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The aim of this paper is to establish 𝑞-extension of the Grüss type integral inequality related to the integrable functions whose
bounds are four integrable functions, involving Riemann-Liouville fractional 𝑞-integral operators. The results given earlier by Zhu
et al. (2012) and Tariboon et al. (2014) follow the special cases of our findings.

1. Introduction

In [1], the well-known Grüss inequality is defined as follows
(see also [2, p. 296]).

Let𝑓 and𝑔 be two continuous functions defined on [𝑎, 𝑏],
such that𝑚 ≤ 𝑓(𝑡) ≤ 𝑀 and 𝑝 ≤ 𝑔(𝑡) ≤ 𝑃, for each 𝑡 ∈ [𝑎, 𝑏],
where𝑚, 𝑝,𝑀, and 𝑃 are given real constants; then
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤
1

4
(𝑀 − 𝑚) (𝑃 − 𝑝) .

(1)

In the literature several generalizations of the Grüss type
integral inequality are considered by many researchers (see
[3–10]). Dahmani et al. [11] established a generalization of
inequality (1), using Riemann-Liouville fractional integrals,
as follows.

Let 𝑓 and 𝑔 be two integrable functions with constant
bounds defined on [0,∞), such that

𝑚 ≤ 𝑓 (𝑡) ≤ 𝑀, 𝑝 ≤ 𝑔 (𝑡) ≤ 𝑃;

𝑚, 𝑝,𝑀, 𝑃 ∈ R, 𝑡 ∈ [0,∞) ,

(2)

then for 𝛼 > 0
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (
𝑡
𝛼

Γ(𝛼 + 1)
)

2

(𝑀 − 𝑚) (𝑃 − 𝑝) ,

(3)

where 𝐼𝛼𝑓(𝑡) denote the Riemann-Liouville fractional inte-
gral operator of order 𝛼 for the function 𝑓(𝑡). Recently, by
replacing the constants appearing as bounds of the functions
𝑓 and 𝑔 by four integrable functions, Tariboon et al. [12]
investigate more general forms of inequality (3).

The subject of 𝑞-calculus has gained noticeable impor-
tance due to applications in mathematics, statistics, and
physics. Particularly, the 𝑞-analysis has found many appli-
cations in the theory of partitions, combinatorics, exactly
solvable models in statistical mechanics, computer algebra,
geometric functions theory, optimal control problems, 𝑞-
difference, and 𝑞-integral equations [13–16]. This has led
various workers in the field of 𝑞-theory for exploring the
possible 𝑞-extensions to all the important results available
in the classical theory. With this objective in mind, Gauch-
man [17] investigated 𝑞-analogues of some classical integral
inequalities, including the well-known Grüss inequality (1).
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Further, a number of authors have studied, in depth, the
𝑞-extension and applications of various classical integral
inequalities (see [18–23]). Very recently, Zhu et al. [24]
derived 𝑞-extension of inequality (3) and certain new frac-
tional 𝑞-integral inequalities on the specific time scale.

It is fairly well-known that there are a number of different
definitions of fractional integrals and their applications. Each
definition has its own advantages and suitable for applications
to different type of problems. All specialists of this field
(Fractional Calculus) know the importance of different types
of definitions of fractional calculus operators and their use
in specified problems. It is to be noted that the problem
considered here provides unifications to the results of [12,
24] and gives a generalized 𝑞-Grüss type integral inequality
related to the integrable functions whose bounds are four
integrable functions, involving Riemann-Liouville fractional
𝑞-integrals. Additionally, Riemann-Liouville fractional 𝑞-
integral operator has the advantage that it generalizes the
familiar Riemann-Liouville operator and also provides the
results on time scales. Our main result provides 𝑞-extension
of the result due to Tariboon et al. [12] and can be further
applied to derive certain interesting consequent results and
special cases.

We begin with the mathematical preliminaries of 𝑞-series
and 𝑞-calculus. For more details of 𝑞-calculus and fractional
𝑞-calculus one can refer to [13, 16].

The 𝑞-shifted factorial is defined for 𝛼, 𝑞 ∈ C as a product
of 𝑛 factors by

(𝛼; 𝑞)
𝑛
= {

1; 𝑛 = 0

(1 − 𝛼) (1 − 𝛼𝑞) ⋅ ⋅ ⋅ (1 − 𝛼𝑞
𝑛−1

) ; 𝑛 ∈ N,
(4)

and in terms of the basic analogue of the gamma function

(𝑞
𝛼
; 𝑞)
𝑛
=
Γ𝑞 (𝛼 + 𝑛) (1 − 𝑞)

𝑛

Γ𝑞 (𝛼)
(𝑛 > 0) , (5)

where the 𝑞-gamma function is defined by ([13, p. 16, eqn.
(1.10.1)])

Γ𝑞 (𝑡) =
(𝑞; 𝑞)
∞
(1 − 𝑞)

1−𝑡

(𝑞𝑡; 𝑞)
∞

(0 < 𝑞 < 1) . (6)

Further, we note that

Γ𝑞 (1 + 𝑡) =
(1 − 𝑞

𝑡
) Γ𝑞 (𝑡)

1 − 𝑞
, (7)

and if |𝑞| < 1, definition (4) remains meaningful for 𝑛 = ∞,
as a convergent infinite product given by

(𝛼; 𝑞)
∞
=

∞

∏

𝑗=0

(1 − 𝛼 𝑞
𝑗
) . (8)

Also, the 𝑞-binomial expansion is given by

(𝑥 − 𝑦)] = 𝑥
]
(−

𝑦
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]
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]
∞
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] .

(9)

Jackson’s 𝑞-derivative and 𝑞-integral of a function 𝑓 defined
on T are, respectively, given by (see [13, pp. 19, 22])

𝐷𝑞,𝑡𝑓 (𝑡) =
𝑓 (𝑡) − 𝑓 (𝑡𝑞)

𝑡 (1 − 𝑞)
(𝑡 ̸= 0, 𝑞 ̸= 1) ,

∫

𝑡

0

𝑓 (𝜏) 𝑑𝑞𝜏 = 𝑡 (1 − 𝑞)

∞

∑

𝑘=0

𝑞
𝑘
𝑓 (𝑡𝑞
𝑘
) .

(10)

The Riemann-Liouville fractional 𝑞-integral operator of a
function 𝑓(𝑡) of order 𝛼 (due to Agarwal [25]) is given by

𝐼
𝛼

𝑞
𝑓 (𝑡) =

𝑡
𝛼−1

Γ𝑞 (𝛼)
∫

𝑡
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(
𝑞𝜏

𝑡
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𝛼−1

𝑓 (𝜏) 𝑑𝑞𝜏

(𝛼 > 0, 0 < 𝑞 < 1) ,

(11)

where

(𝑎; 𝑞)
𝛼
=

(𝑎; 𝑞)
∞

(𝑎𝑞𝛼; 𝑞)
∞

(𝛼 ∈ R) . (12)

Following [25] (see also [26]), when 𝑓(𝑡) = 𝑡𝜇, we obtain

𝐼
𝛼

𝑞
𝑡
𝜇
=

Γ𝑞 (1 + 𝜇)

Γ𝑞 (1 + 𝜇 + 𝛼)
𝑡
𝜇+𝛼

, (0 < 𝑞 < 1, 𝜇 > −1, 𝑡 > 0) .

(13)

2. A Generalized 𝑞-Grüss Integral Inequality

Our results in this section are based on the following lemma,
giving functional relation for Riemann-Liouville fractional 𝑞-
integral operators, with the integrable functions.

Lemma 1. Let 𝑓, 𝜑1, and 𝜑2 be integrable functions defined on
[0,∞), such that

𝜑1 (𝑡) ≤ 𝑓 (𝑡) ≤ 𝜑2 (𝑡) , ∀𝑡 ∈ [0,∞) . (14)

Then, for 𝑡 > 0 and 𝛼 > 0, we have
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(15)
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Proof. On using the hypothesis of inequality (14), for any
𝜏, 𝜌 > 0, we can write

(𝜑2 (𝜌) − 𝑓 (𝜌)) (𝑓 (𝜏) − 𝜑1 (𝜏))

+ (𝜑2 (𝜏) − 𝑓 (𝜏)) (𝑓 (𝜌) − 𝜑1 (𝜌))

− (𝜑2 (𝜏) − 𝑓 (𝜏)) (𝑓 (𝜏) − 𝜑1 (𝜏))

− (𝜑2 (𝜌) − 𝑓 (𝜌)) (𝑓 (𝜌) − 𝜑1 (𝜌))

= 𝑓
2
(𝜏) + 𝑓

2
(𝜌) − 2𝑓 (𝜏) 𝑓 (𝜌)

+ 𝜑2 (𝜌) 𝑓 (𝜏) + 𝜑1 (𝜏) 𝑓 (𝜌) − 𝜑1 (𝜏) 𝜑2 (𝜌)

+ 𝜑2 (𝜏) 𝑓 (𝜌) + 𝜑1 (𝜌) 𝑓 (𝜏) − 𝜑1 (𝜌) 𝜑2 (𝜏)

− 𝜑2 (𝜏) 𝑓 (𝜏) + 𝜑1 (𝜏) 𝜑2 (𝜏)

− 𝜑1 (𝜏) 𝑓 (𝜏) − 𝜑2 (𝜌) 𝑓 (𝜌)

+ 𝜑1 (𝜌) 𝜑2 (𝜌) − 𝜑1 (𝜌) 𝑓 (𝜌) .

(16)

Consider

𝐹𝑞 (𝑡, 𝜏) =
𝑡
𝛼−1

(𝑞𝜏/𝑡; 𝑞)
𝛼−1

Γ (𝛼)
(𝜏 ∈ (0, 𝑡) ; 𝑡 > 0) , (17)

for all 𝜏 ∈ (0, 𝑡) (𝑡 > 0). Multiplying both sides of (16) by
𝐹𝑞(𝑡, 𝜏) and integrating the resulting identity with respect to
𝜏 from 0 to 𝑡, and using integral operator (11), we get

(𝜑2 (𝜌) − 𝑓 (𝜌)) (𝐼
𝛼

𝑞
𝑓 (𝑡) − 𝐼

𝛼

𝑞
𝜑1 (𝑡))

+ (𝐼
𝛼

𝑞
𝜑2 (𝑡) − 𝐼

𝛼

𝑞
𝑓 (𝑡)) (𝑓 (𝜌) − 𝜑1 (𝜌))

− 𝐼
𝛼

𝑞
(𝜑2 (𝑡) − 𝑓 (𝑡)) (𝑓 (𝑡) − 𝜑1 (𝑡))

− (𝜑2 (𝜌) − 𝑓 (𝜌)) (𝑓 (𝜌) − 𝜑1 (𝜌)) 𝐼
𝛼

𝑞
{1}

= 𝐼
𝛼

𝑞
𝑓
2
(𝑡) + 𝑓

2
(𝜌) 𝐼
𝛼

𝑞
{1}

− 2𝑓 (𝜌) 𝐼
𝛼

𝑞
𝑓 (𝑡) + 𝜑2 (𝜌) 𝐼

𝛼

𝑞
𝑓 (𝑡)

+ 𝑓 (𝜌) 𝐼
𝛼

𝑞
𝜑1 (𝑡) − 𝜑2 (𝜌) 𝐼

𝛼

𝑞
𝜑1 (𝑡)

+ 𝑓 (𝜌) 𝐼
𝛼

𝑞
𝜑2 (𝑡) + 𝜑1 (𝜌) 𝐼

𝛼

𝑞
𝑓 (𝑡)

− 𝜑1 (𝜌) 𝐼
𝛼

𝑞
𝜑2 (𝑡) − 𝐼

𝛼

𝑞
𝜑2 (𝑡) 𝑓 (𝑡)

+ 𝐼
𝛼

𝑞
𝜑1 (𝑡) 𝜑2 (𝑡) − 𝐼

𝛼

𝑞
𝜑1 (𝑡) 𝑓 (𝑡)

− 𝜑2 (𝜌) 𝑓 (𝜌) 𝐼
𝛼

𝑞
{1} + 𝜑1 (𝜌) 𝜑2 (𝜌) 𝐼

𝛼

𝑞
{1}

− 𝜑1 (𝜌) 𝑓 (𝜌) 𝐼
𝛼

𝑞
{1} .

(18)

Next, on multiplying both sides of (18) by 𝐹𝑞(𝑡, 𝜌) (𝜌 ∈

(0, 𝑡), 𝑡 > 0), where 𝐹𝑞(𝑡, 𝜌) is given by (17), and integrating
with respect to 𝜌 from 0 to 𝑡, we obtain

2 (𝐼
𝛼

𝑞
𝜑2 (𝑡) − 𝐼

𝛼

𝑞
𝑓 (𝑡)) (𝐼

𝛼

𝑞
𝑓 (𝑡) − 𝐼

𝛼

𝑞
𝜑1 (𝑡))

− 2𝐼
𝛼

𝑞
(𝜑2 (𝑡) − 𝑓 (𝑡)) (𝑓 (𝑡) − 𝜑1 (𝑡)) 𝐼

𝛼

𝑞
{1}

= 2𝐼
𝛼

𝑞
{1} 𝐼
𝛼

𝑞
𝑓
2
(𝑡) − 2(𝐼

𝛼

𝑞
𝑓 (𝑡))

2

+ 2𝐼
𝛼

𝑞
𝜑1 (𝑡) 𝐼

𝛼

𝑞
𝑓 (𝑡) − 2𝐼

𝛼

𝑞
{1} 𝐼
𝛼

𝑞
𝜑1 (𝑡) 𝑓 (𝑡)

+ 2𝐼
𝛼

𝑞
𝜑2 (𝑡) 𝐼

𝛼

𝑞
𝑓 (𝑡) − 2𝐼

𝛼

𝑞
{1} 𝐼
𝛼

𝑞
𝜑2 (𝑡) 𝑓 (𝑡)

− 2𝐼
𝛼

𝑞
𝜑1 (𝑡) 𝐼

𝛼

𝑞
𝜑2 (𝑡) + 2𝐼

𝛼

𝑞
{1} 𝐼
𝛼

𝑞
𝜑1 (𝑡) 𝜑2 (𝑡) ,

(19)

which upon using formula (13) (for 𝜇 = 0), we easily arrive at
the identity (15).

Now, we obtain a generalized 𝑞-Grüss integral inequality,
which gives an estimation for the fractional 𝑞-integral of a
product in terms of the product of the individual function
fractional 𝑞-integrals, involvingRiemann-Liouville fractional
hypergeometric operators. Our inequality is related to the
integrable functions 𝑓 and 𝑔, whose bounds are integrable
functions and satisfying the Cauchy-Schwarz inequality.

Theorem 2. Let𝑓 and 𝑔 be two integrable functions on [0,∞)

and 𝜑1, 𝜑2, 𝜓1, and 𝜓2 are four integrable functions on [0,∞),
such that

𝜑1 (𝑡) ≤ 𝑓 (𝑡) ≤ 𝜑2 (𝑡) , 𝜓1 (𝑡) ≤ 𝑔 (𝑡) ≤ 𝜓2 (𝑡) ,

∀𝑡 ∈ [0,∞) .

(20)

Then, for 𝑡 > 0 and 𝛼 > 0, one has
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝑓 (𝑡) 𝑔 (𝑡) − 𝐼

𝛼

𝑞
𝑓 (𝑡) 𝐼

𝛼

𝑞
𝑔 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ √T𝑞 (𝑓, 𝜑1, 𝜑2)T𝑞 (𝑔, 𝜓1, 𝜓2),

(21)

where
T𝑞 (𝑢, V, 𝑤)

= (𝐼
𝛼

𝑞
𝑤 (𝑡) − 𝐼

𝛼

𝑞
𝑢 (𝑡)) (𝐼

𝛼

𝑞
𝑢 (𝑡) − 𝐼

𝛼

𝑞
V (𝑡))

+
𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
V (𝑡) 𝑢 (𝑡) − 𝐼𝛼

𝑞
V (𝑡) 𝐼𝛼
𝑞
𝑢 (𝑡)

+
𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝑤 (𝑡) 𝑢 (𝑡) − 𝐼

𝛼

𝑞
𝑤 (𝑡) 𝐼

𝛼

𝑞
𝑢 (𝑡)

+ 𝐼
𝛼

𝑞
V (𝑡) 𝐼𝛼
𝑞
𝑤 (𝑡) −

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
V (𝑡) 𝑤 (𝑡) .

(22)

Proof. Let 𝑓 and 𝑔 be two integrable functions on [0,∞) and
satisfying inequality (20); then for any 𝜏, 𝜌 > 0, we define a
function

H𝑞 (𝜏, 𝜌) = (𝑓 (𝜏) − 𝑓 (𝜌)) (𝑔 (𝜏) − 𝑔 (𝜌)) ,

𝜏, 𝜌 ∈ (0, 𝑡) , 𝑡 > 0.

(23)
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On multiplying both sides of (23) by 𝐹𝑞(𝑡, 𝜏)𝐹𝑞(𝑡, 𝜌), where
𝐹𝑞(𝑡, 𝜏) and 𝐹𝑞(𝑡, 𝜌) are given by (17), and integrating with
respect to 𝜏 and 𝜌, respectively, from 0 to 𝑡, we obtain

𝑡
2𝛼−2

2Γ2
𝑞
(𝛼)

∬

𝑡

0

(
𝑞𝜏

𝑡
; 𝑞)
𝛼−1

× (
𝑞𝜌

𝑡
; 𝑞)
𝛼−1

H𝑞 (𝜏, 𝜌) 𝑑𝑞𝜏 𝑑𝑞𝜌

=
𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝑓 (𝑡) 𝑔 (𝑡) − 𝐼

𝛼

𝑞
𝑓 (𝑡) 𝐼

𝛼

𝑞
𝑔 (𝑡) .

(24)

Now, upon using the Cauchy-Schwarz inequality for 𝑞-
integrals (for details, see [24]), we get

(
𝑡
𝛼

Γ𝑞(1 + 𝛼)
𝐼
𝛼

𝑞
𝑓(𝑡)𝑔(𝑡) − 𝐼

𝛼

𝑞
𝑓(𝑡)𝐼
𝛼

𝑞
𝑔(𝑡))

2

≤ (
𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝑓
2
(𝑡) − (𝐼

𝛼

𝑞
𝑓(𝑡))
2

)

× (
𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝑔
2
(𝑡) − (𝐼

𝛼

𝑞
𝑔(𝑡))
2

) .

(25)

On the other hand, we observe that each term of the series
in (17) is positive, and hence, the function 𝐹𝑞(𝑡, 𝜏) remains
positive, for all 𝜏 ∈ (0, 𝑡) (𝑡 > 0). Therefore, under the
hypothesis of Lemma 1, it is obvious to see that either if a
function 𝑓 is integrable and nonnegative on [0,∞), then
𝐼
𝛼

𝑞
𝑓(𝑡) ≥ 0 or if a function 𝑓 is integrable and nonpositive

on [0,∞), then 𝐼𝛼
𝑞
𝑓(𝑡) ≤ 0.

Now, by noting the relation that, for all 𝑡 ∈ [0,∞),

(𝜑2 (𝑡) − 𝑓 (𝑡)) (𝑓 (𝑡) − 𝜑1 (𝑡)) ≥ 0,

(𝜓2 (𝑡) − 𝑔 (𝑡)) (𝑔 (𝑡) − 𝜓1 (𝑡)) ≥ 0,

(26)

we have

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
(𝜑2 (𝑡) − 𝑓 (𝑡)) (𝑓 (𝑡) − 𝜑1 (𝑡)) ≥ 0,

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
(𝜓2 (𝑡) − 𝑔 (𝑡)) (𝑔 (𝑡) − 𝜓1 (𝑡)) ≥ 0.

(27)

Thus, upon using Lemma 1, we get

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝑓
2
(𝑡) − (𝐼

𝛼

𝑞
𝑓(𝑡))
2

≤ (𝐼
𝛼

𝑞
𝜑2 (𝑡) − 𝐼

𝛼

𝑞
𝑓 (𝑡)) (𝐼

𝛼

𝑞
𝑓 (𝑡) − 𝐼

𝛼

𝑞
𝜑1 (𝑡))

+
𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝜑1 (𝑡) 𝑓 (𝑡) − 𝐼

𝛼

𝑞
𝜑1 (𝑡) 𝐼

𝛼

𝑞
𝑓 (𝑡)

+
𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝜑2 (𝑡) 𝑓 (𝑡) − 𝐼

𝛼

𝑞
𝜑2 (𝑡) 𝐼

𝛼

𝑞
𝑓 (𝑡)

+ 𝐼
𝛼

𝑞
𝜑1 (𝑡) 𝐼

𝛼

𝑞
𝜑2 (𝑡) −

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝜑1 (𝑡) 𝜑2 (𝑡)

= T𝑞 (𝑓, 𝜑1, 𝜑2) .

(28)

Similarly, we can write

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝑔
2
(𝑡) − (𝐼

𝛼

𝑞
𝑔 (𝑡))
2

≤ T𝑞 (𝑔, 𝜓1, 𝜓2) . (29)

On making use of inequalities (25), (28), and (29), we easily
arrive at the main result (21).

Now, we briefly consider some special cases of the result
derived in the preceding section. If we let 𝑞 → 1

−, and we
make use of the limit formulas:

lim
𝑞→1−

(𝑞
𝛼
; 𝑞)
𝑛

(1 − 𝑞)
𝑛 = (𝛼)𝑛,

lim
𝑞→1−

Γ𝑞 (𝛼) = Γ (𝛼) ,

(30)

we observe that inequality (21) of Theorem 2 provides the 𝑞-
extension of the known result due to Tariboon et al. [12, p. 5,
Theorem 9].

Further, if we set 𝜑1(𝑡) = 𝑚, 𝜑2(𝑡) = 𝑀, 𝜓1(𝑡) = 𝑝, and
𝜓2(𝑡) = 𝑃, where 𝑚, 𝑀, 𝑝, and 𝑃 are real constants, then
Theorem 2 yields the following 𝑞-Grüss integral inequality,
which may be regarded as 𝑞-extensions of inequality (3).

Corollary 3. Let 𝑓 and 𝑔 be two integrable functions on
[0,∞), such that

𝑚 ≤ 𝑓 (𝑡) ≤ 𝑀, 𝑝 ≤ 𝑔 (𝑡) ≤ 𝑃,

𝑚, 𝑝,𝑀, 𝑃 ∈ R ∀𝑡 ∈ [0,∞) .

(31)

Then, for 𝑡 > 0 and 𝛼 > 0, one has
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝑓 (𝑡) 𝑔 (𝑡) − 𝐼

𝛼

𝑞
𝑓 (𝑡) 𝐼

𝛼

𝑞
𝑔 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (
𝑡
𝛼

2Γ𝑞 (1 + 𝛼)
)

2

(𝑀 − 𝑚) (𝑃 − 𝑝) .

(32)

A similar type of fractional 𝑞-integral inequality (32) has been
derived by Zhu et al. [24] on the specific time scale.

Again, if we set 𝜑1(𝑡) = 𝑡, 𝜑2(𝑡) = 𝑡 + 1, 𝜓1(𝑡) = 𝑡 − 1, and
𝜓2(𝑡) = 𝑡, then Theorem 2 leads to the following 𝑞-integral
inequality.
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Corollary 4. Let 𝑓 and 𝑔 be two integrable functions on
[0,∞), such that

𝑡 ≤ 𝑓 (𝑡) ≤ 𝑡 + 1, 𝑡 − 1 ≤ 𝑔 (𝑡) ≤ 𝑡, ∀𝑡 ∈ [0,∞) . (33)
Then, for 𝑡 > 0 and 𝛼 > 0, one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝑓 (𝑡) 𝑔 (𝑡) − 𝐼

𝛼

𝑞
𝑓 (𝑡) 𝐼

𝛼

𝑞
𝑔 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ √T𝑞 (𝑓, 𝑡, 𝑡 + 1)T𝑞 (𝑔, 𝑡 − 1, 𝑡),

(34)

where
T𝑞 (𝑓, 𝑡, 𝑡 + 1)

= (
Γ𝑞 (2) 𝑡

𝛼+1

Γ𝑞 (2 + 𝛼)
+

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
− 𝐼
𝛼

𝑞
𝑓 (𝑡))

× (𝐼
𝛼

𝑞
𝑓 (𝑡) −

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
) +

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝑡𝑓 (𝑡)

−
Γ𝑞 (2) 𝑡

𝛼+1

Γ𝑞 (2 + 𝛼)
𝐼
𝛼

𝑞
𝑓 (𝑡) +

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
(𝑡 + 1) 𝑓 (𝑡)

− (
Γ𝑞 (2) 𝑡

𝛼+1

Γ𝑞 (2 + 𝛼)
+

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
) 𝐼
𝛼

𝑞
𝑓 (𝑡)

+ (
Γ𝑞 (2) 𝑡

𝛼+1

Γ𝑞 (2 + 𝛼)
)(

Γ𝑞 (2) 𝑡
𝛼+1

Γ𝑞 (2 + 𝛼)
+

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
)

−
𝑡
𝛼

Γ𝑞 (1 + 𝛼)
(
Γ𝑞 (3) 𝑡

𝛼+3

Γ𝑞 (3 + 𝛼)
+
Γ𝑞 (2) 𝑡

𝛼+1

Γ𝑞 (2 + 𝛼)
) ,

T𝑞 (𝑓, 𝑡 − 1, 𝑡)

= (
Γ𝑞 (2) 𝑡

𝛼+1

Γ𝑞 (2 + 𝛼)
− 𝐼
𝛼

𝑞
𝑔 (𝑡))

× (𝐼
𝛼

𝑞
𝑔 (𝑡) −

Γ𝑞 (2) 𝑡
𝛼+1

Γ𝑞 (2 + 𝛼)
+

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
)

+
𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
(𝑡 − 1) 𝑓 (𝑡)

− (
Γ𝑞 (2) 𝑡

𝛼+1

Γ𝑞 (2 + 𝛼)
−

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
) 𝐼
𝛼

𝑞
𝑓 (𝑡)

+
𝑡
𝛼

Γ𝑞 (1 + 𝛼)
𝐼
𝛼

𝑞
𝑡𝑓 (𝑡) −

Γ𝑞 (2) 𝑡
𝛼+1

Γ𝑞 (2 + 𝛼)
𝐼
𝛼

𝑞
𝑓 (𝑡)

+ (
Γ𝑞 (2) 𝑡

𝛼+1

Γ𝑞 (2 + 𝛼)
−

𝑡
𝛼

Γ𝑞 (1 + 𝛼)
)(

Γ𝑞 (2) 𝑡
𝛼+1

Γ𝑞 (2 + 𝛼)
)

−
𝑡
𝛼

Γ𝑞 (1 + 𝛼)
(
Γ𝑞 (3) 𝑡

𝛼+3

Γ𝑞 (3 + 𝛼)
−
Γ𝑞 (2) 𝑡

𝛼+1

Γ𝑞 (2 + 𝛼)
) .

(35)

We conclude this paper by remarking that we have
introduced a new general extension of 𝑞-Grüss type integral
inequality, which gives an estimation for the fractional 𝑞-
integral of a product in terms of the product of the individual
function fractional 𝑞-integrals involving Riemann-Liouville
fractional integral operators. Our main result is related
to the integrable functions 𝑓 and 𝑔, whose bounds are
integrable functions. Therefore, by suitably specializing the
arbitrary functions 𝜑1(𝑡), 𝜑2(𝑡), 𝜓1(𝑡), and 𝜓2(𝑡), one can
easily investigate additional integral inequalities from our
main result Theorem 2.
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