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We investigate the complete moment convergence of double-indexed weighted sums of martingale differences. Then it is easy to
obtain the Marcinkiewicz-Zygmund-type strong law of large numbers of double-indexed weighted sums of martingale differences.
Moreover, the convergence of double-indexed weighted sums of martingale differences is presented in mean square. On the other
hand, we give the application to study the convergence of the state observers of linear-time-invariant systems and present the
convergence with probability one and in mean square.

1. Introduction

Hsu and Robbins [1] introduced the concept of complete
convergence; that is, a sequence of random variables {𝑋

𝑛
, 𝑛 ≥

1} is said to converge completely to a constant𝐶 if∑∞
𝑛=1
𝑃(|𝑋
𝑛
−

𝐶| ≥ 𝜀) < ∞ for all 𝜀 > 0. By Borel-Cantelli lemma, it fol-
lows that 𝑋

𝑛
→ 𝐶 almost surely (a.s.). The converse is true

if {𝑋
𝑛
, 𝑛 ≥ 1} is independent. But the converse cannot always

be true for the dependent case. Hsu and Robbins [1] obtained
that the sequence of arithmetic means of independent and
identically distributed (i.i.d.) random variables converges
completely to the expected value if the variance of the
summands is finite. Erdös [2] proved the converse. The
result of Hsu-Robbins-Erdös is a fundamental theorem in
probability theory, and it has been generalized and extended
in several directions bymany authors. BaumandKatz [3] gave
the following generalization to establish a rate of convergence
in the sense of Marcinkiewicz-Zygmund-type strong law of
large numbers.

Theorem 1. Let 𝛼 > 1/2, 𝛼𝑝 > 1, and {𝑋
𝑛
, 𝑛 ≥ 1} be a

sequence of i.i.d. random variables. Assume that 𝐸𝑋
1
= 0 if

𝛼 ≤ 1. Then the following statements are equivalent:
(i) 𝐸|𝑋

1
|
𝑝

< ∞;
(ii) ∑∞

𝑛=1
𝑛
𝛼𝑝−2

𝑃(max
1≤𝑘≤𝑛

| ∑
𝑘

𝑖=1
𝑋
𝑖
| > 𝜀𝑛

𝛼

) < ∞ for all
𝜀 > 0.

Many authors have extendedTheorem 1 to themartingale
differences. For example, Yu [4] obtained the complete
convergence for weighted sums of martingale differences;
Ghosal and Chandra [5] gave the complete convergence of
martingale arrays; Stoica [6, 7] investigated the Baum-Katz-
Nagaev-type results for martingale differences and the rate of
convergence in the strong lawof large numbers formartingale
differences; Wang et al. [8] also studied the complete con-
vergence and complete moment convergence for martingale
differences, which generalized some results of Stoica [6, 7];
Yang et al. [9] obtained the complete convergence for the
moving average process of martingale differences and so
forth. For other works about convergence analysis, one can
refer to Gut [10], Chen et al. [11], Sung [12–14], Sung and
Volodin [15], Hu et al. [16], and the references therein.

In this paper, we study themoment complete convergence
of double-indexed weighted sums of martingale differences.
Then it is easy to obtain the Marcinkiewicz-Zygmund-type
strong law of large numbers of double-indexed weighted
sums of martingale differences. Moreover, the convergence
of double-indexed weighted sums of martingale differences
is presented in mean square. For the details, see Theorem 5,
Corollary 6, andTheorem 7 in Section 2. On the other hand,
we give the applications of Corollary 6 and Theorem 7 to
study the convergence of the state observers of linear-
time-invariant systems and present their convergence with
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probability one and in mean square, respectively (see Theo-
rems 11 and 12 in Section 3).

Recall that the sequence {𝑋
𝑛
, 𝑛 ≥ 1} is stochasti-

cally dominated by a nonnegative random variable 𝑋 if
sup
𝑛≥1
𝑃(|𝑋
𝑛
| > 𝑡) ≤ 𝐾𝑃(𝑋 > 𝑡) for some positive constant𝐾

and for all 𝑡 ≥ 0.
Throughout the paper, letF

0
= {0, Ω}, 1(𝐵) be the indi-

cator function of set 𝐵𝑥+ = 𝑥1(𝑥 ≥ 0), and let 𝐾,𝐾
1
, 𝐾
2
, . . .

denote some positive constants not depending on 𝑛, which
may be different in various places.

The following lemmas are useful for the proofs of the
main results.

Lemma 2 (cf. Hall and Heyde [17, Theorem 2.11]). If
{𝑋
𝑖
,F
𝑖
, 1 ≤ 𝑖 ≤ 𝑛} are martingale differences and 𝑝 > 0,

then there exists a constant 𝐾 depending only on 𝑝 such that

𝐸(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑋
𝑖



𝑝

)

≤ 𝐾
{

{

{

𝐸(

𝑛

∑
𝑖=1

𝐸 (𝑋
2

𝑖
| F
𝑖−1
))

𝑝/2

+ 𝐸(max
1≤𝑖≤𝑛

𝑋𝑖

𝑝

)
}

}

}

,

𝑛 ≥ 1.

(1)

Lemma 3 (cf. Sung [12, Lemma 2.4]). Let {𝑋
𝑛
, 𝑛 ≥ 1} and

{𝑌
𝑛
, 𝑛 ≥ 1} be sequences of random variables. Then for any

𝑛 ≥ 1, 𝑞 > 1, 𝜀 > 0, and 𝑎 > 0, one has

𝐸(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

(𝑋
𝑖
+ 𝑌
𝑖
)



− 𝜀𝑎)

+

≤ (
1

𝜀𝑞
+

1

𝑞 − 1
)

1

𝑎𝑞−1
𝐸(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑋
𝑖



𝑞

)

+ 𝐸(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑌
𝑖



) .

(2)

Lemma 4 (cf. Wang et al. [8, Lemma 2.2]). Let {𝑋
𝑛
, 𝑛 ≥ 1}

be a sequence of random variables stochastically dominated by
a nonnegative random variable 𝑋. Then for any 𝑛 ≥ 1, 𝑎 > 0,
and 𝑏 > 0, the following two statements hold:

𝐸 [
𝑋𝑛

𝑎

1 (
𝑋𝑛
 ≤ 𝑏)]

≤ 𝐾
1
{𝐸 [𝑋

𝑎

1 (𝑋 ≤ 𝑏)] + 𝑏
𝑎

𝑃 (𝑋 > 𝑏)} ,

𝐸 [
𝑋𝑛

𝑎

1 (
𝑋𝑛
 > 𝑏)] ≤ 𝐾2𝐸 [𝑋

𝑎

1 (𝑋 > 𝑏)] .

(3)

Consequently, 𝐸|𝑋
𝑛
|
𝑎

≤ 𝐾
3
𝐸𝑋
𝑎. Here 𝐾

1
, 𝐾
2
, and 𝐾

3
are

positive constants.

2. The Convergence of Double-Indexed
Weighted Sums of Martingale Differences

First, we give the complete moment convergence of double-
indexed weighted sums of martingale differences.

Theorem 5. Let 𝛼 > 1/2, 𝑝 ≥ 2, and {𝑋
𝑛
,F
𝑛
, 𝑛 ≥ 1} be

martingale differences stochastically dominated by a nonnega-
tive random variable 𝑋 with 𝐸𝑋𝑝 < ∞. Let {𝑎

𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛,

𝑛 ≥ 1} be a triangular array of real numbers. For some 𝑞 >
2(𝛼𝑝−1)/(2𝛼−1), we assume that𝐸[sup

𝑛≥1
𝐸(𝑋
2

𝑛
| F
𝑛−1
)]
𝑞/2

<

∞ and
𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝑞

= 𝑂 (𝑛) . (4)

Then for every 𝜀 > 0,

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝛼

𝐸(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



− 𝜀𝑛
𝛼

)

+

< ∞. (5)

Taking 𝑝 = 2𝑙 and 𝛼 = 2/𝑝 for 1 ≤ 𝑙 < 2 in Theorem 5,
we have the following result.

Corollary 6. Let 1 ≤ 𝑙 < 2, {𝑋
𝑛
,F
𝑛
, 𝑛 ≥ 1} be martingale

differences stochastically dominated by a nonnegative random
variable 𝑋 with 𝐸𝑋2𝑙 < ∞. Let {𝑎

𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be a

triangular array of real numbers. For some 𝑞 > 2𝑙/(2 − 𝑙), one
assumes that 𝐸[sup

𝑛≥1
𝐸(𝑋
2

𝑛
| F
𝑛−1
)]
𝑞/2

< ∞ and (4) holds
true. Then for every 𝜀 > 0,

∞

∑
𝑛=1

𝑛
−1/𝑙

𝐸(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



− 𝜀𝑛
1/𝑙

)

+

< ∞. (6)

In particular, one has

lim
𝑛→∞

1

𝑛1/𝑙

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖
= 0, 𝑎.𝑠. (7)

Next, we investigate the convergence in mean square.

Theorem 7. Let 𝑟 > 1/2 and {𝑋
𝑛
,F
𝑛
, 𝑛 ≥ 1} be martingale

differences stochastically dominated by a nonnegative random
variable 𝑋 with 𝐸𝑋2 < ∞. Let {𝑎

𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be a

triangular array of real numbers and

𝑛

∑
𝑖=1

𝑎
2

𝑛𝑖
= 𝑂 (𝑛) . (8)

Then, one has

𝑛
2𝑟−1

𝐸(
1

𝑛𝑟

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖
)

2

≤ 𝐾, 𝑛 ≥ 1, (9)

where𝐾 is a positive constant.

Remark 8. Wang et al. [8] obtained the complete convergence
and complete moment convergence for nonweightedmartin-
gale differences, which generalized some results of Stoica [6,
7]. In this paper, we study the complete moment convergence
of double-indexed weighted sums of martingale differences.
So we extend the results of Wang et al. [8] and Stoica [6, 7]
to the case of double-indexed weighted sums of martingale
differences. On the other hand, we give the applications of
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Corollary 6 and Theorem 7 to study the convergence of the
state observers of linear-time-invariant systems and present
the convergence with probability one and in mean square,
respectively (see Theorems 11 and 12 in Section 3).

Proof of Theorem 5. Let 𝑋
𝑛𝑖
= 𝑋
𝑖
1(|𝑋
𝑖
| ≤ 𝑛

𝛼

), 1 ≤ 𝑖 ≤ 𝑛.
It can be found that 𝑎

𝑛𝑖
𝑋
𝑖
= 𝑎
𝑛𝑖
𝑋
𝑖
1(|𝑋
𝑖
| > 𝑛

𝛼

) + [𝑎
𝑛𝑖
𝑋
𝑛𝑖
−

𝑎
𝑛𝑖
𝐸(𝑋
𝑛𝑖
| F
𝑖−1
)] + 𝑎
𝑛𝑖
𝐸(𝑋
𝑛𝑖
| F
𝑖−1
), 1 ≤ 𝑖 ≤ 𝑛.

By Lemma 3 with 𝑎 = 𝑛𝛼, for any 𝑞 > 1, we obtain that

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝛼

𝐸(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



− 𝜀𝑛
𝛼

)

+

≤ 𝐾
1

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝑞𝛼

× 𝐸(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

[𝑎
𝑛𝑖
𝑋
𝑛𝑖
− 𝑎
𝑛𝑖
𝐸 (𝑋
𝑛𝑖
| F
𝑖−1
)]



𝑞

)

+

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝛼

𝐸(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖
1 (
𝑋𝑖
 > 𝑛
𝛼

)



)

+

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝛼

𝐸(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝐸 (𝑋
𝑛𝑖
| F
𝑖−1
)



)

:= 𝐻
1
+ 𝐻
2
+ 𝐻
3
.

(10)

For 𝑝 ≥ 2, it is easy to see that 𝑞 > 2(𝛼𝑝 − 1)/(2𝛼 − 1) ≥ 2.
Consequently, for any 1 ≤ 𝑠 ≤ 2, we get byHölder’s inequality
and (4) that

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝑠

≤ (

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝑞

)

𝑠/𝑞

(

𝑛

∑
𝑖=1

1)

1−𝑠/𝑞

= 𝑂 (𝑛) . (11)

So, it can be checked by Markov’s inequality, Lemma 4, (11),
and 𝐸𝑋𝑝 < ∞ (𝑝 ≥ 2) that

𝐻
2
≤

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝛼

𝑛

∑
𝑖=1

𝑎𝑛𝑖
 𝐸 [

𝑋𝑖
 1 (

𝑋𝑖
 > 𝑛
𝛼

)]

≤ 𝐾
1

∞

∑
𝑛=1

𝑛
𝛼𝑝−1−𝛼

𝐸 [𝑋1 (𝑋 > 𝑛
𝛼

)]

= 𝐾
1

∞

∑
𝑛=1

𝑛
𝛼𝑝−1−𝛼

∞

∑
𝑚=𝑛

𝐸 [𝑋1 (𝑚
𝛼

< 𝑋 ≤ (𝑚 + 1)
𝛼

)]

= 𝐾
1

∞

∑
𝑚=1

𝐸 [𝑋1 (𝑚
𝛼

< 𝑋 ≤ (𝑚 + 1)
𝛼

)]

𝑚

∑
𝑛=1

𝑛
𝛼𝑝−1−𝛼

≤ 𝐾
2

∞

∑
𝑚=1

𝑚
𝛼𝑝−𝛼

𝐸 [𝑋1 (𝑚
𝛼

< 𝑋 ≤ (𝑚 + 1)
𝛼

)]

≤ 𝐾
2
𝐸𝑋
𝑝

< ∞.

(12)

Since {𝑋
𝑖
,F
𝑖
, 1 ≤ 𝑖 ≤ 𝑛} are martingale differences, by the

martingale property and the proof of (12), one has that

𝐻
3
=

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝛼

𝐸(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝐸 [𝑋
𝑖
1 (
𝑋𝑖
 ≤ 𝑛
𝛼

) | F
𝑖−1
]



)

=

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝛼

𝐸(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝐸 [𝑋
𝑖
1 (
𝑋𝑖
 > 𝑛
𝛼

) | F
𝑖−1
]



)

≤ 𝐾
1

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝛼

𝑛

∑
𝑖=1

𝑎𝑛𝑖
 𝐸 [

𝑋𝑖
 1 (

𝑋𝑖
 > 𝑛
𝛼

)]

≤ 𝐾
2

∞

∑
𝑛=1

𝑛
𝛼𝑝−1−𝛼

𝐸 [𝑋1 (𝑋 > 𝑛
𝛼

)] ≤ 𝐾
3
𝐸𝑋
𝑝

< ∞.

(13)

Next, we turn to prove 𝐻
1
< ∞ under conditions of

Theorem 5. It can be seen that

{[𝑎
𝑛𝑖
𝑋
𝑛𝑖
− 𝑎
𝑛𝑖
𝐸 (𝑋
𝑛𝑖
| F
𝑖−1
)] ,F
𝑖
, 1 ≤ 𝑖 ≤ 𝑛} (14)

are also martingale differences. So, by Markov’s inequality,
(10), and Lemma 2 with 𝑝 = 𝑞, it can be found that

𝐻
1
= 𝐾
1

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝑞𝛼

𝐸(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

[𝑎
𝑛𝑖
𝑋
𝑛𝑖
− 𝑎
𝑛𝑖
𝐸

× (𝑋
𝑛𝑖
| F
𝑖−1
)]



𝑞

)

≤ 𝐾
2

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝑞𝛼

𝐸(

𝑛

∑
𝑖=1

𝐸 {[𝑎
𝑛𝑖
𝑋
𝑛𝑖
− 𝑎
𝑛𝑖
𝐸

× (𝑋
𝑛𝑖
| F
𝑖−1
)]
2

| F
𝑖−1
})

𝑞/2

+ 𝐾
3

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝑞𝛼

𝑛

∑
𝑖=1

𝐸
𝑎𝑛𝑖𝑋𝑛𝑖 − 𝑎𝑛𝑖𝐸 (𝑋𝑛𝑖 | F𝑖−1)


𝑞

=: 𝐾
2
𝐻
11
+ 𝐾
3
𝐻
12
.

(15)

Obviously, it follows that

𝐸 {[𝑎
𝑛𝑖
𝑋
𝑛𝑖
− 𝐸 (𝑎

𝑛𝑖
𝑋
𝑛𝑖
| F
𝑖−1
)]
2

| F
𝑖−1
}

= 𝐸 [𝑎
2

𝑛𝑖
𝑋
2

𝑖
1 (
𝑋𝑖
 ≤ 𝑛
𝛼

) | F
𝑖−1
]

− [𝐸 (𝑎
𝑛𝑖
𝑋
𝑖
1 (
𝑋𝑖
 ≤ 𝑛
𝛼

) | F
𝑖−1
)]
2

≤ 𝑎
2

𝑛𝑖
𝐸 [𝑋
2

𝑖
1 (
𝑋𝑖
 ≤ 𝑛
𝛼

) | F
𝑖−1
]

≤ 𝑎
2

𝑛𝑖
𝐸 (𝑋
2

𝑖
| F
𝑖−1
) , a.s., 1 ≤ 𝑖 ≤ 𝑛.

(16)
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Combining (11) with 𝐸[sup
𝑖≥1
𝐸(𝑋
2

𝑖
| F
𝑖−1
)]
𝑞/2

< ∞, we
obtain that

𝐻
11
≤

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝑞𝛼

(

𝑛

∑
𝑖=1

𝑎
2

𝑛𝑖
)

𝑞/2

𝐸(sup
𝑖≥1

𝐸 (𝑋
2

𝑖
| F
𝑖−1
))

𝑞/2

≤ 𝐾
4

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝑞𝛼+𝑞/2

< ∞,

(17)

following from the fact that 𝑞 > 2(𝛼𝑝−1)/(2𝛼−1).Meanwhile,
by 𝐶
𝑟
inequality, Lemma 4, and (4),

𝐻
12
≤ 𝐾
5

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝑞𝛼

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝑞

𝐸 [
𝑋𝑖

𝑞

1 (
𝑋𝑖
 ≤ 𝑛
𝛼

)]

≤ 𝐾
6

∞

∑
𝑛=1

𝑛
𝛼𝑝−1−𝑞𝛼

𝐸 [𝑋
𝑞

1 (𝑋 ≤ 𝑛
𝛼

)]

+ 𝐾
7

∞

∑
𝑛=1

𝑛
𝛼𝑝−1

𝑃 (𝑋 > 𝑛
𝛼

)

≤ 𝐾
6

∞

∑
𝑛=1

𝑛
𝛼𝑝−1−𝑞𝛼

𝐸 [𝑋
𝑞

1 (𝑋 ≤ 𝑛
𝛼

)]

+ 𝐾
7

∞

∑
𝑛=1

𝑛
𝛼𝑝−1−𝛼

𝐸 [𝑋1 (𝑋 > 𝑛
𝛼

)]

=: 𝐾
6
𝐻
∗

11
+ 𝐾
7
𝐻
∗

12
.

(18)

By the conditions 𝑝 ≥ 2 and 𝛼 > 1/2, we have that 2(𝛼𝑝 −
1)/(2𝛼 − 1) − 𝑝 ≥ 0, which implies 𝑞 > 𝑝. So, we obtain by
𝐸𝑋
𝑝

< ∞ that

𝐻
∗

11
=

∞

∑
𝑛=1

𝑛
𝛼𝑝−1−𝑞𝛼

𝑛

∑
𝑖=1

𝐸 [𝑋
𝑞

1 ((𝑖 − 1)
𝛼

< 𝑋 ≤ 𝑖
𝛼

)]

=

∞

∑
𝑖=1

𝐸 [𝑋
𝑞

1 ((𝑖 − 1)
𝛼

< 𝑋 ≤ 𝑖
𝛼

)]

∞

∑
𝑛=𝑖

𝑛
𝛼𝑝−1−𝑞𝛼

≤ 𝐾
8

∞

∑
𝑖=1

𝐸 [𝑋
𝑝

𝑋
𝑞−𝑝

1 ((𝑖 − 1)
𝛼

< 𝑋 ≤ 𝑖
𝛼

)] 𝑖
𝛼𝑝−𝑞𝛼

≤ 𝐾
8
𝐸𝑋
𝑝

< ∞.

(19)

By the proof of (12), one has that

𝐻
∗

12
=

∞

∑
𝑛=1

𝑛
𝛼𝑝−1−𝛼

𝐸 [𝑋1 (𝑋 > 𝑛
𝛼

)] ≤ 𝐾
9
𝐸𝑋
𝑝

< ∞. (20)

Thus, by (15)–(20), we have that𝐻
1
< ∞. So, it completes the

proof of (5).

Proof of Corollary 6. If𝑝 = 2𝑙 and𝛼 = 2/𝑝, then one has𝛼𝑝 =
2. So as an application ofTheorem 5, one gets (6) immediately.
On the other hand, it can be seen that

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝛼

𝐸(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



− 𝜀𝑛
𝛼

)

+

=

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝛼

∫
∞

0

𝑃(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



− 𝜀𝑛
𝛼

> 𝑡)𝑑𝑡

≥

∞

∑
𝑛=1

𝑛
𝛼𝑝−2−𝛼

∫
𝜀𝑛
𝛼

0

𝑃(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



− 𝜀𝑛
𝛼

> 𝑡)𝑑𝑡

≥ 𝜀

∞

∑
𝑛=1

𝑛
𝛼𝑝−2

𝑃(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



> 2𝜀𝑛
𝛼

) .

(21)

So by (5) and (21) with 𝛼𝑝 = 2, we have for every 𝜀 > 0 that

∞

∑
𝑛=1

𝑃(max
1≤𝑘≤𝑛



𝑘

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



> 𝜀𝑛
1/𝑙

) < ∞. (22)

It follows from Borel-Cantelli lemma that

lim
𝑛→∞

1

𝑛1/𝑙

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖
= 0, a.s. (23)

So, (7) holds.

Proof of Theorem 7. Since {𝑎
𝑛𝑖
𝑋
𝑖
,F
𝑖
, 1 ≤ 𝑖 ≤ 𝑛} are

martingale differences, it can be found by Lemmas 2 and 4
and (8) that

𝐸(
1

𝑛𝑟

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖
)

2

=
1

𝑛2𝑟
𝐸(

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖
)

2

≤
𝐾
1

𝑛2𝑟

𝑛

∑
𝑖=1

𝑎
2

𝑛𝑖
𝐸𝑋
2

𝑖

≤
𝐾
2

𝑛2𝑟
𝐸𝑋
2

𝑛

∑
𝑖=1

𝑎
2

𝑛𝑖
≤
𝐾
3

𝑛2𝑟−1
, 𝑛 ≥ 1.

(24)

Consequently, (9) holds true.

3. Applications to the Convergence of the State
Observers of Linear-Time-Invariant Systems

In this section, we give the applications of Corollary 6 and
Theorem 7 to study the convergence of the state observers of
linear-time-invariant systems.

For 𝑡 ≥ 0, consider an MISO (multi-input-single-output)
linear-time-invariant system

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,
(25)

where 𝐴 ∈ 𝑅
𝑚
0
×𝑚
0 , 𝐵 ∈ 𝑅𝑚0×𝑚1 , and 𝐶 ∈ 𝑅1×𝑚0 are known

systemmatrices, and for 𝑡 ≥ 0, 𝑢(𝑡) ∈ 𝑅𝑚1 is the control input,
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𝑥(𝑡) ∈ 𝑅
𝑚
0 is the state, and 𝑦(𝑡) ∈ 𝑅 is the system output. The

initial state 𝑥(0) is unknown. We are interested in estimation
of 𝑥(𝑡), from some limited observations on 𝑦(𝑡).

In our setup, the output 𝑦(𝑡) is only measured at a
sequence of sampling time instants {𝑡

𝑖
} with measured values

𝛾(𝑡
𝑖
), and noise 𝑑

𝑖

𝛾 (𝑡
𝑖
) = 𝑦 (𝑡

𝑖
) − 𝑑
𝑖
. (26)

We would like to estimate the state 𝑥(𝑡) from information
on 𝑢(𝑡), {𝑡

𝑖
}, and {𝛾(𝑡

𝑖
)}. In practical systems, the irregular

sampling sequences {𝛾(𝑡
𝑖
)} can be generated by different

means such as randomized sampling, event-triggered sam-
pling, and signal quantization.

It is obvious that state estimationwill not be possible if the
system is not observable. Also, in this paper, 𝑑

𝑘
is assumed to

be martingale difference. We give the following assumption.

Assumption 9. The system (25) is observable; that is, the
observability matrix

𝑊


𝑜
= [𝐶


, (𝐶𝐴)


, . . . , (𝐶𝐴
𝑚
0
−1

)


] (27)

has full rank.

For both 𝑡 > 𝑡
0
and 𝑡 < 𝑡

0
, the solution to system (25) can

be expressed as

𝑥 (𝑡) = 𝑒
𝐴(𝑡−𝑡

0
)

𝑥 (𝑡
0
) + ∫
𝑡

𝑡
0

𝑒
𝐴(𝑡−𝜏)

𝐵𝑢 (𝜏) 𝑑𝜏. (28)

Suppose that {𝑡
𝑖
, 1 ≤ 𝑖 ≤ 𝑛} is a sequence of sampling

times. For 𝑡
𝑖
≤ 𝑡
𝑛
, we have

𝛾 (𝑡
𝑖
) + 𝑑
𝑖
= 𝑦 (𝑡

𝑖
) = 𝐶𝑒

𝐴(𝑡
𝑖
−𝑡
𝑛
)

𝑥 (𝑡
𝑛
) + 𝐶∫

𝑡
𝑖

𝑡
𝑛

𝑒
𝐴(𝑡
𝑖
−𝜏)

𝐵𝑢 (𝜏) 𝑑𝜏.

(29)

Since the second term is known, it will be denoted by
V(𝑡
𝑖
, 𝑡
𝑛
) = 𝐶∫

𝑡
𝑖

𝑡
𝑛

𝑒
𝐴(𝑡
𝑖
−𝜏)

𝐵𝑢(𝜏)𝑑𝜏.This leads to the observations

𝐶𝑒
𝐴(𝑡
𝑖
−𝑡
𝑛
)

𝑥 (𝑡
𝑛
) = 𝛾 (𝑡

𝑖
) − V (𝑡

𝑖
, 𝑡
𝑛
) + 𝑑
𝑖
, 1 ≤ 𝑖 ≤ 𝑛. (30)

Define

Φ
𝑛
=

[
[
[
[
[

[

𝐶𝑒
𝐴(𝑡
1
−𝑡
𝑛
)

...
𝐶𝑒
𝐴(𝑡
𝑛−1
−𝑡
𝑛
)

𝐶

]
]
]
]
]

]

, Γ
𝑛
=

[
[
[
[

[

𝛾 (𝑡
1
)

...
𝛾 (𝑡
𝑛−1
)

𝛾 (𝑡
𝑛
)

]
]
]
]

]

,

𝑉
𝑛
=

[
[
[
[

[

V (𝑡
1
, 𝑡
𝑛
)

...
V (𝑡
𝑛−1
, 𝑡
𝑛
)

0

]
]
]
]

]

, 𝐷
𝑛
=

[
[
[
[

[

𝑑
1

...
𝑑
𝑛−1

𝑑
𝑛

]
]
]
]

]

.

(31)

Then, (30) can be written as

Φ
𝑛
𝑥 (𝑡
𝑛
) = Γ
𝑛
− 𝑉
𝑛
+ 𝐷
𝑛
. (32)

Suppose that Φ
𝑛
is full rank, which will be established

later. Then, a least-squares estimate of 𝑥(𝑡
𝑛
) is given by

𝑥 (𝑡
𝑛
) = (Φ



𝑛
Φ
𝑛
)
−1

Φ


𝑛
(Γ
𝑛
− 𝑉
𝑛
) . (33)

Here, 𝐺 denotes the transpose of 𝐺. From (32) and (33), the
estimation error for 𝑥(𝑡

𝑛
) at sampling time 𝑡

𝑛
is

𝑒 (𝑡
𝑛
) = 𝑥 (𝑡

𝑛
) − 𝑥 (𝑡

𝑛
) = (Φ



𝑛
Φ
𝑛
)
−1

Φ


𝑛
𝐷
𝑛

= (
1

𝑛𝑟
Φ


𝑛
Φ
𝑛
)
−1 1

𝑛𝑟
Φ


𝑛
𝐷
𝑛

(34)

for some 1/2 < 𝑟 < 1. For convergence analysis, one
must consider a typical entry in (1/𝑛𝑟)Φ

𝑛
𝐷
𝑛
. By the Cayley

Hamilton theorem (see Ogata [18]), the matrix exponential
can be expressed by a polynomial function of 𝐴 of order at
most𝑚

0
− 1,

𝑒
𝐴𝑡

= 𝛼
1
(𝑡) 𝐼 + ⋅ ⋅ ⋅ + 𝛼

𝑚
0

(𝑡) 𝐴
𝑚
0
−1

, (35)

where the time functions 𝛼
𝑖
(𝑡) can be derived by the

Lagrange-Hermite interpolation method (see Ogata [18]).
This implies that

𝐶𝑒
𝐴(𝑡
𝑖
−𝑡
𝑛
)

= [𝛼
1
(𝑡
𝑖
− 𝑡
𝑛
) , . . . , 𝛼

𝑚
0

(𝑡
𝑖
− 𝑡
𝑛
)]

[
[
[
[

[

𝐶

𝐶𝐴
...

𝐶𝐴
𝑚
0
−1

]
]
]
]

]

= 𝜑


(𝑡
𝑖
− 𝑡
𝑛
)𝑊
𝑜
,

(36)

where 𝜑(𝑡
𝑖
− 𝑡
𝑛
) = [𝛼

1
(𝑡
𝑖
− 𝑡
𝑛
), . . . , 𝛼

𝑚
0

(𝑡
𝑖
− 𝑡
𝑛
)] and𝑊

𝑜
is the

observability matrix.
Denote

Ψ
𝑛
=
[
[

[

𝜑


(𝑡
1
− 𝑡
𝑛
)

...
𝜑


(0)

]
]

]

. (37)

Then

Φ
𝑛
= Ψ
𝑛
𝑊
𝑜
, (38)

which implies that
1

𝑛𝑟
Φ


𝑛
Φ
𝑛
= 𝑊


𝑜

1

𝑛𝑟
Ψ


𝑛
Ψ
𝑛
𝑊
𝑜
,

1

𝑛𝑟
Φ


𝑛
𝐷
𝑛
=
1

𝑛𝑟
𝑊


𝑜
Ψ


𝑛
𝐷
𝑛
.

(39)

As a result, for any 𝑟 > 0, one has

𝑒 (𝑡
𝑛
) = (

1

𝑛𝑟
Φ


𝑛
Φ
𝑛
)
−1 1

𝑛𝑟
Φ


𝑛
𝐷
𝑛
= 𝑊
−1

𝑜
(
1

𝑛𝑟
Ψ


𝑛
Ψ
𝑛
)
−1 1

𝑛𝑟
Ψ


𝑛
𝐷
𝑛
.

(40)

Under Assumption 9, 𝑊−1
0

exists. Convergence results
will be established by the following two sufficient conditions:
(1/𝑛
𝑟

)Ψ


𝑛
𝐷
𝑛
→ 0 and (1/𝑛𝑟)Ψ

𝑛
Ψ
𝑛
≥ 𝛽𝐼, for some 𝛽 > 0. So

we need the following persistent excitation (PE) condition,
which was used by Wang et al. [19] andThanh et al. [20].
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Assumption 10. For some 1/2 < 𝑟 < 1,

𝛽 = inf
𝑛≥1

𝜎min (
1

𝑛𝑟
Ψ


𝑛
Ψ
𝑛
) > 0, (41)

where 𝜎min(𝐻) is the small eigenvalue of 𝐻 for a suitable
symmetric𝐻.

We can investigate the convergence of double-indexed
summations of random variables form

1

𝑛𝑟

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑑
𝑖

(42)

for some 1/2 < 𝑟 < 1. Here, {𝑎
𝑛𝑖
} is a triangular array of real

numbers and {𝑑
𝑖
} is a sequence of martingale differences. It

can be seen that (42) is a special case of (7) in Corollary 6.
The 𝑗th component of (1/𝑛𝑟)Ψ

𝑛
𝐷
𝑛
takes the form

1

𝑛𝑟

𝑛

∑
𝑖=1

𝛼
𝑗
(𝑡
𝑖
− 𝑡
𝑛
) 𝑑
𝑖
, (43)

where {𝛼
𝑗
(𝑡
𝑖
− 𝑡
𝑛
)} is a triangular array of real numbers. The

convergence analysis of (43) for 𝑒(𝑡
𝑛
) is a special case of (42)

or (7) in Corollary 6.
Recently, Wang et al. [19] investigated the convergence

analysis of the state observers of linear-time-invariant sys-
tems under 𝜌∗-mixing sampling. Thanh et al. [20] studied
the convergence analysis of double-indexed and randomly
weighted sums of 𝜌∗-mixing sequence and gave its applica-
tion to state observers. For more related works, one can refer
to [18–23] and the references therein.

As an application of Corollary 6 to the observers and state
estimation, we obtain the following theorem.

Theorem 11. Let Assumptions 9 and 10 hold. Let 1/2 <

𝑟 < 1 and {𝑑
𝑛
,F
𝑛
, 𝑛 ≥ 1} be martingale differences

stochastically dominated by a nonnegative random variable 𝑑
with 𝐸𝑑2/𝑟 < ∞. Suppose that for any 𝑞 > 2/(2𝑟 − 1), one has
𝐸[sup

𝑛≥1
𝐸(𝑑
2

𝑛
| F
𝑛−1
)]
𝑞/2

< ∞ and
𝑛

∑
𝑖=1


𝛼
𝑗
(𝑡
𝑖
− 𝑡
𝑛
)


𝑞

= 𝑂 (𝑛) , (44)

where 1 ≤ 𝑗 ≤ 𝑚
0
. Then
1

𝑛𝑟



Ψ


𝑛
𝐷
𝑛




→ 0, 𝑎.𝑠. (45)

Consequently,

𝑒 (𝑡
𝑛
) → 0, 𝑎.𝑠. (46)

As an application to Theorem 7, we get the following
result.

Theorem 12. Let 1/2 < 𝑟 < 1 and Assumptions 9 and 10
hold. Assume that {𝑑

𝑛
,F
𝑛
, 𝑛 ≥ 1} are martingales differences

stochastically dominated by a nonnegative random variable 𝑑
with 𝐸𝑑2 < ∞. For 1 ≤ 𝑗 ≤ 𝑚

0
, it is supposed that

𝑛

∑
𝑖=1

𝛼
2

𝑗
(𝑡
𝑖
− 𝑡
𝑛
) = 𝑂 (𝑛) . (47)

Then
𝜁 = sup
𝑛≥1

𝑛
2𝑟−1

𝐸𝑒


(𝑡
𝑛
) 𝑒 (𝑡
𝑛
) < ∞. (48)

Remark 13. If we assume that, for each 1 ≤ 𝑖 ≤ 𝑛, {𝜑(𝑡
𝑖
− 𝑡
𝑛
)}

is uniformly bounded, then we can find that condition (44)
holds for any 𝑞. On the other hand, similar toTheorems 11 and
12, Wang et al. [19] also obtained the convergence of the state
observers with probability one and inmean square under 𝜌∗-
mixing sampling (see Theorems 4 and 5 of Wang et al. [19]).
SoTheorems 11 and 12 generalize the results ofWang et al. [19]
to the case of martingale differences.

Proof of Theorem 11. It can be seen that

1

𝑛𝑟
Ψ


𝑛
𝐷
𝑛
=

[
[
[
[
[
[
[

[

1

𝑛𝑟

𝑛

∑
𝑖=1

𝛼
1
(𝑡
𝑖
− 𝑡
𝑛
) 𝑑
𝑖

...
1

𝑛𝑟

𝑛

∑
𝑖=1

𝛼
𝑚
0

(𝑡
𝑖
− 𝑡
𝑛
) 𝑑
𝑖

]
]
]
]
]
]
]

]

. (49)

To prove (45), it suffices to look at the 𝑗th component

1

𝑛𝑟

𝑛

∑
𝑖=1

𝛼
𝑗
(𝑡
𝑖
− 𝑡
𝑛
) 𝑑
𝑖

(50)

of
1

𝑛𝑟
Ψ


𝑛
𝐷
𝑛
. (51)

For any 𝑞 > 2/(2𝑟 − 1), by 𝐸[sup
𝑛≥1
𝐸(𝑑
2

𝑛
| F
𝑛−1
)]
𝑞/2

< ∞

and (44), we can obtain (45) from Corollary 6 with 𝑙 = 1/𝑟,
𝑎
𝑛𝑖
= 𝛼
𝑗
(𝑡
𝑖
− 𝑡
𝑛
) in (43), and𝑋

𝑛
= 𝑑
𝑛
.

On the other hand, by Assumption 9,𝑊−1
0

exists, and by
(41) in Assumption 10, ((1/𝑛𝑟)Ψ

𝑛
Ψ
𝑛
)
−1 exists and

𝜎max ((
1

𝑛𝑟
Ψ


𝑛
Ψ
𝑛
)
−1

) ≤
1

𝛽
, (52)

where 𝜎max(⋅) is the largest eigenvalue. Together with

𝑒 (𝑡
𝑛
) = 𝑊

−1

𝑜
(
1

𝑛𝑟
Ψ


𝑛
Ψ
𝑛
)
−1 1

𝑛𝑟
Ψ


𝑛
𝐷
𝑛

(53)

and (45), it follows (46).

Proof of Theorem 12. For 1 ≤ 𝑗 ≤ 𝑚
0
, by (47), (8) holds.

Applying Theorem 7 with 𝑎
𝑛𝑖
= 𝛼
𝑗
(𝑡
𝑖
− 𝑡
𝑛
), 𝑋
𝑛
= 𝑑
𝑛
, and

1/2 < 𝑟 < 1, we obtain that for a typical term

1

𝑛𝑟

𝑛

∑
𝑖=1

𝛼
𝑗
(𝑡
𝑖
− 𝑡
𝑛
) 𝑑
𝑖

(54)

in (49),

𝑛
2𝑟−1

𝐸(
1

𝑛𝑟

𝑛

∑
𝑖=1

𝛼
𝑗
(𝑡
𝑖
− 𝑡
𝑛
)𝑑
𝑖
)

2

≤ 𝐾
1
, 𝑛 ≥ 1. (55)

Together with (49), (53), and (55), we obtain that

𝑛
2𝑟−1

𝐸𝑒


(𝑡
𝑛
) 𝑒 (𝑡
𝑛
) ≤ 𝑚

0
𝐾
2
< ∞, (56)

where 𝐾
2
is a positive constant. Lastly, by (56), (48) holds

true.
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