+𝑗+1

} , {𝑇𝑥
𝑝𝑛𝑘+𝑖+𝑗+1

} ⊆ 𝑇 (𝐴
0,𝑖+𝑗+1

) ⊆ 𝐵
0,𝑖+𝑗+1

,

{𝑇𝑥
𝑝𝑛𝑘+𝑖+𝑗

} , {𝑇𝑥
𝑝𝑛𝑘+𝑖+𝑗

} ⊆ 𝑇 (𝐴
0,𝑖+𝑗+1

) ⊆ 𝐵
0,𝑖+𝑗

(34)

of the sequences {𝑇𝑥
𝑝𝑛+𝑖+𝑗+1

}, {𝑇𝑥
𝑝𝑛+𝑖+𝑗+1

} ⊆ 𝐵
𝑖+𝑗+1

and
{𝑇𝑥
𝑝𝑛+𝑖+𝑗

}, {𝑇𝑥
𝑝𝑛+𝑖+𝑗

} ⊆ 𝐵
𝑖+𝑗
, for all 𝑖 ∈ 𝑝, respectively, for

any given initial points 𝑥
0
, 𝑥
0
∈ 𝐴
𝑗
for any given 𝑗 ∈ 𝑝. The

following results hold.
(6) From (31) and by taking {𝑥}

𝑛
≡ {𝑥

𝑛
},

{𝑑(𝑇𝑥
𝑝(𝑛+1)+𝑖+𝑗

, 𝑇𝑥
𝑝𝑛+𝑖+𝑗

)} → 0, for all 𝑖 ∈ 𝑝 for 𝑥
0
∈ 𝐴
𝑗

for any given 𝑗 ∈ 𝑝, one gets {𝑇𝑥
𝑝𝑛+𝑖+𝑗

} → 𝑧
∗

𝑖
, since 𝐵

0𝑖

is closed, for all 𝑖 ∈ 𝑝 and, from (32), 𝑑(𝑧∗
𝑖
, 𝑧
∗

𝑖+1
) = 𝐷

𝐵
,

for all 𝑖 ∈ 𝑝.
(7) Again from (31), {𝑑(𝑇𝑥

𝑝(𝑛+1)+𝑖+𝑗
, 𝑇𝑥
𝑝𝑛+𝑖+𝑗

)} → 0,
for all 𝑖 ∈ 𝑝 for 𝑥

0
∈ 𝐴
𝑗
for any given 𝑗 ∈ 𝑝, so that

{𝑇𝑥
𝑝𝑛+𝑖+𝑗

} → 𝑧
∗

𝑖
, for all 𝑖 ∈ 𝑝.

(8) Combining results (6) and (7) with (31), it follows that
𝑧
∗

𝑖
= 𝑧
∗

𝑖
, for all 𝑖 ∈ 𝑝.

(9) Results (6)–(9) hold irrespective of the subset 𝐴
𝑗
for

𝑗 ∈ 𝑝 where the initial conditions of the sequences belong to
then for any 𝑥

0
, 𝑥
0
⊂ ⋃
𝑖∈𝑝
𝐴
𝑖
. Thus, considering result (8),

there are unique limit points 𝑧∗
𝑖
at each subset 𝐵

𝑖
of all the

sequences {𝑇𝑥
𝑛
} ⊂ ⋃

𝑖∈𝑝
𝑇(𝐴
𝑖
) such that any such sequence

converges to a unique limit cycle {𝑧∗
1
, 𝑧
∗

2
, . . . , 𝑧

∗

𝑝
} consisting

of best proximity points of adjacent subsets 𝐴
𝑖
, for all 𝑖 ∈ 𝑝.

Since𝐵
𝑖
is closed and approximately compactwith respect

to 𝐴
𝑖
, for all 𝑖 ∈ 𝑝, one gets from (33) that a subsequence of

{𝑥
𝑝𝑛+𝑖+𝑗

} is convergent for each 𝑖 ∈ 𝑝; say {𝑥
𝑝𝑛𝑘+𝑖+𝑗

} → 𝑥
∗

𝑖
∈

𝐴
0𝑖
, for all 𝑖 ∈ 𝑝. Since {𝑇𝑥

𝑝𝑛+𝑖+𝑗
} → 𝑧

∗

𝑖
, all its subsequences

converge to the same limit so that {𝑇𝑥
𝑝𝑛𝑘+𝑖+𝑗

} → 𝑧
∗

𝑖
and

𝑥
∗

𝑖
∈ 𝐴
0𝑖
fulfilling 𝑧∗

𝑖
= 𝑇𝑥
∗

𝑖
which is unique. Assume not

so that there are 𝑥∗
𝑖
, 𝑥
∗

𝑖
( ̸= 𝑥
∗

𝑖
) ∈ 𝐴

0𝑖
for some 𝑖 ∈ 𝑝 such that

𝑧
∗

𝑖
= 𝑇𝑥
∗

𝑖
= 𝑇𝑥
∗

𝑖
. Assume a sequence {𝑥

𝑝𝑛𝑘+𝑖+𝑗
} → 𝑥

∗

𝑖
∈ 𝐴
0𝑖

with 𝑥
0
∈ 𝐴
𝑗
and a sequence {𝑥

𝑝𝑛𝑘+𝑖+𝑗
} → 𝑥

∗

𝑖
∈ 𝐴
0𝑖
with

initial point 𝑥
00
∈ 𝐴
ℓ
and some 𝑥

0
= 𝑇
𝛿
𝑥
00
∈ 𝐴
𝑗
for

some 𝑗, ℓ ∈ 𝑝 and some nonnegative integer 𝛿 < 𝑝. But
then {𝑑(𝑇𝑥

𝑝(𝑛+1)+𝑖+𝑗
, 𝑇𝑥
𝑝𝑛+𝑖+𝑗

)} does not converge to zero so
that 𝑥∗

𝑖
= 𝑥
∗

𝑖
∈ 𝐴
0𝑖
is unique, for all 𝑖 ∈ 𝑝. The distance

convergence properties are independent of the fact that for
the initial condition ℓ is as equal or distinct as 𝑗, as discussed
in Lemma 6. If and another sequence. Since each 𝑧∗

𝑖
is unique,

within each 𝐴
𝑖
, for all 𝑖 ∈ 𝑝 and, again, from (33), 𝐷

𝑖
=

𝑑(𝑥
∗

𝑖+1
, 𝑇𝑥
∗

𝑖
), for all 𝑖 ∈ 𝑝 if 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐵
𝑖
is

continuous at 𝑥∗
𝑖
and 𝐷

𝑖
= 𝑑(𝑥

∗

𝑖+1
, 𝑇𝑥
∗
+

𝑖
) if 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→

⋃
𝑖∈𝑝
𝐵
𝑖
has a finite-jump discontinuity at 𝑥∗

𝑖
, then 𝑧∗

+

𝑖
= 𝑇𝑥
∗
+

𝑖

(see Remark 13). The result has been proved.

Example 17. Consider a 2-cyclic proximal contraction with
respect to its domain: 𝑇 : 𝐴

1
∪ 𝐴
2
→ 𝐵
1
∪ 𝐵
2
, where 𝐴

𝑖

and 𝐵
𝑖
for 𝑖 = 1, 2 are nonempty closed subsets of R. Take

any sequences {𝑥
𝑛
} ⊂ 𝐴

1
, {𝑦
𝑛
} ⊂ 𝐴

2
being subsequences

of {𝑧
𝑛
} ⊂ 𝐴

1
∪ 𝐴
2
defined either by 𝑧

2𝑛
= 𝑥
𝑛
, 𝑧
2𝑛+1

= 𝑦
𝑛

or by 𝑧
2𝑛
= 𝑦
𝑛
, 𝑧
2𝑛+1

= 𝑥
𝑛
, for all 𝑛 ∈ Z

0+
, and subject to

the constraints below under the Euclidean metric 𝑑(𝑥, 𝑦) =
|𝑥−𝑦|, for all 𝑥, 𝑦 ∈ R for some contractive real constant 𝛼 ∈
[0, 1) such that 𝛼

1
= 𝛼
2
= 𝛼 and (R, 𝑑) is a complete metric

space and also a Banach space. Assume that𝐴
1
= [𝑎
1
, 𝑎
1
] and

𝐴
2
= [𝑎
2
, 𝑎
2
] with 𝑎

1
< 0 and 𝑎

2
> 0 and 𝐵

1
= [𝑏
1
, 𝑏
1
] and

𝐵
2
= [𝑏
2
, 𝑏
2
] with 𝑎

1
≤ 0 and 𝑎

2
≥ 0, 𝑏

1
≤ 𝑎
1
, 0 ≥ 𝑏

1
≥ 𝑎
1
,

0 ≤ 𝑏
2
≤ 𝑎
2
, and 𝑏

2
≥ 𝑎
2
, so that 𝑇(𝐴

1
) ⊆ 𝐵

1
, 𝑇(𝐴

2
) ⊆ 𝐵

2

with

𝐷
𝐴
= 𝑑 (𝐴

1
, 𝐴
2
) =
𝑎1
 + 𝑎2,

𝐷
𝐵
= 𝑑 (𝐵

1
, 𝐵
2
) =

𝑏
1


+ 𝑏
2
,

(35)

𝐷
1
= 𝑑 (𝐴

2
, 𝐵
1
) = 𝑎
2
+

𝑏
1


,

𝐷
2
= 𝑑 (𝐴

1
, 𝐵
2
) =
𝑎1
 + 𝑏2,

(36)

and 𝑇 : 𝐴
1
∪ 𝐴
2
→ 𝐵
1
∪ 𝐵
2
is a CPD

2
(Definition 2 with

𝑝 = 2) if the subsequent constraints hold for all 𝑛 ∈ Z
0+
:

𝑦
𝑛+1
+
𝑇𝑥𝑛
 = 𝐷1, 𝑇𝑦

𝑛
+
𝑥𝑛+1

 = 𝐷2, (37)
𝑥𝑛+2 − 𝑥𝑛+1



=

𝑥𝑛+1

 −
𝑥𝑛+2


 =
𝑇𝑦𝑛 − 𝑇𝑦𝑛+1

 ≤ 𝛼
𝑥𝑛+1 − 𝑥𝑛

 ,

(38)
𝑦𝑛+2 − 𝑦𝑛+1

 =

𝑇𝑥𝑛
 −
𝑇𝑥𝑛+1


 ≤ 𝛼

𝑦𝑛+1 − 𝑦𝑛
 , (39)

𝑦𝑛+1 − 𝑥𝑛+1


= 𝑦
𝑛+1
+
𝑥𝑛+1

 = 𝐷1 + 𝐷2 −
𝑇𝑥𝑛
 − 𝑇𝑦𝑛

≤ 𝛼
𝑦𝑛 − 𝑥𝑛

 + (1 − 𝛼)𝐷𝐴

(40a)

≤ 𝛼
𝑦𝑛 − 𝑥𝑛

 + (1 − 𝛼)𝐷𝐴

= 𝛼 (𝑦
𝑛
+
𝑥𝑛
) + (1 − 𝛼)𝐷𝐴.

(40b)
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In particular, (37)–(40a) and (40b) are satisfied if, for all 𝑛 ∈
Z
0+
,

𝑇𝑦
𝑛
≥ 𝐷
2
− 𝛼𝑦
𝑛
−
1 − 𝛼

2
𝐷
𝐴
, (41)

𝑇𝑥
𝑛
≤ −𝐷
1
− 𝛼𝑥
𝑛
+
1 − 𝛼

2
𝐷
𝐴

(equivalently, 𝐷
1
− 𝛼
𝑥𝑛
 −
1 − 𝛼

2
𝐷
𝐴
≤
𝑇𝑥𝑛
) ,

(42)

𝑦
𝑛+1
≤ 𝛼
𝑥𝑛
 −
1 − 𝛼

2
𝐷
𝐴
,

𝑥𝑛+1
 ≤ 𝛼𝑦𝑛 +

1 − 𝛼

2
𝐷
𝐴
.

(43)

Parallel results for the case when 𝑇 : 𝐴
1
∪ 𝐴
2
→ 𝐵
1
∪ 𝐵
2

is WCPD
2
, GCPD

2
, or GWCPD

2
(Definitions 3–5 with 𝑝 =

2) can be discussed in the same way with the appropriate
extensions for the contractive constant or function. It follows
that {𝑑(𝑦

𝑛
, 𝑦
𝑛+1
)} → 0, {𝑑(𝑥

𝑛
, 𝑥
𝑛+1
)} → 0, {𝑑(𝑧

𝑛
, 𝑧
𝑛+1
)} →

𝐷
𝐴
, {𝑦
𝑛
} → 𝑎

2
, {𝑥
𝑛
} → 𝑎

1
, {𝑑(𝑇𝑦

𝑛
, 𝑇𝑦
𝑛+1
)} → 0, {𝑑(𝑇𝑥

𝑛
,

𝑇𝑥
𝑛+1
)} → 0 and, according to (40a), (40b), and (35)-(36),

{𝑑(𝑇𝑧
𝑛
, 𝑇𝑧
𝑛+1
)} → 𝐷

𝐵
, since {|𝑇(𝑦

𝑛
− |𝑥
𝑛
|)|} → 𝐷

𝐵
=

𝐷
1
+ 𝐷
2
− 𝐷
𝐴
, {𝑇𝑦
𝑛
} → 𝑇𝑎

2
= 𝑏
2
, and {𝑇𝑥

𝑛
} → 𝑇𝑎

1
= 𝑏
1
.

Example 18. Consider Example 17 in the case that 𝑇 : 𝐴
1
∪

𝐴
2
→ 𝐵

1
∪ 𝐵
2
is CPI

2
, WCPI

2
, GCPI

2
, or GWCPI

2

(Definitions 8–11 with 𝑝 = 2); (40a) using (37) can be
reformulated accordingly. In particular, if it is CPI

2
, then one

gets for some real constant 𝛽 ∈ [0, 1)
𝑇𝑥𝑛+1

 + 𝑇𝑦𝑛+1

= 𝑇𝑦
𝑛+1
− 𝑇𝑥
𝑛+1
= 𝐷
1
+ 𝐷
2
−
𝑥𝑛+2

 − 𝑦𝑛+2

= 𝐷
𝐴
+ 𝐷
𝐵
−
𝑥𝑛+2

 − 𝑦𝑛+2

≤ 𝛽 (
𝑥𝑛
 + 𝑦𝑛) + (1 − 𝛽)𝐷𝐵, ∀𝑛 ∈ Z

0+
.

(44)

Then, {|𝑇(𝑦
𝑛
− |𝑥
𝑛
|)|} ≡ {𝑑(𝑇𝑧

𝑛
, 𝑇𝑧
𝑛+1
)} → 𝐷

𝐵
= 𝐷
1
+ 𝐷
2
−

𝐷
𝐴
, {|𝑥
𝑛
| + 𝑦
𝑛
} ≡ {𝑑(𝑧

𝑛
, 𝑧
𝑛+1
)} → 𝐷

𝐴
, {𝑑(𝑦

𝑛
, 𝑦
𝑛+1
)} → 0,

{𝑑(𝑥
𝑛
, 𝑥
𝑛+1
)} → 0, {𝑇𝑦

𝑛
} → 𝑇𝑎

2
= 𝑏
2
, {𝑇𝑥
𝑛
} → 𝑇𝑎

1
= 𝑏
1
,

{𝑦
𝑛
} → 𝑎

2
, and {𝑥

𝑛
} → 𝑎

1
.
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