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We describe the point spectrum of the generator of a 𝐶
0
-semigroup associated with theM/M/1 queueing model that is governed by

an infinite system of partial differential equations with integral boundary conditions. Our results imply that the essential growth
bound of the 𝐶

0
-semigroup is 0 and, therefore, that the semigroup is not quasi-compact. Moreover, our result also shows that it is

impossible that the time-dependent solution of the M/M/1 queueing model exponentially converges to its steady-state solution.

1. Introduction

In 1955, by considering service time of customers, Cox [1] first
established the M/G/1 queueing model which was described
by an infinite system of partial differential equations with
integral boundary conditions and studied the steady-state
solution of the model under the following hypothesis: the
time-dependent solution of themodel converges to its steady-
state solution. In 2001, Gupur et al. [2] have proved that the
underlying operator, which corresponds to theM/G/1 queue-
ing model, generates a positive contraction 𝐶

0
-semigroup

that is isometric for the initial value.Hence, they deduced that
themodel has a unique nonnegative time-dependent solution
which satisfies the probability condition (i.e., its norm is 1).
In 2011, by studying spectral properties of the underlying
operator on the imaginary axis, Gupur [3] obtained that
all points on the imaginary axis except 0 belong to the
resolvent set of the underlying operator and 0 is an eigenvalue
of the underlying operator and its adjoint operator with
geometric multiplicity one. Thus, by using Theorem 14 in
Gupur et al. [2] (Theorem 1.96 in Gupur [4]) it follows that
the time-dependent solution of the model strongly converges
to its steady-state solution; that is, Cox’s hypothesis holds
in the sense of strong convergence. When the service rate
is a constant, the M/G/1 queueing model is called M/M/1
queueing model. Well-posedness of the M/M/1 queueing

model and asymptotic behavior of its time-dependent solu-
tion can be found in Gupur et al. [2] (see also Radl [5]). In
2008, Zhang and Gupur [6] have found that the underlying
operator, which corresponds to the M/M/1 queueing model,
has one negative real eigenvalue. In 2011, Kasim and Gupur
[7] discovered that the underlying operator has uncountable
negative real eigenvalues and therefore suggested that it is
impossible that the time-dependent solution of the model
exponentially converges to its steady-state solution. So far,
no other results concerning this model can be found in the
literature.

In this paper, we study eigenvalues of the underlying
operator associated with the M/M/1 queueing model and
obtain that if the mean arrival rate of customers 𝜆 and the
mean service rate of the server 𝜇 satisfy 𝜆 < 𝜇, then all points
in the set

{𝛾 ∈ C | Re 𝛾 + 𝜇 > 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 + 𝜆 + 𝜇 ± √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 2𝜇} ∪ {0}

(1)

are eigenvalues of the underlying operator with geometric
multiplicity one. In particular, the interval (−𝜇, 0] belongs to
its point spectrum. These results together with the spectral
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mapping theorem for the point spectrum ([8], p. 277) imply
that the 𝐶

0
-semigroup generated by the underlying operator

has uncountable eigenvalues and therefore it is not compact,
even not eventually compact. Moreover, by combining the
result in this paper and the results in Gupur et al. [2] with
Corollary 2.11 in Engel and Nagel [8], p. 258, we deduce
that the essential growth bound of the 𝐶

0
-semigroup is 0

and therefore it is not quasi-compact ([8], p. 332). Hence,
queueing models are essentially different from population
equations (see [9, 10]) and the reliability models that are
described by finite partial differential equations with integral
boundary conditions (see [4, 11]). In addition, we show that
the essential spectral radius of the 𝐶

0
-semigroup is 1 and it

is impossible that the time-dependent solution of the M/M/1
queueing model exponentially converges to its steady-state
solution.

If we do not consider service time of customers, then the
M/M/1 queueing model becomes an infinite system of ordi-
nary differential equations. Its research can be found in
Gupur et al. [2] and Zhao et al. [12].

2. The M/M/1 Queueing Model
and Related Results

According to Cox [1] the M/M/1 queueing model can be
described by the following system of partial differential
equations with integral boundary conditions:

𝑑𝑝
0

(𝑡)

𝑑𝑡
= −𝜆𝑝

0 (𝑡) + 𝜇 ∫

∞

0

𝑝
1 (𝑥, 𝑡) 𝑑𝑥,

𝜕𝑝
1

(𝑥, 𝑡)

𝜕𝑡
+

𝜕𝑝
1

(𝑥, 𝑡)

𝜕𝑥
= − (𝜆 + 𝜇) 𝑝

1
(𝑥, 𝑡) ,

𝜕𝑝
𝑛

(𝑥, 𝑡)

𝜕𝑡
+

𝜕𝑝
𝑛

(𝑥, 𝑡)

𝜕𝑥
= − (𝜆 + 𝜇) 𝑝

𝑛 (𝑥, 𝑡) + 𝜆𝑝
𝑛−1 (𝑥, 𝑡) ,

∀𝑛 ⩾ 2,

𝑝
1

(0, 𝑡) = 𝜇 ∫

∞

0

𝑝
2

(𝑥, 𝑡) 𝑑𝑥 + 𝜆𝑝
0

(𝑡) ,

𝑝
𝑛

(0, 𝑡) = 𝜇 ∫

∞

0

𝑝
𝑛+1

(𝑥, 𝑡) 𝑑𝑥, ∀𝑛 ⩾ 2,

𝑝
0

(0) = 𝜙
0

≥ 0, 𝑝
𝑛

(𝑥, 0) = 𝜙
𝑛

(𝑥) ≥ 0, ∀𝑛 ≥ 1.

(2)

Here (𝑥, 𝑡) ∈ [0, ∞)×[0, ∞); 𝜙
0

+∑
∞

𝑛=1
∫
∞

0
𝜙
𝑛
(𝑥)𝑑𝑥 = 1; 𝜆 is

the mean arrival rate of customers; 𝜇 is the mean service rate
of the server; 𝑝

0
(𝑡) is the probability that the system is empty

at time 𝑡; 𝑝
𝑛
(𝑥, 𝑡) is the probability that at time 𝑡 there are 𝑛

customers in the system and the service time of the customer
undergoing service is 𝑥.

In this paper, we use the notations in [2, 6, 7]. Select a state
space as follows:

𝑋 = {𝑦 | 𝑦 ∈ R × 𝐿
1

[0, ∞) × 𝐿
1

[0, ∞) × ⋅ ⋅ ⋅ ,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 =

󵄨󵄨󵄨󵄨𝑦0
󵄨󵄨󵄨󵄨 +

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩𝑦
𝑛

󵄩󵄩󵄩󵄩𝐿1[0,∞)
< ∞} .

(3)

It is obvious that𝑋 is a Banach space.Moreover,𝑋 is a Banach
lattice under the following order relation:

𝑝
(1)

≤ 𝑝
(2)

⇐⇒ 𝑝
(1)

0
≤ 𝑝
(2)

0
, 𝑝

(1)

𝑛
(𝑥) ≤ 𝑝

(2)

𝑛
(𝑥) ,

𝑝
(1)

, 𝑝
(2)

∈ 𝑋.

(4)

For simplicity, we introduce

Γ =
(
(

(

𝑒
−𝑥

0 0 0 0 0 ⋅ ⋅ ⋅

𝜆𝑒
−𝑥

0 𝜇 0 0 0 ⋅ ⋅ ⋅

0 0 0 𝜇 0 0 ⋅ ⋅ ⋅

0 0 0 0 𝜇 0 ⋅ ⋅ ⋅

0 0 0 0 0 𝜇 ⋅ ⋅ ⋅

...
...

...
...

...
... d

)
)

)

. (5)

In the following we define operators and their domains:

𝐴 (

𝑝
0

𝑝
1

𝑝
2

...

) (𝑥)

= (

(

−𝜆 0 0 ⋅ ⋅ ⋅

0 −
𝑑

𝑑𝑥
− (𝜆 + 𝜇) 0 ⋅ ⋅ ⋅

0 0 −
𝑑

𝑑𝑥
− (𝜆 + 𝜇) ⋅ ⋅ ⋅

...
...

... d

)

)

× (

𝑝
0

𝑝
1 (𝑥)

𝑝
2 (𝑥)

...

) ,

𝐷 (𝐴)

= {𝑝 ∈ 𝑋 |
𝑑𝑝
𝑛 (𝑥)

𝑑𝑥
∈ 𝐿
1

[0, ∞) ,

𝑝
𝑛

(𝑥) (𝑛 ≥ 1) are absolutely continuous and

𝑝 (0) = ∫

∞

0

Γ𝑝 (𝑥) 𝑑𝑥,

󵄨󵄨󵄨󵄨𝑝0
󵄨󵄨󵄨󵄨 +

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑝
𝑛

𝑑𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿1[0,∞)

< ∞} ;
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𝑈
(
(

(

𝑝
0

𝑝
1

𝑝
2

𝑝
3

𝑝
4

...

)
)

)

(𝑥) =
(
(

(

0 0 0 0 ⋅ ⋅ ⋅

0 0 0 0 ⋅ ⋅ ⋅

0 𝜆 0 0 ⋅ ⋅ ⋅

0 0 𝜆 0 ⋅ ⋅ ⋅

0 0 0 𝜆 ⋅ ⋅ ⋅

...
...

...
... d

)
)

)

(
(

(

𝑝
0

𝑝
1

(𝑥)

𝑝
2 (𝑥)

𝑝
3 (𝑥)

𝑝
4 (𝑥)

...

)
)

)

,

𝐷 (𝑈) = 𝑋;

𝐸 (

𝑝
0

𝑝
1

𝑝
2

...

) (𝑥) = (

𝜇∫

∞

0

𝑝
1 (𝑥) 𝑑𝑥

0

0

...

) ,

𝐷 (𝐸) = 𝑋.

(6)
Then (2) can be rewritten as a Cauchy problem in 𝑋:

𝑑𝑝 (𝑡)

𝑑𝑡
= (𝐴 + 𝑈 + 𝐸) 𝑝 (𝑡) , 𝑡 ∈ (0, ∞)

𝑝 (0) = (𝜙
0
, 𝜙
1
, 𝜙
2
, . . .) ,

(7)

where 𝐴 + 𝑈 + 𝐸 is called M/M/1 operator.
The following results can be found in Gupur et al. [2].

Theorem 1. 𝐴 + 𝑈 + 𝐸 generates a positive contraction 𝐶
0
-

semigroup 𝑇(𝑡). 𝑇(𝑡) is isometric for 𝐷(𝐴
2
). Hence, the system

(7) has a unique positive time-dependent solution 𝑝(𝑥, 𝑡) =

𝑇(𝑡)𝑝(0) for 𝑝(0) ∈ 𝐷(𝐴
2
) satisfying

󵄩󵄩󵄩󵄩𝑝 (⋅, 𝑡)
󵄩󵄩󵄩󵄩 = 1, ∀𝑡 ∈ [0, ∞) . (8)

The set

{ 𝛾 ∈ C | Re 𝛾 + 𝜆 + 𝜇 > 0,
󵄨󵄨󵄨󵄨𝛾 + 𝜆 + 𝜇

󵄨󵄨󵄨󵄨 > 𝜇,

sup{
𝜆

󵄨󵄨󵄨󵄨𝛾 + 𝜆
󵄨󵄨󵄨󵄨

,
𝜆

󵄨󵄨󵄨󵄨𝛾 + 𝜆 + 𝜇
󵄨󵄨󵄨󵄨

(Re 𝛾 + 𝜆 + 𝜇) (
󵄨󵄨󵄨󵄨𝛾 + 𝜆 + 𝜇

󵄨󵄨󵄨󵄨 − 𝜇)
}

< 1}

(9)

belongs to the resolvent set of (𝐴 + 𝑈 + 𝐸)
∗, the adjoint operator

of 𝐴 + 𝑈 + 𝐸. In particular, all points on the imaginary axis
except 0 belong to the resolvent set of 𝐴+𝑈+𝐸. When 𝜆 < 𝜇, 0

is an eigenvalue of 𝐴 + 𝑈 + 𝐸 and (𝐴 + 𝑈 + 𝐸)
∗ with geo-

metric multiplicity 1. Therefore, the time-dependent solution of
the system (7) strongly converges to its steady-state solution:

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑝 (⋅, 𝑡) − 𝑝 (⋅)
󵄩󵄩󵄩󵄩 = 0; (10)

here 𝑝(𝑥) is the eigenvector with respect to 0.

In 2008, Zhang and Gupur [6] obtained the following
result.

Theorem 2. If 𝜆 < 𝜇, then 2√𝜆𝜇 − 𝜆 − 𝜇 is an eigenvalue of
𝐴 + 𝑈 + 𝐸 with geometric multiplicity 1.

In 2011, Kasim and Gupur [7] proved the following result.

Theorem 3. If 𝜆 < 𝜇, then all points in (2√𝜆𝜇 − 𝜆 − 𝜇, 0) are
eigenvalues of 𝐴 + 𝑈 + 𝐸 with geometric multiplicity 1.

3. Main Results

Theorem 4. If 𝜆 < 𝜇, then all points in the set

{𝛾 ∈ C | Re 𝛾 + 𝜇 > 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 + 𝜆 + 𝜇 ± √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 2𝜇} ∪ {0}

(11)

are eigenvalues of 𝐴 + 𝑈 + 𝐸 with geometric multiplicity 1. In
particular, the interval (−𝜇, 0] belongs to the point spectrum of
𝐴 + 𝑈 + 𝐸.

Remark 5. The condition 𝜆 < 𝜇 in Theorem 4, which was
used by Cox [1], means that the service rate of the server is
larger than the arrival rate of customers, thus preventing long
queues of customers and therefore ensuring that the queueing
system exists. In other words, the condition is a necessary
condition for the existence of the M/M/1 queueing system.

Proof. We consider the equation (𝛾𝐼 − 𝐴 − 𝑈 − 𝐸)𝑝 = 0; that
is,

(𝛾 + 𝜆) 𝑝
0

= 𝜇 ∫

∞

0

𝑝
1

(𝑥) 𝑑𝑥, (12)

𝑑𝑝
1

(𝑥)

𝑑𝑥
= − (𝛾 + 𝜆 + 𝜇) 𝑝

1
(𝑥) , (13)

𝑑𝑝
𝑛

(𝑥)

𝑑𝑥
= − (𝛾 + 𝜆 + 𝜇) 𝑝

𝑛 (𝑥) + 𝜆𝑝
𝑛−1 (𝑥) , 𝑛 ≥ 2, (14)

𝑝
1 (0) = 𝜇 ∫

∞

0

𝑝
2 (𝑥) 𝑑𝑥 + 𝜆𝑝

0
, (15)

𝑝
𝑛

(0) = 𝜇 ∫

∞

0

𝑝
𝑛+1

(𝑥) 𝑑𝑥, 𝑛 ≥ 2. (16)

By solving (13) and (14) we have

𝑝
1

(𝑥) = 𝑎
1
𝑒
−(𝛾+𝜆+𝜇)𝑥

, (17)

𝑝
𝑛

(𝑥) = 𝑎
𝑛
𝑒
−(𝛾+𝜆+𝜇)𝑥

+ 𝜆𝑒
−(𝛾+𝜆+𝜇)𝑥

∫

𝑥

0

𝑝
𝑛−1 (𝜏) 𝑒

(𝛾+𝜆+𝜇)𝜏
𝑑𝜏, 𝑛 ≥ 2.

(18)

By using (17) and (18) repeatedly we deduce

𝑝
2

(𝑥) = 𝑎
2
𝑒
−(𝛾+𝜆+𝜇)𝑥

+ 𝜆𝑒
−(𝛾+𝜆+𝜇)𝑥

∫

𝑥

0

𝑝
1

(𝜏) 𝑒
(𝛾+𝜆+𝜇)𝜏

𝑑𝜏

= 𝑎
2
𝑒
−(𝛾+𝜆+𝜇)𝑥

+ 𝜆𝑒
−(𝛾+𝜆+𝜇)𝑥

∫

𝑥

0

𝑎
1
𝑑𝜏

= 𝑎
2
𝑒
−(𝛾+𝜆+𝜇)𝑥

+ 𝜆𝑥𝑎
1
𝑒
−(𝛾+𝜆+𝜇)𝑥

= [𝑎
2

+ 𝜆𝑥𝑎
1
] 𝑒
−(𝛾+𝜆+𝜇)𝑥
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=

2

∑

𝑘=1

(𝜆𝑥)
2−𝑘

(2 − 𝑘)!
𝑒
−(𝛾+𝜆+𝜇)𝑥

𝑎
𝑘
,

𝑝
3

(𝑥) = [𝑎
3

+ 𝜆𝑥𝑎
2

+
(𝜆𝑥)
2

2!
𝑎
1
] 𝑒
−(𝛾+𝜆+𝜇)𝑥

=

3

∑

𝑘=1

(𝜆𝑥)
3−𝑘

(3 − 𝑘)!
𝑒
−(𝛾+𝜆+𝜇)𝑥

𝑎
𝑘
,

...

(19)

𝑝
𝑛

(𝑥) = [𝑎
𝑛

+ 𝜆𝑥𝑎
𝑛−1

+
(𝜆𝑥)
2

2!
𝑎
𝑛−2

+ ⋅ ⋅ ⋅ +
(𝜆𝑥)
𝑛−1

(𝑛 − 1)!
𝑎
1
]

× 𝑒
−(𝛾+𝜆+𝜇)𝑥

=

𝑛

∑

𝑘=1

(𝜆𝑥)
𝑛−𝑘

(𝑛 − 𝑘)!
𝑒
−(𝛾+𝜆+𝜇)𝑥

𝑎
𝑘
, 𝑛 ≥ 1.

(20)

Equation (20) and ∫
∞

0
𝑥
𝑛−𝑘

𝑒
−(𝛾+𝜆+𝜇)𝑥

𝑑𝑥 = (𝑛 − 𝑘)!/(𝛾 + 𝜆 +

𝜇)
𝑛+1−𝑘 for Re 𝛾 + 𝜆 + 𝜇 > 0 imply

∫

∞

0

𝑝
𝑛

(𝑥) 𝑑𝑥 =

𝑛

∑

𝑘=1

𝜆
𝑛−𝑘

(𝑛 − 𝑘)!
𝑎
𝑘

∫

∞

0

𝑥
𝑛−𝑘

𝑒
−(𝛾+𝜆+𝜇)𝑥

𝑑𝑥

=

𝑛

∑

𝑘=1

𝜆
𝑛−𝑘

(𝛾 + 𝜆 + 𝜇)
𝑛+1−𝑘

𝑎
𝑘
, 𝑛 ≥ 1.

(21)

Combining (15), (16), and (21) gives

𝑎
1

= 𝜇 ∫

∞

0

𝑝
2

(𝑥) 𝑑𝑥 + 𝜆𝑝
0

=
𝜇

𝛾 + 𝜆 + 𝜇
𝑎
2

+
𝜆𝜇

(𝛾 + 𝜆 + 𝜇)
2

𝑎
1

+ 𝜆𝑝
0
,

(22)

𝑎
𝑛

= 𝜇 ∫

∞

0

𝑝
𝑛+1 (𝑥) 𝑑𝑥 = 𝜇

𝑛+1

∑

𝑘=1

𝜆
𝑛+1−𝑘

(𝛾 + 𝜆 + 𝜇)
𝑛+2−𝑘

𝑎
𝑘
,

𝑛 ≥ 2

󳨐⇒

(23)

𝑎
𝑛+1

= 𝜇

𝑛+2

∑

𝑘=1

𝜆
𝑛+2−𝑘

(𝛾 + 𝜆 + 𝜇)
𝑛+3−𝑘

𝑎
𝑘
, 𝑛 ≥ 1. (24)

Multiplying (23) by 𝜆/(𝛾 + 𝜆 + 𝜇) and subtracting it from (24)
yield

𝑎
𝑛+1

−
𝜆

𝛾 + 𝜆 + 𝜇
𝑎
𝑛

= 𝜇

𝑛+2

∑

𝑘=1

𝜆
𝑛+2−𝑘

(𝛾 + 𝜆 + 𝜇)
𝑛+3−𝑘

𝑎
𝑘

− 𝜇

𝑛+1

∑

𝑘=1

𝜆
𝑛+2−𝑘

(𝛾 + 𝜆 + 𝜇)
𝑛+3−𝑘

𝑎
𝑘

=
𝜇

𝛾 + 𝜆 + 𝜇
𝑎
𝑛+2

󳨐⇒

𝑎
𝑛+2

=
𝛾 + 𝜆 + 𝜇

𝜇
𝑎
𝑛+1

−
𝜆

𝜇
𝑎
𝑛
, 𝑛 ≥ 2.

(25)

If we assume

𝑎
𝑛+2

− 𝜉𝑎
𝑛+1

= 𝜂 (𝑎
𝑛+1

− 𝜉𝑎
𝑛
)

⇐⇒ 𝑎
𝑛+2

− (𝜉 + 𝜂) 𝑎
𝑛+1

+ 𝜉𝜂𝑎
𝑛

= 0, 𝑛 ≥ 2,

(26)

then this together with (25) yields

𝜉 + 𝜂 =
𝛾 + 𝜆 + 𝜇

𝜇
, 𝜉𝜂 =

𝜆

𝜇
. (27)

From (27) we determine

𝜉 =

(𝛾 + 𝜆 + 𝜇) /𝜇 + √((𝛾 + 𝜆 + 𝜇) /𝜇)
2

− 4𝜆/𝜇

2

=

𝛾 + 𝜆 + 𝜇 + √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

2𝜇
,

𝜂 =

(𝛾 + 𝜆 + 𝜇) /𝜇 − √((𝛾 + 𝜆 + 𝜇) /𝜇)
2

− 4𝜆/𝜇

2

=

𝛾 + 𝜆 + 𝜇 − √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

2𝜇
.

(28)

Equation (26) implies

𝑎
𝑛+2

− 𝜉𝑎
𝑛+1

= 𝜂 (𝑎
𝑛+1

− 𝜉𝑎
𝑛
) = 𝜂
2

(𝑎
𝑛

− 𝜉𝑎
𝑛−1

)

= 𝜂
3

(𝑎
𝑛−1

− 𝜉𝑎
𝑛−2

) = ⋅ ⋅ ⋅ = 𝜂
𝑛−1

(𝑎
3

− 𝜉𝑎
2
) ,

𝑛 ≥ 2.

(29)

From (29) we know

𝑎
𝑛+2

− 𝜉𝑎
𝑛+1

= 𝜂
𝑛−1

(𝑎
3

− 𝜉𝑎
2
) ,

𝑎
𝑛+1

− 𝜉𝑎
𝑛

= 𝜂
𝑛−2

(𝑎
3

− 𝜉𝑎
2
)

󳨐⇒ 𝜉𝑎
𝑛+1

− 𝜉
2
𝑎
𝑛

= 𝜉𝜂
𝑛−2

(𝑎
3

− 𝜉𝑎
2
) ,

𝑎
𝑛

− 𝜉𝑎
𝑛−1

= 𝜂
𝑛−3

(𝑎
3

− 𝜉𝑎
2
)

󳨐⇒ 𝜉
2
𝑎
𝑛

− 𝜉
3
𝑎
𝑛−1

= 𝜉
2
𝜂
𝑛−3

(𝑎
3

− 𝜉𝑎
2
) ,

𝑎
𝑛−1

− 𝜉𝑎
𝑛−2

= 𝜂
𝑛−4

(𝑎
3

− 𝜉𝑎
2
)

󳨐⇒ 𝜉
3
𝑎
𝑛−1

− 𝜉
4
𝑎
𝑛−2

= 𝜉
3
𝜂
𝑛−4

(𝑎
3

− 𝜉𝑎
2
) ,

...
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𝑎
5

− 𝜉𝑎
4

= 𝜂
2

(𝑎
3

− 𝜉𝑎
2
)

󳨐⇒ 𝜉
𝑛−3

𝑎
5

− 𝜉
𝑛−2

𝑎
4

= 𝜉
𝑛−3

𝜂
2

(𝑎
3

− 𝜉𝑎
2
) ,

𝑎
4

− 𝜉𝑎
3

= 𝜂 (𝑎
3

− 𝜉𝑎
2
)

󳨐⇒ 𝜉
𝑛−2

𝑎
4

− 𝜉
𝑛−1

𝑎
3

= 𝜉
𝑛−2

𝜂 (𝑎
3

− 𝜉𝑎
2
) .

(30)

By using (30) we derive, for 𝑛 ≥ 2,

𝑎
𝑛+2

− 𝜉
𝑛−1

𝑎
3

= 𝜂
𝑛−1

(𝑎
3

− 𝜉𝑎
2
) + 𝜉𝜂

𝑛−2
(𝑎
3

− 𝜉𝑎
2
)

+ 𝜉
2
𝜂
𝑛−3

(𝑎
3

− 𝜉𝑎
2
)

+ ⋅ ⋅ ⋅ + 𝜉
𝑛−3

𝜂
2

(𝑎
3

− 𝜉𝑎
2
) + 𝜉
𝑛−2

𝜂 (𝑎
3

− 𝜉𝑎
2
)

= (𝜂
𝑛−1

+ 𝜉𝜂
𝑛−2

+ 𝜉
2
𝜂
𝑛−3

+ ⋅ ⋅ ⋅ + 𝜉
𝑛−3

𝜂
2

+ 𝜉
𝑛−2

𝜂)

× (𝑎
3

− 𝜉𝑎
2
)

󳨐⇒

𝑎
𝑛+2

= 𝜉
𝑛−1

𝑎
3

+ (𝜂
𝑛−1

+ 𝜉𝜂
𝑛−2

+ 𝜉
2
𝜂
𝑛−3

+ ⋅ ⋅ ⋅ + 𝜉
𝑛−3

𝜂
2

+ 𝜉
𝑛−2

𝜂) (𝑎
3

− 𝜉𝑎
2
)

= (𝜂
𝑛−1

+ 𝜉𝜂
𝑛−2

+ 𝜉
2
𝜂
𝑛−3

+ ⋅ ⋅ ⋅ + 𝜉
𝑛−3

𝜂
2

+ 𝜉
𝑛−2

𝜂 + 𝜉
𝑛−1

) 𝑎
3

− 𝜉 (𝜂
𝑛−1

+ 𝜉𝜂
𝑛−2

+ 𝜉
2
𝜂
𝑛−3

+ ⋅ ⋅ ⋅ + 𝜉
𝑛−3

𝜂
2

+ 𝜉
𝑛−2

𝜂) 𝑎
2

=

{

{

{

𝑛𝜉
𝑛−1

𝑎
3

− (𝑛 − 1) 𝜉
𝑛
𝑎
2

if 𝜉 = 𝜂

𝜉
𝑛

− 𝜂
𝑛

𝜉 − 𝜂
𝑎
3

− 𝜉 (
𝜉
𝑛

− 𝜂
𝑛

𝜉 − 𝜂
− 𝜉
𝑛−1

) 𝑎
2

if 𝜉 ̸= 𝜂

=

{{

{{

{

𝑛𝜉
𝑛−1

[𝑎
3

−
𝑛 − 1

𝑛
𝜉𝑎
2
] if 𝜉 = 𝜂

𝜉
𝑛

− 𝜂
𝑛

𝜉 − 𝜂
(𝑎
3

− 𝜉𝑎
2
) + 𝜉
𝑛
𝑎
2

if 𝜉 ̸= 𝜂.

(31)

By inserting (17) into (12) and noting Re 𝛾 + 𝜆 + 𝜇 > 0 we have

(𝛾 + 𝜆) 𝑝
0

= 𝜇 ∫

∞

0

𝑝
1

(𝑥) 𝑑𝑥 =
𝜇

𝛾 + 𝜆 + 𝜇
𝑎
1

󳨐⇒

𝑎
1

=
(𝛾 + 𝜆) (𝛾 + 𝜆 + 𝜇)

𝜇
𝑝
0
.

(32)

By combining (22) with (32) and Re 𝛾 + 𝜆 + 𝜇 > 0 it follows
that

𝑎
1

=
𝜇

𝛾 + 𝜆 + 𝜇
𝑎
2

+
𝜆𝜇

(𝛾 + 𝜆 + 𝜇)
2

𝑎
1

+ 𝜆𝑝
0

󳨐⇒

𝜇

𝛾 + 𝜆 + 𝜇
𝑎
2

= [1 −
𝜆𝜇

(𝛾 + 𝜆 + 𝜇)
2

] 𝑎
1

− 𝜆𝑝
0

=
(𝛾 + 𝜆 + 𝜇)

2
− 𝜆𝜇

(𝛾 + 𝜆 + 𝜇)
2

𝑎
1

− 𝜆𝑝
0

=
(𝛾 + 𝜆 + 𝜇)

2
− 𝜆𝜇

(𝛾 + 𝜆 + 𝜇)
2

×
(𝛾 + 𝜆) (𝛾 + 𝜆 + 𝜇)

𝜇
𝑝
0

− 𝜆𝑝
0

=

(𝛾 + 𝜆) [(𝛾 + 𝜆 + 𝜇)
2

− 𝜆𝜇]

𝜇 (𝛾 + 𝜆 + 𝜇)
𝑝
0

− 𝜆𝑝
0

=

(𝛾 + 𝜆) [(𝛾 + 𝜆 + 𝜇)
2

− 𝜆𝜇] − 𝜆𝜇 (𝛾 + 𝜆 + 𝜇)

𝜇 (𝛾 + 𝜆 + 𝜇)
𝑝
0

󳨐⇒

𝑎
2

=

(𝛾 + 𝜆) [(𝛾 + 𝜆 + 𝜇)
2

− 𝜆𝜇] − 𝜆𝜇 (𝛾 + 𝜆 + 𝜇)

𝜇2
𝑝
0
.

(33)

Combining (23), (32), and (33) gives

𝑎
2

=
𝜇

𝛾 + 𝜆 + 𝜇
𝑎
3

+
𝜆𝜇

(𝛾 + 𝜆 + 𝜇)
2

𝑎
2

+
𝜆
2
𝜇

(𝛾 + 𝜆 + 𝜇)
3

𝑎
1

󳨐⇒

𝜇

𝛾 + 𝜆 + 𝜇
𝑎
3

= [1 −
𝜆𝜇

(𝛾 + 𝜆 + 𝜇)
2

] 𝑎
2

−
𝜆
2
𝜇

(𝛾 + 𝜆 + 𝜇)
3

𝑎
1

󳨐⇒

𝑎
3

=
(𝛾 + 𝜆 + 𝜇)

2
− 𝜆𝜇

𝜇 (𝛾 + 𝜆 + 𝜇)
𝑎
2

−
𝜆
2

(𝛾 + 𝜆 + 𝜇)
2

𝑎
1

=

[(𝛾 + 𝜆 + 𝜇)
2

− 𝜆𝜇]

𝜇3 (𝛾 + 𝜆 + 𝜇)

× {(𝛾 + 𝜆) [(𝛾 + 𝜆 + 𝜇)
2

− 𝜆𝜇]

−𝜆𝜇 (𝛾 + 𝜆 + 𝜇) } 𝑝
0

−
𝜆
2

(𝛾 + 𝜆)

𝜇 (𝛾 + 𝜆 + 𝜇)
𝑝
0
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= {[(𝛾 + 𝜆 + 𝜇)
2

− 𝜆𝜇]

× {(𝛾 + 𝜆) [(𝛾 + 𝜆 + 𝜇)
2

− 𝜆𝜇]

−𝜆𝜇 (𝛾 + 𝜆 + 𝜇) }

−𝜆
2
𝜇
2

(𝛾 + 𝜆)} ⋅ ({𝜇
3

(𝛾 + 𝜆 + 𝜇)} 𝑝
0
)
−1

.

(34)

From (21), ∫
∞

0
𝑥
𝑛−𝑘

|𝑒
−(𝛾+𝜆+𝜇)𝑥

|𝑑𝑥 = (𝑛 − 𝑘)!/(Re 𝛾 + 𝜆 + 𝜇)
𝑛+1

for Re 𝛾 + 𝜆 + 𝜇 > 0, and the Cauchy product of series we
estimate, when Re 𝛾 + 𝜇 > 0

󵄩󵄩󵄩󵄩𝑝
𝑛

󵄩󵄩󵄩󵄩𝐿1[0,∞)
≤

𝑛

∑

𝑘=1

𝜆
𝑛−𝑘

(Re 𝛾 + 𝜆 + 𝜇)
𝑛+1−𝑘

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 , 𝑛 ≥ 1

󳨐⇒

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩𝑝
𝑛

󵄩󵄩󵄩󵄩𝐿1[0,∞)
≤

∞

∑

𝑛=1

𝑛

∑

𝑘=1

𝜆
𝑛−𝑘

(Re 𝛾 + 𝜆 + 𝜇)
𝑛+1−𝑘

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

=

∞

∑

𝑛=1

𝜆
𝑛−1

(Re 𝛾 + 𝜆 + 𝜇)
𝑛

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

=
1

Re 𝛾 + 𝜇

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 .

(35)

For simplicity, we introduce

Λ := {𝛾 ∈ C | Re 𝛾 + 𝜇 > 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 + 𝜆 + 𝜇 ± √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 2𝜇} .

(36)

It is easy to see that

𝛾 ∈ Λ ⇐⇒ Re 𝛾 + 𝜇 > 0,
󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨 < 1,
󵄨󵄨󵄨󵄨𝜂

󵄨󵄨󵄨󵄨 < 1. (37)

Together with (35) and (31) to (34), this yields
∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 +

∞

∑

𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛+2
󵄨󵄨󵄨󵄨 < ∞

󳨐⇒

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 =

󵄨󵄨󵄨󵄨𝑝0
󵄨󵄨󵄨󵄨 +

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩𝑝
𝑛

󵄩󵄩󵄩󵄩𝐿1[0,∞)

=
󵄨󵄨󵄨󵄨𝑝0

󵄨󵄨󵄨󵄨 +
1

Re 𝛾 + 𝜇

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 < ∞.

(38)

That is, all 𝛾 ∈ Λ are eigenvalues of 𝐴 + 𝑈 + 𝐸. Moreover,
from (20) and (31) to (34) it is easy to see that the eigenvectors
corresponding to each 𝛾 span 1-dimensional linear space; that
is, their geometric multiplicity is one.

In the following, we discuss the case that 𝛾 is a real num-
ber and obtain explicit results.

Since Theorem 1 implies that all 𝛾 > 0 belong to the
resolvent set of 𝐴 + 𝑈 + 𝐸, 𝛾 ∈ R includes the following three
cases.

(1) If (𝛾 + 𝜆 + 𝜇)
2

> 4𝜆𝜇 ⇒ 𝛾 + 𝜆 + 𝜇 > 2√𝜆𝜇 ⇒ 𝛾 >

2√𝜆𝜇 − 𝜆 − 𝜇, then by noting 𝜆 < 𝜇,

𝛾 < 0 󳨐⇒ 𝛾 + 𝜆 − 𝜆 < 0

󳨐⇒ 4𝜇 (𝛾 + 𝜆) − 4𝜆𝜇 < 0

󳨐⇒ 2𝜇 (𝛾 + 𝜆) − 4𝜆𝜇 < −2𝜇 (𝛾 + 𝜆)

󳨐⇒ (𝛾 + 𝜆)
2

+ 2𝜇 (𝛾 + 𝜆) + 𝜇
2

− 4𝜆𝜇

< (𝛾 + 𝜆)
2

− 2𝜇 (𝛾 + 𝜆) + 𝜇
2

󳨐⇒ 0 < (𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇 < (𝛾 + 𝜆 − 𝜇)
2

󳨐⇒ √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇 < − (𝛾 + 𝜆 − 𝜇)

󳨐⇒ 𝛾 + 𝜆 + 𝜇 + √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇 < 2𝜇

󳨐⇒

𝛾 + 𝜆 + 𝜇 + √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

2𝜇
< 1

󳨐⇒
󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 + 𝜆 + 𝜇 + √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

2𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1,

󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 + 𝜆 + 𝜇 − √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

2𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1

󳨐⇒ 𝛾 ∈ Λ.

(39)

This together with (38) implies that all points in (2√𝜆𝜇 − 𝜆 −

𝜇, 0) are eigenvalues of 𝐴 + 𝑈 + 𝐸, which is the main result in
Kasim and Gupur [7] (see Theorem 3).

By applying the condition 𝜆 < 𝜇 we have

𝛾 = 0

󳨐⇒ 𝜉 =

𝜆 + 𝜇 + √(𝜆 + 𝜇)
2

− 4𝜆𝜇

2𝜇

=

𝜆 + 𝜇 + √(𝜇 − 𝜆)
2

2𝜇
=

𝜆 + 𝜇 + 𝜇 − 𝜆

2𝜇
= 1,

𝜂 =

𝜆 + 𝜇 − √(𝜆 + 𝜇)
2

− 4𝜆𝜇

2𝜇
=

𝜆 + 𝜇 − (𝜇 − 𝜆)

2𝜇

=
𝜆

𝜇
< 1.

(40)
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Since 𝛾 = 0, (33) and (34) are simplified as

𝑎
2

=
𝜆
3

𝜇2
𝑝
0

= 𝜂
2
𝜆𝑝
0
, 𝑎

3
=

𝜆
4

𝜇3
𝑝
0

= 𝜂
3
𝜆𝑝
0
. (41)

By combining (40) and (41) with (31) and using (35) we have

𝑎
𝑛+2

=
1 − 𝜂
𝑛

1 − 𝜂
(𝑎
3

− 𝑎
2
) + 𝑎
2

=
1 − 𝜂
𝑛

1 − 𝜂
(𝜂
3
𝜆𝑝
0

− 𝜂
2
𝜆𝑝
0
) + 𝜂
2
𝜆𝑝
0

= −𝜂
2

(1 − 𝜂
𝑛
) 𝜆𝑝
0

+ 𝜂
2
𝜆𝑝
0

= 𝜂
2
𝜆𝑝
0

[𝜂
𝑛

− 1 + 1]

= 𝜂
𝑛+2

𝜆𝑝
0
, 𝑛 ≥ 2

󳨐⇒

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 +

∞

∑

𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛+2
󵄨󵄨󵄨󵄨 < ∞

󳨐⇒

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 =

󵄨󵄨󵄨󵄨𝑝0
󵄨󵄨󵄨󵄨 +

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩𝑝
𝑛

󵄩󵄩󵄩󵄩𝐿1[0,∞)
< ∞.

(42)

This means that 0 is an eigenvalue of 𝐴 + 𝑈 + 𝐸, which is the
result in Gupur et al. [2] (see Theorem 1).

(2) If (𝛾 + 𝜆 + 𝜇)
2

= 4𝜆𝜇 ⇒ 𝛾 + 𝜆 + 𝜇 = 2√𝜆𝜇 ⇒ 𝛾 =

2√𝜆𝜇 − 𝜆 − 𝜇, then the condition 𝜆 < 𝜇 implies

𝜉 = 𝜂 =
𝛾 + 𝜆 + 𝜇

2𝜇
󳨐⇒

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝛾 + 𝜆 + 𝜇
󵄨󵄨󵄨󵄨

2𝜇
=

2√𝜆𝜇

2𝜇

= √
𝜆

𝜇
< 1

󳨐⇒ 𝛾 ∈ Λ.

(43)

Hence, 𝛾 = 2√𝜆𝜇 − 𝜆 − 𝜇 is an eigenvalue of 𝐴 + 𝑈 + 𝐸, which
is the main result in Zhang and Gupur [6] (see Theorem 2).

(3) If (𝛾 + 𝜆 + 𝜇)
2

< 4𝜆𝜇 ⇒ 𝛾 + 𝜆 + 𝜇 < 2√𝜆𝜇 ⇒ 𝛾 <

2√𝜆𝜇 − 𝜆 − 𝜇, then the condition 𝜆 < 𝜇 gives

𝜉 =

𝛾 + 𝜆 + 𝜇 + √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

2𝜇

=

𝛾 + 𝜆 + 𝜇 + 𝑖√4𝜆𝜇 − (𝛾 + 𝜆 + 𝜇)
2

2𝜇

󳨐⇒

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨 =

√(𝛾 + 𝜆 + 𝜇)
2

+ 4𝜆𝜇 − (𝛾 + 𝜆 + 𝜇)
2

2𝜇

=
2√𝜆𝜇

2𝜇
= √

𝜆

𝜇
< 1

󳨐⇒ 𝛾 ∈ Λ.

(44)

This yields that all points in (−𝜇, 2√𝜆𝜇−𝜆−𝜇) are eigenvalues
of 𝐴 + 𝑈 + 𝐸.

By summarizing the above discussion we conclude that
all points in

Λ ∪ {0}

= {𝛾 ∈ C | Re 𝛾 + 𝜇 > 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 + 𝜆 + 𝜇 ± √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 2𝜇} ∪ {0}

(45)

are eigenvalues of 𝐴 + 𝑈 + 𝐸 with geometric multiplicity one.
In particular, (−𝜇, 0] belongs to the point spectrum of𝐴+𝑈+

𝐸.

Remark 6. From (31) it is easy to see that if |𝜉| > 1 and |𝜂| < 1

or |𝜉| < 1 and |𝜂| > 1, then

∞

∑

𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛+2
󵄨󵄨󵄨󵄨 = ∞ 󳨐⇒

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 = ∞ 󳨐⇒

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 = ∞. (46)

That is, there are no eigenvalues in

{𝛾 ∈ C |

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 + 𝜆 + 𝜇 + √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 2𝜇,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 + 𝜆 + 𝜇 − √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 2𝜇

or
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 + 𝜆 + 𝜇 + √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 2𝜇,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 + 𝜆 + 𝜇 − √(𝛾 + 𝜆 + 𝜇)
2

− 4𝜆𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 2𝜇} .

(47)

4. Conclusion and Discussion

Let 𝜎
𝑝

(𝑇(𝑡)) and 𝜎
𝑝

(𝐴 + 𝑈 + 𝐸) be the point spectrum of 𝑇(𝑡)

and 𝐴 + 𝑈 + 𝐸, respectively. FromTheorem 4 and the spectral
mapping theorem for the point spectrum ([8], p. 277)

𝜎
𝑝 (𝑇 (𝑡)) = 𝑒

𝑡𝜎
𝑝
(𝐴+𝑈+𝐸)

∪ {0} (48)

we know that 𝑇(𝑡) has uncountable eigenvalues and therefore
it is not compact, even not eventually compact ([8], p. 330).
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Corollary 2.11 in Engel and Nagel [8], p. 258, states that if
𝑇(𝑡) is a 𝐶

0
-semigroup on the Banach space 𝑋 with generator

𝐴 + 𝑈 + 𝐸, then

(I) 𝜔
0

= max{𝜔ess, 𝑠(𝐴 + 𝑈 + 𝐸)}, where 𝜔
0
is the growth

bound of 𝑇(𝑡), 𝜔ess is the essential growth bound of
𝑇(𝑡), and 𝑠(𝐴+𝑈+𝐸) is the spectral boundof𝐴+𝑈+𝐸.

(II) 𝜎(𝐴+𝑈+𝐸)∩{𝛾 ∈ C | Re 𝛾 ≥ 𝑤} is finite for each 𝑤 >

𝜔ess. Here, 𝜎(𝐴 + 𝑈 + 𝐸) is the spectrum of 𝐴 + 𝑈 + 𝐸.

Theorem 1 implies that 𝜔
0

= 0 and 𝑠(𝐴 + 𝑈 + 𝐸) = 0.
These together with items (I) and (II) above yield 𝜔ess = 0.
From this and Proposition 3.5 in ([8], p. 332), we conclude
that 𝑇(𝑡) is not quasi-compact. Hence, queueing models are
essentially different from the population equations ([9, 10])
and the reliability models that are described by a finite num-
ber of partial differential equations with integral boundary
conditions ([4, 11]).

Since 𝜔
0

= 0 and 𝜔ess = 0, from Nagel ([13], p. 74), it
follows that

𝑟 (𝑇 (𝑡)) = 𝑟ess (𝑇 (𝑡)) = 𝑒
𝜔ess𝑡 = 𝑒

0
= 1, (49)

where 𝑟(𝑇(𝑡)) and 𝑟ess(𝑇(𝑡)) are the spectral radius and
essential spectral radius of 𝑇(𝑡), respectively.

Let 𝑝
(0)

(𝑥) be an eigenvector with respect to 0 in
Theorem 1 and let 𝑝

(𝜖)
(𝑥) be eigenvectors with respect to −𝜇𝜖

for 𝜖 ∈ (0, 1) inTheorem 4.Then, by using (𝐴+𝑈+𝐸)𝑝
(0)

(𝑥) =

0 and (𝐴 + 𝑈 + 𝐸)𝑝
(𝜖)

(𝑥) = −𝜇𝜖𝑝
(𝜖)

(𝑥), we have

𝑇 (𝑡) (𝑝
(0)

(𝑥) + (𝐴 + 𝑈 + 𝐸) 𝑝
(𝜖)

(𝑥))

= 𝑇 (𝑡) 𝑝
(0)

(𝑥) + 𝑇 (𝑡) (𝐴 + 𝑈 + 𝐸) 𝑝
(𝜖)

(𝑥)

= 𝑝
(0)

(𝑥) + 𝑇 (𝑡) [−𝜇𝜖𝑝
(𝜖)

(𝑥)]

= 𝑝
(0)

(𝑥) − 𝜇𝜖𝑇 (𝑡) 𝑝
(𝜖)

(𝑥)

= 𝑝
(0)

(𝑥) − 𝜇𝜖𝑒
−𝜇𝜖𝑡

𝑝
(𝜖)

(𝑥)

󳨐⇒

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑡) (𝑝

(0)
(⋅) + (𝐴 + 𝑈 + 𝐸) 𝑝

(𝜖)
(⋅)) − 𝑝

(0)
(⋅)

󵄩󵄩󵄩󵄩󵄩

= 𝜇𝜖𝑒
−𝜇𝜖𝑡 󵄩󵄩󵄩󵄩󵄩

𝑝
(𝜖)󵄩󵄩󵄩󵄩󵄩

, ∀𝑡 ≥ 0, ∀𝜖 ∈ (0, 1) .

(50)

This means that there are no positive constants M > 0 and
𝜔 > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑡) (𝑝

(0)
(⋅) + (𝐴 + 𝑈 + 𝐸) 𝑝 (⋅)) − 𝑝

(0)
(⋅)

󵄩󵄩󵄩󵄩󵄩

≤ M𝑒
−𝜔𝑡 󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩 , ∀𝑡 ≥ 0, ∀𝑝 ∈ 𝐷 (𝐴) .

(51)

That is, it is impossible that the time-dependent solution of
the system (7) exponentially converges to its steady-state
solution. In other words, the convergence result given in
Theorem 1 is optimal.

FromTheorems 1 and 4 and Browder [14], Kato [15], and
Schechter [16] we know that the set

{𝛾 ∈ C | Re 𝛾 + 𝜆 + 𝜇 ≤ 0 or 󵄨󵄨󵄨󵄨𝛾 + 𝜆 + 𝜇
󵄨󵄨󵄨󵄨 ≤ 𝜇

or 𝜆 ≥
󵄨󵄨󵄨󵄨𝛾 + 𝜆

󵄨󵄨󵄨󵄨 or

𝜆
󵄨󵄨󵄨󵄨𝛾 + 𝜆 + 𝜇

󵄨󵄨󵄨󵄨

≥ (Re 𝛾 + 𝜆 + 𝜇) (
󵄨󵄨󵄨󵄨𝛾 + 𝜆 + 𝜇

󵄨󵄨󵄨󵄨 − 𝜇)} \ {Λ ∪ {0}}

(52)

probably implies essential spectrum of 𝐴 + 𝑈 + 𝐸, which is
our next research topic.
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