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We show a necessary and sufficient condition for the existence of metric projection on a class of half-space𝐾
𝑥
∗

0
,𝑐
= {𝑥 ∈ 𝑋 : 𝑥

∗

(𝑥) ≤

𝑐} in Banach space. Two representations of metric projections 𝑃
𝐾
𝑥
∗

0
,𝑐

and 𝑃
𝐾
𝑥
0
,𝑐

are given, respectively, where 𝐾
𝑥
0
,𝑐
stands for dual

half-space of𝐾
𝑥
∗

0
,𝑐
in dual space𝑋∗. By these representations, a series of continuity results of the metric projections 𝑃

𝐾
𝑥
∗

0
,𝑐

and 𝑃
𝐾
𝑥
0
,𝑐

are given. We also provide the characterization that a metric projection is a linear bounded operator.

1. Introduction

The metric projection in Banach space is an enduring
question for study or discussion. It has been used in many
areas of mathematics such as the theories of optimization and
approximation, fixed point theory, nonlinear programming,
and variational inequalities. On continuity of the metric
projection, many mathematicians, for example, Nevesenko
[1], Oshman [2], Wang [3], Fang and Wang [4], and Zhang
and Shi [5] have done profound research. In practical appli-
cation, giving the representations of metric projection is very
necessary. Generally speaking, this is very difficult. In recent
years,Wang and Yu [6] gave a representation of single-valued
metric projection on a class of hyperplanes 𝐻

𝑥
∗

0
,𝑐

= {𝑥 ∈

𝑋 : 𝑥
∗

0
(𝑥) = 𝑐} in reflexive, smooth, and strictly convex

Banach space 𝑋. Song and Cao [7] gave a representation of
metric projection on a class of half-space𝐾

𝑥
∗

0
,𝑐
in the reflexive,

smooth, and strictly convex Banach space 𝑋. Wang [8] and
Ni [9] extended the result of Wang and Yu to general Banach
space, respectively. Wang [8] also discussed continuity of the
metric projection on the hyperplane𝐻

𝑥
∗

0
,𝑐
in Banach space.

In this paper, let 𝑋 be a Banach space and let 𝑋∗ be the
dual of𝑋. Let 𝑆(𝑋) and 𝐵(𝑋) be the unit sphere and unit ball
of 𝑋, respectively. Let 𝑥∗

0
∈ 𝑋
∗

\ {𝜃}, let 𝑐 ∈ R, let 𝐾
𝑥
∗

0
,𝑐

=

{𝑥 ∈ 𝑋 : 𝑥
∗

0
(𝑥) ≤ 𝑐}, let 𝐷

−1

(𝑥
∗

0
) = {𝑥 ∈ 𝑋 : 𝑥

∗

0
(𝑥) =

‖𝑥
∗

0
‖‖𝑥‖ = ‖𝑥

∗

0
‖
2

= ‖𝑥‖
2

}, let 𝑥
0
∈ 𝑋 \ {𝜃}, let 𝐾

𝑥
0
,𝑐

= {𝑥
∗

∈

𝑋
∗

: 𝑥
∗

(𝑥
0
) ≤ 𝑐}, and let 𝐷(𝑥

0
) = {𝑥

∗

∈ 𝑋
∗

: 𝑥
∗

(𝑥
0
) =

‖𝑥
∗

‖‖𝑥
0
‖ = ‖𝑥

∗

‖
2

= ‖𝑥
0
‖
2

}. It is easily proved that 𝐷(𝛼𝑥) =

𝛼𝐷(𝑥),𝐷−1(𝛼𝑥∗) = 𝛼𝐷
−1

(𝑥
∗

), and for all 𝛼 ∈ R. For𝑀 ⊂ 𝑋,
the metric projection 𝑃

𝑀
: 𝑋 → 2

𝑀 is defined by 𝑃
𝑀
(𝑥) =

{𝑦 ∈ 𝑀 : ‖𝑥 − 𝑦‖ = 𝑑(𝑥,𝑀)}, where 𝑑(𝑥,𝑀) = inf{‖𝑥 − 𝑦‖ :

𝑦 ∈ 𝑀}. Obviously, 𝑃
𝑀
is a set-valued mapping. If 𝑃

𝑀
(𝑥) ̸= 0

for each 𝑥 ∈ 𝑋, then 𝑀 is said to be proximinal. It is well
known that 𝑃

𝑀
is single-valued when𝑋 is strictly convex and

𝑀 is proximal.
Cabrera and Sadarangani [10] introduced the geometrical

properties of Banach spaces as follows.
A Banach space 𝑋 is called nearly strictly convex (resp.,

weakly nearly strictly convex) whenever, for any 𝑥
∗

∈ 𝑆(𝑋
∗

),
the set𝐷−1(𝑥∗) is compact (resp., weakly compact). A Banach
space𝑋 is called nearly smooth (resp., weakly nearly smooth)
whenever, for any 𝑥 ∈ 𝑆(𝑋), the set 𝐷(𝑥) is compact (resp.,
weakly compact).

The metric projection 𝑃
𝑀
is said to be norm-norm (resp.,

norm-weakly) upper semicontinuous if, for all 𝑥 in𝑋 and for
all norm (resp., weakly) open set 𝑊 ⊃ 𝑃

𝑀
(𝑥), there exists a

norm neighborhood 𝑈 of 𝑥 such that 𝑃
𝑀
(𝑈) ⊂ 𝑊.

In this paper, firstly, we established a necessary and
sufficient condition for the existence of metric projection
on a class of half-space 𝐾

𝑥
∗

0
,𝑐
in Banach space. Secondly, we

give two representations of the metric projections 𝑃
𝐾
𝑥
∗

0
,𝑐

and
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𝑃
𝐾
𝑥
0
,𝑐

by using a different method from the literatures [5–9].
Thirdly, by these representations, we prove that if𝑋 is weakly
nearly strictly convex (resp., weakly nearly smooth), then
metric projection 𝑃

𝐾
𝑥
∗

0
,𝑐

(resp., 𝑃
𝐾
𝑥
0
,𝑐

) is norm-weakly upper
semicontinuous. Finally, the characterization of the metric
projection𝑃

𝑀
from𝑋 to a subspace𝑀 to be a linear bounded

operator is given. We extend the corresponding results in [5–
9].

2. The Representations of the Metric
Projection on Two Classes of Half-Spaces
in Banach Spaces

Lemma 1. Let𝑋 be a Banach space and let 𝑥∗
0
∈ 𝑋
∗

\{𝜃}; then
𝑑(𝑥,𝐾

𝑥
∗

0
,𝑐
) = |𝑥

∗

0
(𝑥) − 𝑐|/‖𝑥

∗

0
‖ for all 𝑥 ∈ 𝑋 \ 𝐾

𝑥
∗

0
,𝑐
.

Proof. Firstly, suppose that ‖𝑥∗
0
‖ = 1. Let 𝑥 ∈ 𝑋/𝐾

𝑥
∗

0
,𝑐
. For

any 𝑦 ∈ 𝐾
𝑥
∗

0
,𝑐
, since

𝑥
∗

0
(𝑥 − 𝑦) ≥ 𝑥

∗

0
(𝑥) − 𝑐 > 0, (1)

we deduce that

𝑑 (𝑥,𝐾
𝑥
∗

0
,𝑐
) ≥

𝑥
∗

0
(𝑥) − 𝑐

 . (2)

On the other hand, for any 𝜀 > 0 (𝜀 < 1/4), there exists
𝑢
𝜀
in 𝑆(𝑋) such that 1 − 𝜀 < 𝑥

∗

0
(𝑢
𝜀
) ≤ 1. Set 𝑦

𝜀
= 𝑥 − (1 +

2𝜀)(𝑥
∗

0
(𝑥) − 𝑐)𝑢

𝜀
. Then

𝑥
∗

0
(𝑦
𝜀
) = 𝑥
∗

0
(𝑥) − (1 + 2𝜀) (𝑥

∗

0
(𝑥) − 𝑐) 𝑥

∗

0
(𝑢
𝜀
)

< 𝑥
∗

0
(𝑥) − (1 + 2𝜀) (𝑥

∗

0
(𝑥) − 𝑐) (1 − 𝜀)

= 𝑥
∗

0
(𝑥) − (1 + 𝜀 − 2𝜀

2

) (𝑥
∗

0
(𝑥) − 𝑐)

≤ 𝑥
∗

0
(𝑥) − (𝑥

∗

0
(𝑥) − 𝑐) = 𝑐.

(3)

Consequently, 𝑦
𝜀
∈ 𝐾
𝑥
∗

0
,𝑐
and

𝑥 − 𝑦
𝜀

 = (1 + 2𝜀)
𝑥
∗

0
(𝑥) − 𝑐

 . (4)

It follows that

𝑑 (𝑥,𝐾
𝑥
∗

0
,𝑐
) ≤ (1 + 2𝜀)

𝑥
∗

0
(𝑥) − 𝑐

 . (5)

By arbitrariness of 𝜀, we deduce that

𝑑 (𝑥,𝐾
𝑥
∗

0
,𝑐
) ≤

𝑥
∗

0
(𝑥) − 𝑐

 . (6)

This means that

𝑑 (𝑥,𝐾
𝑥
∗

0
,𝑐
) =

𝑥
∗

0
(𝑥) − 𝑐

 . (7)

Secondly, for 𝑥∗ ∈ 𝑋
∗

\ 𝜃 and ‖𝑥
∗

‖ ̸= 1, since

𝐾
𝑥
∗

0
,𝑐
= {𝑥 ∈ 𝑋 : 𝑥

∗

0
(𝑥) ≤ 𝑐} = {𝑥 ∈ 𝑋 :

𝑥
∗

0

𝑥
∗

0



(𝑥) ≤
𝑐

𝑥
∗

0



} ,

(8)

from (7), we may obtain that

𝑑 (𝑥,𝐾
𝑥
∗

0
,𝑐
) =

𝑥
∗

0
(𝑥) − 𝑐


𝑥
∗

0



, ∀𝑥 ∈ 𝑋 \ 𝐾
𝑥
∗

0
,𝑐
. (9)

Remark 2. For given 𝑥
∗

0
∈ 𝑋
∗

\ {𝜃} and 𝑐 ∈ R, by Lemma 1,
we have that

𝑑 (𝑥,𝐾
𝑥
∗

0
,𝑐
) = 𝑑 (𝑥,𝐻

𝑥
∗

0
,𝑐
) , (10)

for any 𝑥 ∈ 𝑋 \ 𝐾
𝑥
∗

0
,𝑐
.

Theorem 3. Let 𝑋 be a Banach space, let 𝑥∗
0

∈ 𝑋
∗

\ 𝜃, and
let 𝑐 ∈ R; then 𝑃

𝐾
𝑥
∗

0
,𝑐

(𝑥) ̸= 0 for any 𝑥 ∈ 𝑋 if and only if
𝐷
−1

(𝑥
∗

0
) ̸= 0.

Proof. On necessity: take 𝑥 ∈ 𝑋 \ 𝐾
𝑥
∗

0
,𝑐
; then there exists a

𝑦 ∈ 𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥). Set 𝑢 = (‖𝑥
∗

0
‖
2

/(𝑥
∗

0
(𝑥)−𝑐))(𝑥−𝑦); by Lemma 1,

we have that

‖𝑢‖ =

𝑥
∗

0



2

𝑥
∗

0
(𝑥) − 𝑐



𝑥 − 𝑦


=

𝑥
∗

0



2

𝑥
∗

0
(𝑥) − 𝑐



𝑥
∗

0
(𝑥) − 𝑐


𝑥
∗

0



=
𝑥
∗

0

 .

(11)

Hence, 𝑥∗
0
(𝑢) ⩽ ‖𝑥

∗

0
‖‖𝑢‖ = ‖𝑥

∗

0
‖
2.

On the other hand,

𝑥
∗

0
(𝑢) =

𝑥
∗

0



2

𝑥
∗

0
(𝑥) − 𝑐

(𝑥
∗

0
(𝑥) − 𝑥

∗

0
(𝑦))

⩾

𝑥
∗

0



2

𝑥
∗

0
(𝑥) − 𝑐

(𝑥
∗

0
(𝑥) − 𝑐) =

𝑥
∗

0



2

.

(12)

This shows that 𝑥∗
0
(𝑢) = ‖𝑥

∗

0
‖
2

= ‖𝑢‖
2, that is, 𝑢 ∈ 𝐷

−1

(𝑥
∗

0
)

and𝐷
−1

(𝑥
∗

0
) ̸= 0.

On sufficiency: take 𝑥 ∈ 𝑆(𝑋) such that 𝑥
∗

0
(𝑥) =

‖𝑥
∗

0
‖‖𝑥‖ = ‖𝑥

∗

0
‖
2

= ‖𝑥‖
2. We discuss that in two cases.

Case 1. If 𝑥 ∈ 𝐾
𝑥
∗

0
,𝑐
, then 𝑥 ∈ 𝑃

𝐾
𝑥
∗

0
,𝑐

(𝑥).

Case 2. If 𝑥 ∉ 𝐾
𝑥
∗

0
,𝑐
, since

𝑥
∗

0
(𝑥 −

𝑥
∗

0
(𝑥) − 𝑐

𝑥
∗

0



2
𝑥
0
) = 𝑥

∗

0
(𝑥) − (𝑥

∗

0
(𝑥) − 𝑐) = 𝑐; (13)

then we have that 𝑥 − ((𝑥
∗

0
(𝑥) − 𝑐)/‖𝑥

∗

0
‖
2

)𝑥
0

∈ 𝐾
𝑥
∗

0
,𝑐
. By

Lemma 1,


𝑥 − (𝑥 −
𝑥
∗

0
(𝑥) − 𝑐

𝑥
∗

0



2
𝑥
0
)



=
𝑥
∗

0
(𝑥) − 𝑐

𝑥
∗

0



= 𝑑 (𝑥,𝐾
𝑥
∗

0

) .

(14)

It follows that 𝑥 − ((𝑥
∗

0
(𝑥) − 𝑐)/‖𝑥

∗

0
‖
2

)𝑥
0
∈ 𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥).

Theorem 4. Let𝑋 be a Banach space, let 𝑥∗
0
∈ 𝑋
∗

\ {𝜃}, let 𝑥∗
0

attain its norm on 𝑆(𝑋), and let 𝑐 ∈ R. Then

𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥) = 𝑥 −max{0,
𝑥
∗

0
(𝑥) − 𝑐

𝑥
∗

0



2
}𝐷
−1

(𝑥
∗

0
) . (15)
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Proof. Take 𝑥 ∈ 𝑋. We discuss that in two cases.

Case 1. If 𝑥 ∈ 𝐾
𝑥
∗

0
,𝑐
, then 𝑃

𝐾
𝑥
∗

0
,𝑐

(𝑥) = {𝑥}.

Case 2. If 𝑥 ∉ 𝐾
𝑥
∗

0
,𝑐
, we arbitrarily take 𝑥

0
∈ 𝐷
−1

(𝑥
∗

0
). Let 𝑦 =

𝑥 − ((𝑥
∗

0
(𝑥) − 𝑐)/‖𝑥

∗

0
‖
2

)𝑥
0
. Similar to the proof ofTheorem 3,

we may obtain that 𝑦 ∈ 𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥). Therefore,

𝑥 −
𝑥
∗

0
(𝑥) − 𝑐

𝑥
∗

0



2
𝐷
−1

(𝑥
∗

0
) ⊂ 𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥) . (16)

On the other hand, we arbitrarily take 𝑦 ∈ 𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥).

Let 𝑢 = (‖𝑥
∗

0
‖
2

/(𝑥
∗

0
(𝑥) − 𝑐))(𝑥 − 𝑦); similar to the proof of

Theorem 3, we may obtain that 𝑢 ∈ 𝐷
−1

(𝑥
∗

0
). Therefore,

𝑦 = 𝑥 −
𝑥
∗

0
(𝑥) − 𝑐

𝑥
∗

0



2
𝑢 ∈ 𝑥 −

𝑥
∗

0
(𝑥) − 𝑐

𝑥
∗

0



2
𝐷
−1

(𝑥
∗

0
) , (17)

that is,

𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥) ⊂ 𝑥 −
𝑥
∗

0
(𝑥) − 𝑐

𝑥
∗

0



2
𝐷
−1

(𝑥
∗

0
) . (18)

By Case 1 and Case 2, we have

𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥) = 𝑥 −max{0,
𝑥
∗

0
(𝑥) − 𝑐

𝑥
∗

0



2
}𝐷
−1

(𝑥
∗

0
) , (19)

for any 𝑥 ∈ 𝑋.

By the similar proof to that in Lemma 1, we can obtain the
following result.

Lemma 5. Let 𝑋 be a Banach space, let 𝑥
0

∈ 𝑋 \ {𝜃}, and
let 𝑐 ∈ R. Then

𝑑 (𝑥
∗

, 𝐾
𝑥
0
,𝑐
) =

𝑥
∗

(𝑥
0
) − 𝑐


𝑥0



, (20)

for any 𝑥
∗

∈ 𝑋
∗

\ 𝐾
𝑥
0
,𝑐
.

By a similar proof to that inTheorem 4, we can also prove
the following result according to Lemma 5.

Theorem 6. Let𝑋 be a Banach space, let 𝑥
0
∈ 𝑋 \ {𝜃}, and let

𝑐 ∈ R. Then

𝑃
𝐾
𝑥
0
,𝑐

(𝑥
∗

) = 𝑥
∗

−max{0,
𝑥
∗

(𝑥
0
) − 𝑐

𝑥0


2
}𝐷(𝑥

0
) , (21)

for any 𝑥
∗

∈ 𝑋
∗.

3. Continuity of the Metric Projection
on the Two Classes of Half-Spaces
in Banach Spaces

Theorem 7. Let 𝑥
∗

0
∈ 𝑋 \ {𝜃}, let 𝑥

∗

0
attain its norm

on 𝑆(𝑋), and let 𝑐 ∈ R. If 𝑋 is weakly nearly strictly
convex, then the metric projection 𝑃

𝐾
𝑥
∗

0
,𝑐

is norm-weakly upper
semicontinuous.

Proof. Let 𝑥, 𝑥
𝑛
∈ 𝑋, and let 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞. Our proof

will be divided into two cases.

Case 1. Suppose that {𝑥
𝑛
} ⊂ 𝐾

𝑥
∗

0
,𝑐
. Since 𝐾

𝑥
∗

0
,𝑐
is a closed set,

𝑥 ∈ 𝐾
𝑥
∗

0
,𝑐
. Clearly, 𝑃

𝐾
𝑥
∗

0
,𝑐

(𝑥
𝑛
) = 𝑥
𝑛

→ 𝑥 = 𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥).

Case 2. Suppose that {𝑥
𝑛
} ̸⊂ 𝐾
𝑥
∗

0
,𝑐
.

If there are an infinite number of 𝑛 for which 𝑥
𝑛
∈ 𝐾
𝑥
∗

0
,𝑐
,

then we can choose a subsequence {𝑥
𝑛
𝑘

} ⊂ {𝑥
𝑛
} with {𝑥

𝑛
𝑘

} ⊂

𝐾
𝑥
∗

0
,𝑐
. Therefore, 𝑃

𝐾
𝑥
∗

0
,𝑐

(𝑥
𝑛
𝑘

) = 𝑥
𝑛
𝑘

→ 𝑥 = 𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥) as 𝑘 →

∞.
If there are an infinite number of 𝑛 for which 𝑥

𝑛
∉ 𝐾
𝑥
∗

0
,𝑐
,

without loss of generality, we may assume that {𝑥
𝑛
} ⊂ 𝑋 \

𝐾
𝑥
∗

0
,𝑐
. Taking 𝑦

𝑛
∈ 𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥
𝑛
), by Theorem 4, we have

𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥
𝑛
) = 𝑥
𝑛
−

𝑥
∗

0
(𝑥
𝑛
) − 𝑐

𝑥0


2
𝐷
−1

(𝑥
∗

0
) . (22)

We assume that 𝑦
𝑛
= 𝑥
𝑛
− ((𝑥
∗

0
(𝑥
𝑛
) − 𝑐)/‖𝑥

∗

0
‖
2

)𝑧
𝑛
, where

𝑧
𝑛

∈ 𝐷
−1

(𝑥
∗

0
). Since 𝑋 is weakly nearly strictly convex, we

know that {𝑧
𝑛
} has a weakly convergent subsequence {𝑧

𝑛
𝑘

}

with 𝑧
𝑛
𝑘

𝑤

→ 𝑧 as 𝑘 → ∞. Consequently,

𝑦
𝑛
𝑘

= 𝑥
𝑛
𝑘

−

𝑥
∗

0
(𝑥
𝑛
𝑘

) − 𝑐

𝑥
∗

0



𝑧
𝑛
𝑘

𝑤

→ 𝑥 −
𝑥
∗

0
(𝑥) − 𝑐

𝑥
∗

0



𝑧. (23)

Noting 𝑥
∗

0
(𝑧) = lim

𝑘
𝑥
∗

0
(𝑧
𝑛
𝑘

) = lim
𝑘
‖𝑥
∗

0
‖
2

= ‖𝑧
𝑛
𝑘

‖
2 and

‖𝑧‖ ⩽ lim
𝑘
‖𝑧
𝑛
𝑘

‖, we know that 𝑥∗
0
(𝑧) ⩾ ‖𝑥

∗

0
‖ ⋅ ‖𝑧‖. Therefore,

𝑥
∗

0
(𝑧) =

𝑥
∗

0

 ⋅ ‖𝑧‖ =
𝑥
∗

0



2

= ‖𝑧‖
2

, (24)

where 𝑧 ∈ 𝐷
−1

(𝑥
∗

0
). This shows that 𝑦

𝑛
𝑘

𝑤

→ 𝑥 − ((𝑥
∗

0
(𝑥) −

𝑐)/‖𝑥
∗

0
‖)𝑧 ∈ 𝑃

𝐾
𝑥
∗

0
,𝑐

(𝑥).
Now, we will show that 𝑃

𝐾
𝑥
∗

0
,𝑐

is norm-weakly upper
semicontinuous at 𝑥. Otherwise, there exist a weakly open
set 𝑊

0
⊃ 𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥) and a sequence {𝑥
𝑚
} with 𝑥

𝑚
→ 𝑥 as

𝑚 → ∞, but 𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥
𝑚
) ̸⊂ 𝑊

0
for all 𝑚. Taking 𝑦

𝑚
∈

𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥
𝑚
) \ 𝑊
0
, 𝑚 = 1, 2, . . ., similar to previous arguments,

we can observe the fact that there exists a subsequence {𝑦
𝑚
𝑘

}

of {𝑦
𝑚
} such that 𝑦

𝑚
𝑘

𝑤

→ 𝑦 as 𝑘 → ∞ and 𝑦 ∈ 𝑃
𝐾
𝑥
∗

0
,𝑐

(𝑥). This
means that there exists 𝑦

𝑚
𝑘

∈ 𝑊
0
for some 𝑘 large enough,

which is a contradiction.

Similar to the proof of Theorem 8, we may prove the
following theorem.

Theorem 8. Let 𝑋 be a Banach space.

(1) Let 𝑥∗
0
∈ 𝑋
∗

\ {𝜃}, let 𝑥∗
0
attain its norm on 𝑆(𝑋), and

let 𝑐 ∈ R. If 𝑋 is nearly strictly convex, then the metric
projection 𝑃

𝐾
𝑥
∗

0
,𝑐

is norm-norm upper semicontinuous.

(2) Let 𝑥
0
∈ 𝑋 \ {𝜃} and let 𝑐 ∈ R. If 𝑋 is weakly nearly

smooth, then the metric projection 𝑃
𝐾
𝑥
0
,𝑐

is norm-
weakly upper semicontinuous.
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(3) Let 𝑥
0
∈ 𝑋 \ {𝜃} and let 𝑐 ∈ R. If 𝑋 is nearly smooth,

then the metric projection 𝑃
𝐾
𝑥
0
,𝑐

is norm-norm upper
semicontinuous.

Lemma 9 (see [11]). Let 𝑀 be a proximal subspace. Then for
any 𝑥 ∈ 𝑋, one has the decomposition

𝑥 = 𝑥
1
+ 𝑥
2
, 𝑥
1
∈ 𝑃
𝑀

(𝑥) , 𝑥
2
∈ 𝐷
−1

(𝑀
⊥

) , (25)

where𝑀⊥ = {𝑥
∗

∈ 𝑋
∗

: 𝑥
∗

(𝑥) = 0, ∀𝑥 ∈ 𝑀} and

𝐷
−1

(𝑀
⊥

) = {𝑥 ∈ 𝑋 : 𝐷 (𝑥) ∩ 𝑀
⊥

̸= 0} . (26)

If𝑀 is a Chebyshev subspace, the decomposition is unique, and

𝑥 = 𝑃
𝑀

(𝑥) + 𝑥
2
, 𝑥
2
∈ 𝐷
−1

(𝑀
⊥

) . (27)

Lemma 10. Let𝑋 be a strictly convex Banach space and let𝑀
be a proximal subspace. Then, for any 𝑥 ∈ 𝑋, one has

𝑃
𝑀

(𝑥 + 𝑦) = 𝑃
𝑀

(𝑥) + 𝑦, 𝑦 ∈ 𝑀. (28)

Proof. Let 𝑦 ∈ 𝑀, for any 𝑧 ∈ 𝑀, we have that𝑤 = 𝑧−𝑦 ∈ 𝑀.
Consider

𝑃𝑀 (𝑥) + 𝑦 − (𝑥 + 𝑦)


=
𝑃𝑀 (𝑥) − 𝑥

 ≤ ‖𝑤 − 𝑥‖

=
(𝑤 + 𝑦) − (𝑥 + 𝑦)

 =
𝑧 − (𝑥 + 𝑦)

 .

(29)

By the definition of 𝑃
𝑀
, we obtain 𝑃

𝑀
(𝑥) + 𝑦 ∈ 𝑃

𝑀
(𝑥 + 𝑦).

Since 𝑋 is strictly convex, we know that 𝑃
𝑀
is single-valued,

and hence we have 𝑃
𝑀
(𝑥 + 𝑦) = 𝑃

𝑀
(𝑥) + 𝑦.

Similar to the proof Theorem 2.1(1) in [6], we can prove
the following result by Lemmas 9 and 10.

Lemma 11. Let𝑋 be a strictly convex Banach space and let𝑀
be a proximal subspace.𝑃 is single-valued operator from𝑋 into
𝑀, and 𝑃

𝑀
is a metric projection from𝑋 into𝑀.Then 𝑃 = 𝑃

𝑀

if and only if the following conditions are satisfied:

(1) 𝑃
−1

(𝜃) = 𝐷
−1

(𝑀
⊥

);
(2) 𝑃(𝑥 + 𝑦) = 𝑃(𝑥) + 𝑦, for all 𝑦 ∈ 𝑀.

Theorem 12. Let 𝑋 be a strictly convex Banach space and let
𝑀 be a proximal subspace. Then the metric projection 𝑃

𝑀
is

a linear bounded operator if and only if 𝐷−1(𝑀⊥) is a linear
subspace.

Proof. On necessity: let 𝑃
𝑀

be a linear operator. Since 𝑋 is
strictly convex and 𝑀 is proximal, then 𝑃

𝑀
is single valued.

By Lemma 11(1), for any𝑥, 𝑦 ∈ 𝐷
−1

(𝑀
⊥

) = 𝑃
−1

𝑀
(𝜃), 𝛼, 𝛽 ∈ R,

then

𝑃
𝑀

(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑃
𝑀

(𝑥) + 𝛽𝑃
𝑀

(𝑦) = 0, (30)

and hence 𝛼𝑥 + 𝛽𝑦 ∈ 𝑃
−1

𝑀
(𝜃) = 𝐷

−1

(𝑀
⊥

). This shows that
𝐷
−1

(𝑀
⊥

) is a linear subspace.
On sufficiency: let 𝐷

−1

(𝑀
⊥

) be a linear subspace and
let 𝑃
𝑀

be a metric projection; since 𝑋 is strictly convex, by

Lemma 11(1), 𝑃−1
𝑀

(𝜃) is also a linear subspace. For any 𝑥, 𝑦 ∈

𝑋, 𝑥 − 𝑃
𝑀
(𝑥), 𝑦 − 𝑃

𝑀
(𝑦) ∈ {𝑥 − 𝑃

𝑀
(𝑥) : 𝑥 ∈ 𝑋}, we have that

(𝑥 + 𝑦) − (𝑃
𝑀

(𝑥) + 𝑃
𝑀

(𝑦))

= (𝑥 − 𝑃
𝑀

(𝑥)) + (𝑦 − 𝑃
𝑀

(𝑦))

∈ {𝑧 − 𝑃
𝑀

(𝑧) : 𝑧 ∈ 𝑋} = 𝑃
−1

𝑀
(𝜃) .

(31)

By Lemma 11(2), we have that

0 = 𝑃
𝑀

((𝑥 + 𝑦) − (𝑃
𝑀

(𝑥) + 𝑃
𝑀

(𝑦)))

= 𝑃
𝑀

(𝑥 + 𝑦) − (𝑃
𝑀

(𝑥) + 𝑃
𝑀

(𝑦)) .

(32)

It follows that 𝑃
𝑀
(𝑥 + 𝑦) = 𝑃

𝑀
(𝑥) + 𝑃

𝑀
(𝑦). Note that 𝑃

𝑀

is homogeneous; we obtain that 𝑃
𝑀

is a linear operator. In
addition, for any 𝑥 ∈ 𝑋, since 𝜃 ∈ 𝑀, we have that

𝑃𝑀 (𝑥)
 =

𝑃𝑀 (𝑥) − 𝑥 + 𝑥


≤
𝑃𝑀 (𝑥) − 𝑥

 + ‖𝑥‖

≤ ‖𝜃 − 𝑥‖ + ‖𝑥‖ = 2 ‖𝑥‖ .

(33)

This shows that 𝑃
𝑀
is a bounded operator.
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