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This paper is mainly devoted to the study of implicit multifunction theorems in terms of Clarke coderivative in general Banach
spaces.We present new sufficient conditions for the localmetric regularity, metric regularity, Lipschitz-like property, nonemptiness,
and lower semicontinuity of implicit multifunctions in general Banach spaces. The basic tools of our analysis involve the Ekeland
variational principle, the Clarke subdifferential, and the Clarke coderivative.

1. Introduction

Let 𝑋 and 𝑃 be topological spaces, 𝑌 a topological vector
space, 𝐹 : 𝑋 × 𝑃  𝑌 a multifunction, and (𝑥

0
, 𝑝
0
) ∈ 𝑋 × 𝑃

a pair with 0 ∈ 𝐹(𝑥
0
, 𝑝
0
). The multifunction 𝐺 : 𝑃  𝑋

defined by

𝐺 (𝑝) := {𝑥 ∈ 𝑋 | 0 ∈ 𝐹 (𝑥, 𝑝)} (1)

is called the implicit multifunction defined by the inclusion
0 ∈ 𝐹(𝑥, 𝑝).The problem is to find some verifiable conditions
on 𝐹 such that 𝐺 has the desirable properties. In the litera-
ture, different topological, metric, and differential properties
(e.g., lower semicontinuity, metric regularity, Lipschitz-like
property, upper Lipschitz continuity, and 𝐵-differentiability)
of implicit multifunctions are considered. The structure of 𝐹
and its behavior around (𝑥

0
, 𝑝
0
) decide local properties of 𝐺

in a neighborhood of the point (𝑝
0
, 𝑥
0
) in its graph.

The study of the stability of implicit multifunctions has
a long history. The pioneering works of Robinson [1–4] gave
good samples for implicit multifunction theorems and their
applications. Later, Ledyaev and Zhu [5] and Ngai andThéra
[6] established sufficient conditions for the metric regularity
of implicit multifunctions in terms of Fréchet coderivative
in Banach spaces with Fréchet-smooth Lipschitz bump func-
tions. Recently, Lee et al. [7] showed some sufficient con-
ditions for the nonemptiness, the lower semicontinuity, the
metric regularity, and the Lipschitz-like property of implicit

multifunctions in terms of Mordukhovich normal coderiva-
tive in Asplund spaces. Yen and Yao [8] obtained some
point-based sufficient conditions for the metric regularity
of implicit multifunctions in finite-dimensional spaces. Huy
and Yao [9] established another set of sufficient conditions
for the local metric regularity and the Lipschitz-like property
of implicit multifunctions in terms of Mordukhovich normal
coderivative in Asplund spaces. Huy and Yao [10] studied
the metric regularity of implicit multifunctions in terms of
Mordukhovich normal coderivative inWCGAsplund spaces.
Chieu et al. [11] examined the relationship between the
metric regularity and the Lipschitz-like property of implicit
multifunctions in finite-dimensional spaces. Chuong [12]
gave new sufficient conditions for the Lipschitz-like property
of implicit multifunctions in terms of Fréchet coderivative
in Asplund spaces. Nghia [13] is also devoted to the study
of implicit multifunction theorems in terms of Fréchet
coderivative in Asplund spaces. Yang and Huang [14] gave
sufficient conditions for the localmetric regularity, themetric
regularity, the Lipschitz-like property, the nonemptiness, and
the lower semicontinuity of random implicit multifunctions
in terms of Mordukhovich normal coderivative in separable
Asplund spaces.

As mentioned above, the results obtained for the (local)
metric regularity, the Lipschitz-like property, the nonempti-
ness, and the lower semicontinuity of implicit multifunc-
tions are almost restricted in Asplund spaces. Noting that
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Huy et al. [15] established new sufficient conditions for both
the metric regularity and the Lipschitz-like property of
implicit multifunctions in terms of Clarke coderivative in
general Banach spaces, it is worth mentioning that the
coderivative condition of implicit multifunction theorems in
[15] can be weakened. So it is natural for us to study implicit
multifunction theorems under much weaker conditions in
terms of Clarke coderivative in general Banach spaces.

In this paper, we present new sufficient conditions for
the local metric regularity, metric regularity, Lipschitz-like
property, nonemptiness, and lower semicontinuity of implicit
multifunctions in general Banach spaces. The basic tools of
our analysis involve the Ekeland variational principle, the
Clarke subdifferential, and the Clarke coderivative.

The paper is organized as follows. Section 2 recalls some
basic concepts and results from variational analysis and
generalized differentiation. Section 3 presents some implicit
multifunction theorems in terms of Clarke coderivative in
general Banach spaces.

2. Preliminaries

Throughout this paper, unless otherwise stated, all spaces
under consideration are Banach spaces whose norms are
always denoted by ‖ ⋅ ‖. For any 𝑋, we consider its dual
space 𝑋∗ equipped with the weak∗ topology 𝑤

∗, where ⟨⋅, ⋅⟩
means the canonical pairing. As usual, 𝐵

𝑋
and 𝐵

𝑋
∗ stand

for the closed unit balls of the Banach space 𝑋 and its dual
𝑋
∗, respectively. The closed ball with center 𝑥 and radius 𝑟

is denoted by 𝐵(𝑥, 𝑟). For a subset Ω ⊂ 𝑋, intΩ denote the
interior ofΩ.

For a closed subset 𝐴 of𝑋 and a point 𝑎 ∈ 𝐴, let 𝑇
𝑐
(𝑎; 𝐴)

denote the Clarke tangent cone of 𝐴 at 𝑎; that is, V ∈ 𝑇
𝑐
(𝑎; 𝐴)

if and only if, for each sequence {𝑎
𝑛
} in𝐴 converging to 𝑎 and

each sequence {𝑡
𝑛
} in (0, +∞) decreasing to 0, there exists a

sequence {V
𝑛
} in𝑋 converging to V such that 𝑎

𝑛
+𝑡
𝑛
V
𝑛
∈ 𝐴 for

all 𝑛. We denote by 𝑁
𝑐
(𝑎; 𝐴) the Clarke normal cone of 𝐴 at

𝑎; that is,

𝑁
𝑐
(𝑎; 𝐴) := {𝑥

∗
∈ 𝑋
∗
| ⟨𝑥
∗
, ℎ⟩ ≤ 0, ∀ℎ ∈ 𝑇

𝑐
(𝑎; 𝐴)} . (2)

Let 𝐹 : 𝑋  𝑌 be a multifunction between topological
spaces. Denote by

dom𝐹 := {𝑥 ∈ 𝑋 | 𝐹 (𝑥) ̸= 0} ,

rge𝐹 := {𝑦 ∈ 𝑌 | ∃𝑥 with 𝑦 ∈ 𝐹 (𝑥)}

(3)

the domain and the range of 𝐹. Each multifunction 𝐹 : 𝑋 

𝑌 is uniquely associated with its graph:

gph𝐹 := {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | 𝑦 ∈ 𝐹 (𝑥)} (4)

in the product space𝑋 × 𝑌. As usual, 𝐹 is said to be closed if
gph𝐹 is a closed subset of𝑋×𝑌.𝐹 is lower semicontinuous (in
short, l.s.c.) at 𝑥 ∈ dom𝐹 if, for any open set𝑉 ⊂ 𝑌 satisfying
𝐹(𝑥) ∩ 𝑉 ̸= 0, there exists a neighborhood 𝑈 of 𝑥 such that

𝐹(𝑥) ∩ 𝑉 ̸= 0 for all 𝑥 ∈ 𝑈. For any (𝑥, 𝑦) ∈ gph𝐹, the Clarke
coderivative𝐷∗

𝑐
𝐹(𝑥, 𝑦) of 𝐹 at (𝑥, 𝑦) is defined by

𝐷
∗

𝑐
𝐹 (𝑥, 𝑦) (𝑦

∗
) :={𝑥

∗
∈𝑋
∗
| (𝑥
∗
, −𝑦
∗
) ∈ 𝑁

𝑐
((𝑥, 𝑦) ; gph𝐹)} ,

∀𝑦
∗
∈ 𝑌
∗
.

(5)

The history of the coderivatives can be found in [16, 17].
Let 𝜑 : 𝑋 → R be an extended real-valued function,

dom𝜑 := {𝑥 ∈ 𝑋 | 𝜑 (𝑥) < ∞} ,

epi𝜑 := {(𝑥, 𝜇) ∈ 𝑋 ×R | 𝜇 ≥ 𝜑 (𝑥)} .

(6)

We say that 𝜑 is proper if 𝜑(𝑥) > −∞ for all 𝑥 ∈ 𝑋 and
dom𝜑 ̸= 0. Recall that 𝜑 is l.s.c. at a point 𝑥 with |𝜑(𝑥)| < ∞

if lim inf
𝑥→𝑥

𝜑(𝑥) ≥ 𝜑(𝑥). We say that 𝜑 is l.s.c. around 𝑥

when it is l.s.c. at any point of some neighborhood of 𝑥. For
𝑥 ∈ dom𝜑 and ℎ ∈ 𝑋, let 𝜑↑(𝑥, ℎ) denote the generalized
directional derivative introduced by Rockafellar (cf. [18]);
that is,

𝜑
↑
(𝑥, ℎ) := lim

𝜀↓0

lim
𝑧

𝜑

→𝑥

sup
𝑡↓0

inf
𝑤∈ℎ+𝜀𝐵

𝑋

𝜑 (𝑧 + 𝑡𝑤) − 𝜑 (𝑧)

𝑡
, (7)

where the expression 𝑧
𝜑

→ 𝑥 means that 𝑧 → 𝑥 and
𝜑(𝑧) → 𝜑(𝑥). Let 𝜕

𝑐
𝜑(𝑥) denote the Clarke-Rockafellar

subdifferential of 𝜑 at 𝑥; that is,

𝜕
𝑐
𝜑 (𝑥) := {𝑥

∗
∈ 𝑋
∗
| ⟨𝑥
∗
, ℎ⟩ ≤ 𝜑

↑
(𝑥, ℎ) , ∀ℎ ∈ 𝑋} . (8)

When 𝜑 is convex, the Clarke-Rockafellar subdifferential
reduces to the one in the sense of convex analysis; that is,

𝜕
𝑐
𝜑 (𝑥)

= {𝑥
∗
∈ 𝑋
∗
| ⟨𝑥
∗
, 𝑦 − 𝑥⟩ ≤ 𝜑 (𝑦) − 𝜑 (𝑥) , ∀𝑦 ∈ 𝑋} ,

∀𝑥 ∈ dom𝜑.

(9)

For a closed subset 𝐴 in 𝑋, let 𝛿
𝐴

denote the indicator
function of 𝐴. It is known that 𝜕

𝑐
𝛿
𝐴
(𝑎) = 𝑁

𝑐
(𝑎; 𝐴) and

𝜕
𝑐
𝜑 (𝑥) = {𝑥

∗
∈ 𝑋
∗
| (𝑥
∗
, −1) ∈ 𝑁

𝑐
((𝑥, 𝜑 (𝑥)) ; epi𝜑)} ,

∀𝑥 ∈ dom𝜑.

(10)

The following sum rule plays important role in variational
analysis and is useful for our analysis.

Lemma 1 (see [18]). Let 𝑋 be a Banach space and let 𝜑
1
, 𝜑
2
:

𝑋 → R be proper lower semicontinuous functions. Let 𝑥 ∈

dom𝜑
1
∩dom𝜑

2
be a local minimizer of 𝜑

1
+𝜑
2
. Suppose that

one of 𝜑
1
and 𝜑

2
is locally Lipschitz around 𝑥. Then

0 ∈ 𝜕
𝑐
𝜑
1
(𝑥) + 𝜕

𝑐
𝜑
2
(𝑥) . (11)
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Lemma 2 (see [16]). Let (𝑋, 𝑑) be a metric space. Assume that
𝑋 is complete and that 𝜑 : 𝑋 → R is a proper l.s.c. function
bounded from below. Let 𝜀 > 0 and 𝑥

0
∈ 𝑋 be given such that

𝜑(𝑥
0
) ≤ inf

𝑋
𝜑+𝜀.Then for any 𝜆 > 0 there is 𝑥 ∈ 𝑋 satisfying

(a) 𝜑(𝑥) ≤ 𝜑(𝑥
0
),

(b) 𝑑(𝑥, 𝑥
0
) ≤ 𝜆,

(c) 𝜑(𝑥) + (𝜀/𝜆)𝑑(𝑥, 𝑥) > 𝜑(𝑥) for all 𝑥 ̸= 𝑥.

3. Implicit Multifunction Theorems

Theorem 3. Let 𝑋 and 𝑌 be Banach spaces, 𝑃 a topological
space, 𝐹 : 𝑋 × 𝑃  𝑌 a multifunction, 𝐺 : 𝑃  𝑋 the implicit
multifunction defined by (1), and (𝑥

0
, 𝑝
0
) ∈ 𝑋 × 𝑃 a pair with

0 ∈ 𝐹(𝑥
0
, 𝑝
0
). Denote 𝐹

𝑝
(⋅) := 𝐹(⋅, 𝑝). Suppose that there exist

constants 𝑟 > 0 and 𝜎 > 0 such that

(i) for any 𝑝 ∈ 𝐵(𝑝
0
, 𝑟), the multifunction 𝐹

𝑝
(⋅) is closed;

(ii) for any 𝛿 > 0 and any (𝑥, 𝑝) ∈ 𝐵(𝑥
0
, 𝑟) × 𝐵(𝑝

0
, 𝑟) with

0 ∉ 𝐹(𝑥, 𝑝),

𝜎 ≤ lim
𝛿↓0

inf {𝑥
∗ : 𝑥
∗
∈ 𝐷
∗

𝑐
𝐹
𝑝
(𝑥, 𝑦) (𝑦

∗
) ,

𝑦 ∈ Π
𝛿
(0; 𝐹
𝑝 (𝑥)) ∩ 𝐵 (0, 𝑟) , 𝑦

∗
∈ 𝐽
𝛿
(𝑦)} ,

(12)

where Π
𝛿
(0; 𝐹
𝑝
(𝑥)) := {𝑦 ∈ 𝐹

𝑝
(𝑥) | ‖𝑦‖ ≤

dist(0, 𝐹
𝑝
(𝑥)) + 𝛿} and 𝐽

𝛿
(𝑦) := {𝑦

∗
∈ 𝑆
𝑌
∗ | ‖𝑦‖ −

⟨𝑦
∗
, 𝑦⟩ ≤ 𝛿}.

Then 𝐺 is locally metrically regular around (𝑥
0
, 𝑝
0
) with

modulus 1/𝜎. In fact, for any 𝜇 ∈ (0,min{𝑟, 𝑟𝜎/2}), we have

dist (𝑥, 𝐺 (𝑝)) ≤
1

𝜎
dist (0, 𝐹 (𝑥, 𝑝)) (13)

for all (𝑥, 𝑝) ∈ 𝐵(𝑥
0
, 𝑟/2) × 𝐵(𝑝

0
, 𝑟) with dist(0, 𝐹(𝑥, 𝑝)) < 𝜇.

Proof. Fix any 𝜇 ∈ (0,min{𝑟, 𝑟𝜎/2}) and any (𝑥, 𝑝) ∈

𝐵(𝑥
0
, 𝑟/2) × 𝐵(𝑝

0
, 𝑟) with dist(0, 𝐹(𝑥, 𝑝)) < 𝜇. If dist(0,

𝐹(𝑥, 𝑝)) = 0, then 0 ∈ 𝐹(𝑥, 𝑝) and hence 𝑥 ∈ 𝐺(𝑝).Therefore,
both sides of (13) are equal to 0 and (13) holds. Hence, we can
assume that dist(0, 𝐹(𝑥, 𝑝)) = 𝛼, where 𝛼 ∈ (0, 𝜇). It remains
to show that

dist (𝑥, 𝐺 (𝑝)) ≤
𝛼

𝜎
. (14)

Since 0 < 𝛼 < 𝜇 < 𝑟𝜎/2, we obtain that 2𝛼/𝑟 < 𝜎. For each
𝜀 ∈ (0, 𝑟 − 𝜇) with 2(𝛼 + 𝜀)/𝑟 < 𝜎, by the definition of the
distance function, there exists 𝑦 ∈ 𝐹

𝑝
(𝑥) such that ‖𝑦‖ < 𝛼 +

𝜀 < 𝜇 + 𝜀 < 𝑟. Define the function 𝑓
𝑝
: 𝑋 × 𝑌 → R by

𝑓
𝑝
(𝑥

, 𝑦

) :=


𝑦

+ 𝛿gph𝐹

𝑝

(𝑥

, 𝑦

) , ∀ (𝑥


, 𝑦

) ∈ 𝑋 × 𝑌.

(15)

We claim that𝑓
𝑝
is l.s.c. on𝑋×𝑌 due to condition (i). Fix any

𝑡 ∈ (2(𝛼 + 𝜀)/𝑟, 𝜎). Put 𝛽 := 𝑓
𝑝
(𝑥, 𝑦) = ‖𝑦‖. We see that

𝑓
𝑝
(𝑥, 𝑦) = 𝑡 ⋅

𝛽

𝑡
. (16)

Clearly,

𝑓
𝑝
(𝑥, 𝑦) ≤ inf

(𝑥

,𝑦


)∈𝑋×𝑌
𝑓
𝑝
(𝑥

, 𝑦

) + 𝑡 ⋅

𝛽

𝑡
. (17)

Applying the Ekeland variational principle via the new norm
‖(𝑥

, 𝑦

)‖
𝜂
:= ‖𝑥

‖+𝜂‖𝑦


‖ in the product space𝑋×𝑌 for some

0 < 𝜂 < 1/𝜎 allows us to find (𝑥, 𝑦) ∈ 𝑋 × 𝑌 satisfying

𝑓
𝑝
(𝑥, 𝑦) ≤ 𝑓

𝑝
(𝑥, 𝑦) ,

(𝑥, 𝑦) − (𝑥, 𝑦)
𝜂

≤
𝛽

𝑡
,

𝑓
𝑝
(𝑥, 𝑦) ≤ 𝑓

𝑝
(𝑥

, 𝑦

) + 𝑡


(𝑥

, 𝑦

) − (𝑥, 𝑦)

𝜂
,

∀ (𝑥

, 𝑦

) ∈ 𝑋 × 𝑌.

(18)

This implies that (𝑥, 𝑦) ∈ gph𝐹
𝑝
,

𝑦
 ≤

𝑦
 , ‖𝑥 − 𝑥‖ + 𝜂

𝑦 − 𝑦
 ≤

𝛽

𝑡
, (19)

𝑦
 ≤


𝑦

+ 𝑡 (


𝑥

− 𝑥


+ 𝜂


𝑦

− 𝑦


)

+ 𝛿gph𝐹
𝑝

(𝑥

, 𝑦

) , ∀ (𝑥


, 𝑦

) ∈ 𝑋 × 𝑌.

(20)

Furthermore,
𝑥 − 𝑥

0

 ≤ ‖𝑥 − 𝑥‖ +
𝑥 − 𝑥

0



≤
𝛽

𝑡
+

𝑟

2
<

𝛼 + 𝜀

𝑡
+

𝑟

2
<

𝑟

2
+

𝑟

2
= 𝑟,

𝑦
 ≤

𝑦
 = 𝛽 < 𝑟.

(21)

That is,

𝑥 ∈ int𝐵 (𝑥
0
, 𝑟) ⊂ 𝐵 (𝑥

0
, 𝑟) , 𝑦 ∈ int𝐵 (0, 𝑟) ⊂ 𝐵 (0, 𝑟) .

(22)

We now show that 0 ∈ 𝐹
𝑝
(𝑥). Assume to the contrary that

0 ∉ 𝐹
𝑝
(𝑥) and then 𝑦 ̸= 0. Define the function 𝜑 : 𝑋×𝑌 → R

by

𝜑 (𝑥

, 𝑦

) :=


𝑦

+ 𝑡 (


𝑥

− 𝑥


+ 𝜂


𝑦

− 𝑦


) ,

∀ (𝑥

, 𝑦

) ∈ 𝑋 × 𝑌.

(23)

It follows from (20) that (𝑥, 𝑦) is a minimum of the function
𝜑+𝛿gph𝐹

𝑝

on𝑋×𝑌. Noting that𝑦 ̸= 0, it follows fromLemma 1
that
(0, 0) ∈ 𝜕

𝑐
𝜑 (𝑥, 𝑦) + 𝜕

𝑐
𝛿gph𝐹

𝑝

(𝑥, 𝑦)

= {0} × 𝐽 (𝑦) + 𝑡 (𝐵
𝑋
∗ × 𝜂𝐵

𝑌
∗) + 𝑁

𝑐
((𝑥, 𝑦) ; gph𝐹

𝑝
) .

(24)

This implies that there exist 𝑦
∗

1
∈ 𝐽(𝑦) and (𝑥

∗

2
, 𝑦
∗

2
) ∈

𝑁
𝑐
((𝑥, 𝑦); gph𝐹

𝑝
) such that
𝑥
∗

2

 ≤ 𝑡,
𝑦
∗

1
+ 𝑦
∗

2

 ≤ 𝑡𝜂. (25)

It follows that
𝑦
∗

2

 ≥ 1 − 𝑡𝜂 > 0,
𝑦
∗

2

 ≤ 1 +
𝑦
∗

1
+ 𝑦
∗

2

 ≤ 1 + 𝑡𝜂.

(26)
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Let 𝑥∗ := 𝑥
∗

2
/‖𝑦
∗

2
‖ and 𝑦

∗
:= −(𝑦

∗

2
/‖𝑦
∗

2
‖). Then (𝑥

∗
, −𝑦
∗
) ∈

𝑁
𝑐
((𝑥, 𝑦); gph𝐹

𝑝
), and hence 𝑥

∗
∈ 𝐷
∗

𝑐
𝐹
𝑝
(𝑥, 𝑦)(𝑦

∗
). We

observe that ‖𝑦∗‖ = 1 and

𝑥
∗ =

𝑥
∗

2


𝑦
∗

2



≤ 𝑡(1 − 𝑡𝜂)
−1
. (27)

Since 𝑦∗
1
∈ 𝐽(𝑦), we have that ‖𝑦∗

1
‖ = 1 and ⟨𝑦

∗

1
, 𝑦⟩ = ‖𝑦‖.

Furthermore,
𝑦
∗

2

 ⋅
𝑦

 −
𝑦
∗

2

 ⋅ ⟨𝑦
∗
, 𝑦⟩

= (
𝑦
∗

2

 − 1)
𝑦

 +
𝑦

 + ⟨𝑦
∗

2
, 𝑦⟩

≤ 𝑡𝜂𝑟 + ⟨𝑦
∗

1
, 𝑦⟩ + ⟨𝑦

∗

2
, 𝑦⟩

= 𝑡𝜂𝑟 + ⟨𝑦
∗

1
+ 𝑦
∗

2
, 𝑦⟩

≤ 𝑡𝜂𝑟 +
𝑦
∗

1
+ 𝑦
∗

2

 ⋅
𝑦

 ≤ 2𝑡𝜂𝑟.

(28)

Dividing both sides of the above inequality by ‖𝑦
∗

2
‖ gives us

that
𝑦

 − ⟨𝑦
∗
, 𝑦⟩ ≤ 2𝑡𝜂𝑟 ⋅

1

𝑦
∗

2



≤ 2𝑡𝜂𝑟(1 − 𝑡𝜂)
−1
. (29)

For any 𝑦 ∈ 𝐹
𝑝
(𝑥), by (20), we have that

𝑦
 ≤


𝑦

+ 𝑡𝜂


𝑦

− 𝑦


≤ (1 + 𝑡𝜂)


𝑦

+ 𝑡𝜂

𝑦
 . (30)

This implies that

𝑦
 ≤

1 + 𝑡𝜂

1 − 𝑡𝜂


𝑦

, ∀𝑦


∈ 𝐹
𝑝
(𝑥) . (31)

Hence,

𝑦
 ≤

1 + 𝑡𝜂

1 − 𝑡𝜂
dist (0, 𝐹

𝑝
(𝑥))

= dist (0, 𝐹
𝑝 (𝑥)) +

2𝑡𝜂

1 − 𝑡𝜂
dist (0, 𝐹

𝑝 (𝑥)) .

(32)

Fix any 𝛿 > 0; it follows from (27), (29), and (32) that
𝑥
∗ < 𝑡 + 𝛿, 𝑦

∗
∈ 𝐽
𝛿
(𝑦) , 𝑦 ∈ Π

𝛿
(0; 𝐹
𝑝 (𝑥))

(33)

when 𝜂 > 0 are chosen sufficiently small. Taking 𝛿 ↓ 0 in
the above gives us that ‖𝑥∗‖ ≤ 𝑡 < 𝜎, which is contrary to
condition (ii). Therefore, we have shown that 0 ∈ 𝐹

𝑝
(𝑥); that

is, 𝑥 ∈ 𝐺(𝑝). It follows that

dist (𝑥, 𝐺 (𝑝)) ≤ ‖𝑥 − 𝑥‖ ≤
𝛽

𝑡
<

𝛼 + 𝜀

𝑡
. (34)

Letting 𝑡 → 𝜎, we obtain that

dist (𝑥, 𝐺 (𝑝)) ≤
𝛼 + 𝜀

𝜎
. (35)

Letting 𝜀 → 0, we obtain that

dist (𝑥, 𝐺 (𝑝)) ≤
𝛼

𝜎
=

1

𝜎
dist (0, 𝐹 (𝑥, 𝑝)) . (36)

Remark 4. We obtain the same result with Huy et al. [15,
Theorem 3.1] under much weaker coderivative condition.
Noting that the proof ofTheorem 3 is much simpler than that
of [15, Theorem 3.1], similar results presented in [9, Theorem
3.5], [10, Proposition 3.6], [14, Corollary 3.3], and [8,Theorem
3.1] all require the assumption of the inner semicompactness
of the metric projection mapping. However, Theorem 3 does
not require this assumption. Moreover, we can see from the
proof ofTheorem 3 that the conclusion of the theorem is still
valid, if the topological space 𝑃 is replaced by a metric space.

Theorem5. Suppose that all the assumptions ofTheorem 3 are
satisfied. Moreover, assume that

(iii) 𝐹 is l.s.c. at (𝑥
0
, 𝑝
0
).

Then𝐺 is metrically regular around (𝑥
0
, 𝑝
0
)withmodulus 1/𝜎.

In fact, there exists a constant 𝜌 > 0 such that

dist (𝑥, 𝐺 (𝑝)) ≤
1

𝜎
dist (0, 𝐹 (𝑥, 𝑝)) (37)

for all (𝑥, 𝑝) ∈ 𝐵(𝑥
0
, 𝜌) × 𝐵(𝑝

0
, 𝜌).

Proof. ByTheorem 3, for any 𝜇 ∈ (0,min{𝑟, 𝑟𝜎/2}), we have

dist (𝑥, 𝐺 (𝑝)) ≤
1

𝜎
dist (0, 𝐹 (𝑥, 𝑝)) (38)

for all (𝑥, 𝑝) ∈ 𝐵(𝑥
0
, 𝑟/2) × 𝐵(𝑝

0
, 𝑟) with dist(0, 𝐹(𝑥, 𝑝)) <

𝜇. Clearly, 0 ∈ 𝐹(𝑥
0
, 𝑝
0
) ∩ int𝐵

𝜇
(0). By condition (iii), there

exists a constant 𝜌
1
> 0 such that

𝐹 (𝑥, 𝑝) ∩ int𝐵
𝜇 (0) ̸= 0, ∀ (𝑥, 𝑝) ∈ 𝐵 (𝑥

0
, 𝜌
1
) × 𝐵 (𝑝

0
, 𝜌
1
) .

(39)

Hence,

dist (0, 𝐹 (𝑥, 𝑝)) < 𝜇, ∀ (𝑥, 𝑝) ∈ 𝐵 (𝑥
0
, 𝜌
1
) × 𝐵 (𝑝

0
, 𝜌
1
) .

(40)

Choose a number 𝜌 ∈ (0,min{𝜌
1
, 𝑟/2}). Then 𝜌 satisfies

the conclusion of Theorem 5. Indeed, for any (𝑥, 𝑝) ∈

𝐵(𝑥
0
, 𝜌)×𝐵(𝑝

0
, 𝜌), we have (𝑥, 𝑝) ∈ 𝐵(𝑥

0
, 𝜌
1
)×𝐵(𝑝

0
, 𝜌
1
), and it

follows from (40) that dist(0, 𝐹(𝑥, 𝑝)) < 𝜇. Moreover, (𝑥, 𝑝) ∈
𝐵(𝑥
0
, 𝑟/2) × 𝐵(𝑝

0
, 𝑟). It follows from (38) that dist(𝑥, 𝐺(𝑝)) ≤

(1/𝜎) dist(0, 𝐹(𝑥, 𝑝)).

Remark 6. Similar results presented in [7, Theorem 3.2] and
[14, Corollary 3.6] are established in terms of Mordukhovich
normal coderivative in Asplund spaces. Moreover, [7, Theo-
rem 3.2] and [14, Corollary 3.6] all require the assumption of
the inner semicompactness of themetric projectionmapping.
However, Theorem 5 does not require this assumption.

Theorem7. Suppose that all the assumptions ofTheorem 3 are
satisfied. Moreover, assume that𝑃 is a subset of a normed space
and

(iii) there exists a constant 𝑙 > 0 such that

𝐹 (𝑥, 𝑝

) ∩ 𝑟𝐵

𝑌
⊂ 𝐹 (𝑥, 𝑝) + 𝑙


𝑝

− 𝑝


𝐵
𝑌
,

∀𝑥 ∈ 𝐵 (𝑥
0
, 𝑟) , ∀𝑝, 𝑝


∈ 𝐵 (𝑝

0
, 𝑟) .

(41)

Then 𝐺 is Lipschitz-like around (𝑝
0
, 𝑥
0
) with modulus 𝑙/𝜎.
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Proof. Choose a number 𝜇 ∈ (0,min{𝑟, 𝑟𝜎/2}). We can assert
fromTheorem 3 that

dist (𝑥, 𝐺 (𝑝)) ≤
1

𝜎
dist (0, 𝐹 (𝑥, 𝑝)) (42)

for all (𝑥, 𝑝) ∈ 𝐵(𝑥
0
, 𝑟/2) × 𝐵(𝑝

0
, 𝑟) with dist(0, 𝐹(𝑥, 𝑝)) < 𝜇.

Choose a number 𝜌 ∈ (0, 𝑟/2) with 2𝑙𝜌 < 𝜇. We claim that

𝐺(𝑝

) ∩ 𝐵 (𝑥

0
, 𝜌) ⊂ 𝐺 (𝑝) +

𝑙

𝜎


𝑝

− 𝑝


𝐵
𝑋
,

∀𝑝

, 𝑝 ∈ 𝐵 (𝑝

0
, 𝜌) .

(43)

Indeed, fix any 𝑝, 𝑝 ∈ 𝐵(𝑝
0
, 𝜌) and any 𝑥 ∈ 𝐺(𝑝


) ∩ 𝐵(𝑥

0
, 𝜌).

Then we have 0 ∈ 𝐹(𝑥, 𝑝

), and it follows from condition (iii)

that 0 ∈ 𝐹(𝑥, 𝑝) + 𝑙‖𝑝

− 𝑝‖𝐵

𝑌
. Hence,

dist (0, 𝐹 (𝑥, 𝑝)) ≤ 𝑙

𝑝

− 𝑝


≤ 𝑙 (


𝑝

− 𝑝
0


+
𝑝0 − 𝑝

)

≤ 2𝑙𝜌 < 𝜇.

(44)

By (42) and (44), we obtain that

dist (𝑥, 𝐺 (𝑝)) ≤
1

𝜎
dist (0, 𝐹 (𝑥, 𝑝)) ≤

𝑙

𝜎


𝑝

− 𝑝


. (45)

Therefore,

𝑥 ∈ 𝐺 (𝑝) +
𝑙

𝜎


𝑝

− 𝑝


𝐵
𝑋
. (46)

It follows that (43) holds. Therefore, 𝐺 is Lipschitz-like
around (𝑝

0
, 𝑥
0
) with modulus 𝑙/𝜎.

Remark 8. We obtain the same result with Huy et al. [15,
Theorem 3.2] under much weaker coderivative condition.
Similar results presented in [9, Theorem 3.5], [10, Corollary
3.9], [7, Theorem 3.3], and [14, Corollary 3.10] all require the
assumption of the inner semicompactness of the metric pro-
jection mapping. However, Theorem 7 does not require this
assumption. Similar result presented in [12,Theorem3.1] does
not require the assumption of the inner semicompactness of
the metric projection mapping, but it is established in terms
of Fréchet coderivative in Asplund spaces.

Theorem9. Suppose that all the assumptions ofTheorem 3 are
satisfied. Moreover, assume that

(iii) for any (𝑥, 𝑝) ∈ 𝐵(𝑥
0
, 𝑟) × 𝐵(𝑝

0
, 𝑟), the multifunction

𝐹(𝑥, ⋅) is l.s.c. at 𝑝.

Then there exists a constant 𝑠 ∈ (0, 𝑟) such that the
multifunction 𝐺 : 𝑃  𝑋 defined by

𝐺 (𝑝) := 𝐺 (𝑝) ∩ int𝐵 (𝑥
0
, 𝑟) (47)

is nonempty and l.s.c. on 𝐵(𝑝
0
, 𝑠).

Proof. Since 0 ∈ 𝐹(𝑥
0
, 𝑝
0
), by condition (iii), there exists a

constant 𝜌 > 0 such that

𝐹 (𝑥
0
, 𝑝) ∩ int𝐵 (0,min {𝑟, 𝑟𝜎}) ̸= 0, ∀𝑝 ∈ 𝐵 (𝑝

0
, 𝜌) .

(48)

Hence,

dist (0, 𝐹 (𝑥
0
, 𝑝)) < min {𝑟, 𝑟𝜎} , ∀𝑝 ∈ 𝐵 (𝑝

0
, 𝜌) . (49)

Choose a number 𝑠 ∈ (0,min{𝑟, 𝜌}). We show that 𝑠 satisfies
the conclusion of Theorem 9.

(a) Fix any 𝑝 ∈ 𝐵(𝑝
0
, 𝑠). We prove that𝐺(𝑝) is nonempty.

Define the function 𝑓
𝑝
: 𝑋 × 𝑌 → R by

𝑓
𝑝
(𝑥, 𝑦) :=

𝑦
 + 𝛿gph𝐹

𝑝

(𝑥, 𝑦) , ∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌. (50)

We claim that 𝑓
𝑝
is l.s.c. on 𝑋 × 𝑌 due to condition (i). If

𝑓
𝑝
(𝑥
0
, 0) = 0, then 0 ∈ 𝐹

𝑝
(𝑥
0
), and hence 𝑥

0
∈ 𝐺(𝑝). It

follows that 𝑥
0

∈ 𝐺(𝑝) ∩ int𝐵(𝑥
0
, 𝑟). That is, 𝐺(𝑝) ̸= 0. If

𝑓
𝑝
(𝑥
0
, 0) ̸= 0, then 0 ∉ 𝐹

𝑝
(𝑥
0
), and hence dist(0, 𝐹(𝑥

0
, 𝑝)) > 0.

We may assume that 𝛼 := dist(0, 𝐹(𝑥
0
, 𝑝)), where 0 < 𝛼 <

min{𝑟, 𝑟𝜎} ≤ 𝑟.
For each 𝜀 ∈ (0, 𝑟−𝛼)with (𝛼+𝜀)/𝑟 < 𝜎, by the definition

of the distance function, there exists 𝑦 ∈ 𝐹
𝑝
(𝑥
0
) such that

‖𝑦‖ < 𝛼 + 𝜀 < 𝑟. Let 𝛽 := 𝑓
𝑝
(𝑥
0
, 𝑦) = ‖𝑦‖. Fix any 𝑡 ∈

((𝛼 + 𝜀)/𝑟, 𝜎). We see that

𝑓
𝑝
(𝑥
0
, 𝑦) = 𝑡 ⋅

𝛽

𝑡
. (51)

Clearly,

𝑓
𝑝
(𝑥
0
, 𝑦) ≤ inf

(𝑥,𝑦)∈𝑋×𝑌
𝑓
𝑝
(𝑥, 𝑦) + 𝑡 ⋅

𝛽

𝑡
. (52)

Applying the Ekeland variational principle via the new norm
‖(𝑥, 𝑦)‖

𝜂
:= ‖𝑥‖ + 𝜂‖𝑦‖ in the product space 𝑋 × 𝑌 for some

0 < 𝜂 < 1/𝜎 allows us to find (𝑥, 𝑦) ∈ 𝑋 × 𝑌 such that

𝑓
𝑝
(𝑥, 𝑦) ≤ 𝑓

𝑝
(𝑥
0
, 𝑦) ,

(𝑥, 𝑦) − (𝑥
0
, 𝑦)

𝜂
≤

𝛽

𝑡
,

𝑓
𝑝
(𝑥, 𝑦) ≤ 𝑓

𝑝
(𝑥, 𝑦) + 𝑡

(𝑥, 𝑦) − (𝑥, 𝑦)
𝜂
,

∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌.

(53)

This implies that (𝑥, 𝑦) ∈ gph𝐹
𝑝
,

𝑦
 ≤

𝑦
 ,

𝑥 − 𝑥
0

 + 𝜂
𝑦 − 𝑦

 ≤
𝛽

𝑡
, (54)

𝑦
 ≤

𝑦
 + 𝑡 (‖𝑥 − 𝑥‖ + 𝜂

𝑦 − 𝑦
) + 𝛿gph𝐹

𝑝

(𝑥, 𝑦) ,

∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌.

(55)

Furthermore,

𝑥 − 𝑥
0

 ≤
𝛽

𝑡
<

𝛼 + 𝜀

𝑡
< 𝑟,

𝑦
 ≤

𝑦
 < 𝑟. (56)

That is,

𝑥 ∈ int𝐵 (𝑥
0
, 𝑟) ⊂ 𝐵 (𝑥

0
, 𝑟) , 𝑦 ∈ int𝐵 (0, 𝑟) ⊂ 𝐵 (0, 𝑟) .

(57)
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We now show that 0 ∈ 𝐹
𝑝
(𝑥). Assume to the contrary that

0 ∉ 𝐹
𝑝
(𝑥) and then 𝑦 ̸= 0. Define the function 𝜑 : 𝑋×𝑌 → R

by

𝜑 (𝑥, 𝑦) :=
𝑦

 + 𝑡 (‖𝑥 − 𝑥‖ + 𝜂
𝑦 − 𝑦

) ,

∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌.

(58)

It follows from (55) that (𝑥, 𝑦) is a minimum of the function
𝜑+𝛿gph𝐹

𝑝

on𝑋×𝑌. Arguing as inTheorem 3, we can deduce a
contradiction with condition (ii). Therefore, we have shown
that 0 ∈ 𝐹

𝑝
(𝑥); that is, 𝑥 ∈ 𝐺(𝑝). It follows from (57) that

𝐺(𝑝) ̸= 0.

(b) Fix any 𝑝 ∈ 𝐵(𝑝
0
, 𝑠). We prove that 𝐺 is l.s.c. at 𝑝. It

suffices to show that, for any 𝑥 ∈ 𝐺(𝑝) and any 𝜀 > 0,
there exists a constant 𝑡 > 0 such that

𝐺(𝑝

) ∩ int𝐵 (𝑥, 𝜀) ̸= 0, ∀𝑝


∈ 𝐵 (𝑝, 𝑡) . (59)

Since 𝑥 ∈ 𝐺(𝑝), we have that 0 ∈ 𝐹(𝑥, 𝑝) and 𝑥 ∈ int𝐵(𝑥
0
, 𝑟).

Choose a number 𝜂 ∈ (0, 𝜀) such that 𝐵(𝑥, 𝜂) ⊂ 𝐵(𝑥
0
, 𝑟) and

𝐵(𝑝, 𝜂) ⊂ 𝐵(𝑝
0
, 𝑟). Arguing as above for the pair (𝑥, 𝑝) in the

place of (𝑥
0
, 𝑝
0
), the constant 𝜂 in the place of 𝑟, and the ball

𝐵(𝑥, 𝜂), 𝐵(0, 𝜂), and 𝐵(𝑝, 𝜂) in the place of 𝐵(𝑥
0
, 𝑟), 𝐵(0, 𝑟),

and 𝐵(𝑝
0
, 𝑟), respectively, we find a constant 𝑡 ∈ (0, 𝜂) such

that

𝐺(𝑝

) ∩ int𝐵 (𝑥, 𝜂) ̸= 0, ∀𝑝


∈ 𝐵 (𝑝, 𝑡) . (60)

Since int𝐵(𝑥, 𝜂) ⊂ int𝐵(𝑥
0
, 𝑟) ∩ int𝐵(𝑥, 𝜀), from (60) we get

𝐺(𝑝

) ∩ int𝐵 (𝑥

0
, 𝑟) ∩ int𝐵 (𝑥, 𝜀) ̸= 0, ∀𝑝


∈ 𝐵 (𝑝, 𝑡) .

(61)

That is,

𝐺(𝑝

) ∩ int𝐵 (𝑥, 𝜀) ̸= 0, ∀𝑝


∈ 𝐵 (𝑝, 𝑡) . (62)

Remark 10. Similar results presented in [7, Theorem 3.1] and
[14, Theorem 3.12] are established in terms of Mordukhovich
normal coderivative in Asplund spaces. Moreover, [7, Theo-
rem 3.1] and [14, Theorem 3.12] all require the assumption of
the inner semicompactness of themetric projectionmapping.
However, Theorem 9 does not require this assumption.

Corollary 11. Let 𝑋 and 𝑃 be Banach spaces, Φ : 𝑋  𝑃 a
multifunction, and (𝑥

0
, 𝑝
0
) ∈ 𝑋 × 𝑃 a pair with 𝑝

0
∈ Φ(𝑥

0
).

Suppose that Φ is closed and that there exist constants 𝑟 > 0

and 𝜎 > 0 such that, for any 𝛿 > 0 and any (𝑥, 𝑝) ∈ 𝐵(𝑥
0
, 𝑟) ×

𝐵(𝑝
0
, 𝑟) with 𝑝 ∉ Φ(𝑥),

𝜎 ≤ lim
𝛿↓0

inf {𝑥
∗ : 𝑥
∗
∈ 𝐷
∗

𝑐
Φ(𝑥, 𝑦 + 𝑝) (𝑦

∗
) ,

𝑦 ∈ Π
𝛿
(0; Φ (𝑥) − 𝑝) ∩ 𝐵 (0, 𝑟) , 𝑦

∗
∈ 𝐽
𝛿
(𝑦)} ,

(63)

whereΠ
𝛿
(0; Φ(𝑥)−𝑝) := {𝑦 ∈ Φ(𝑥)−𝑝 | ‖𝑦‖ ≤ dist(0, Φ(𝑥)−

𝑝) + 𝛿} and 𝐽
𝛿
(𝑦) := {𝑦

∗
∈ 𝑆
𝑌
∗ | ‖𝑦‖ − ⟨𝑦

∗
, 𝑦⟩ ≤ 𝛿}.

Then one has the following:

(a) there exists a constant 𝜌
1
> 0 such that, for any 𝜏 ∈

(0, 𝜌
1
], 𝐵(𝑝

0
, 𝜎𝜏) ⊂ Φ(𝐵(𝑥

0
, 𝜏));

(b) there exist constants 𝜇 > 0 and 𝜌
2
> 0 such that

dist (𝑥,Φ−1 (𝑝)) ≤
1

𝜎
dist (𝑝, Φ (𝑥)) (64)

for all (𝑥, 𝑝) ∈ 𝐵(𝑥
0
, 𝜌
2
) × 𝐵(𝑝

0
, 𝜌
2
) satisfying

dist(𝑝, Φ(𝑥)) ≤ 𝜇;
(c) Φ−1 is Lipschitz-like around (𝑝

0
, 𝑥
0
)withmodulus 1/𝜎;

(d) there exists a constant 𝑠 ∈ (0, 𝑟) such that the
multifunction 𝐺 : 𝑃  𝑋 defined by

𝐺 (𝑝) := Φ
−1

(𝑝) ∩ int𝐵 (𝑥
0
, 𝑟) (65)

is nonempty and l.s.c. on 𝐵(𝑝
0
, 𝑠).

Proof. Put 𝑌 := 𝑃. Define 𝐹 : 𝑋 × 𝑃  𝑌 and 𝐺 : 𝑃  𝑋 by

𝐹 (𝑥, 𝑝) := Φ (𝑥) − 𝑝, ∀ (𝑥, 𝑝) ∈ 𝑋 × 𝑃,

𝐺 (𝑝) := {𝑥 ∈ 𝑋 : 0 ∈ 𝐹 (𝑥, 𝑝)} , ∀𝑝 ∈ 𝑃,

(66)

respectively. Obviously, 𝐺(𝑝) = {𝑥 ∈ 𝑋 : 𝑝 ∈ Φ(𝑥)} =

Φ
−1
(𝑝). It is easy to see that all the assumptions ofTheorem 3

are satisfied. Indeed, 𝑝
0
∈ Φ(𝑥

0
) implies that 0 ∈ 𝐹(𝑥

0
, 𝑝
0
).

Denote 𝐹
𝑝
(⋅) := 𝐹(⋅, 𝑝). We observe that gph𝐹

𝑝
= gphΦ −

(0, 𝑝) and ∀𝑝 ∈ 𝑃. SinceΦ is closed, we have that 𝐹
𝑝
is closed

for all 𝑝 ∈ 𝑃. It follows that condition (i) of Theorem 3 is
satisfied. Furthermore, we can prove that 𝑇

𝑐
((𝑥, 𝑦); gph𝐹

𝑝
) =

𝑇
𝑐
((𝑥, 𝑦 + 𝑝); gphΦ), and it follows that 𝑁

𝑐
((𝑥, 𝑦); gph𝐹

𝑝
) =

𝑁
𝑐
((𝑥, 𝑦 + 𝑝); gphΦ). Hence, 𝑥∗ ∈ 𝐷

∗

𝑐
𝐹
𝑝
(𝑥, 𝑦)(𝑦

∗
) ⇔

𝑥
∗
∈ 𝐷
∗

𝑐
Φ(𝑥, 𝑦 + 𝑝)(𝑦

∗
). Then condition (ii) of Theorem 3

is satisfied.
Fix any 𝜇 ∈ (0,min{𝑟, 𝑟𝜎/2}). By Theorem 3, we have

dist (𝑥,Φ−1 (𝑝)) ≤
1

𝜎
dist (𝑝, Φ (𝑥)) (67)

for all (𝑥, 𝑝) ∈ 𝐵(𝑥
0
, 𝑟/2) × 𝐵(𝑝

0
, 𝑟) with dist(𝑝, Φ(𝑥)) < 𝜇.

We now prove the conclusions of the corollary.

(a) Choose a number 𝜌
1
∈ (0, 𝜇/𝜎). Let 𝜏 ∈ (0, 𝜌

1
]. Take

arbitrary 𝑝 ∈ 𝐵(𝑝
0
, 𝜎𝜏). Clearly, 𝑝 ∈ 𝐵(𝑝

0
, 𝜎𝜌
1
) ⊂

𝐵(𝑝
0
, 𝜇) ⊂ 𝐵(𝑝

0
, 𝑟). Since 𝑝

0
∈ Φ(𝑥

0
), we have that

dist(𝑝, Φ(𝑥
0
)) ≤ ‖𝑝 − 𝑝

0
‖ < 𝜇. It follows from (67)

that

dist (𝑥
0
, Φ
−1

(𝑝)) ≤
1

𝜎
dist (𝑝, Φ (𝑥

0
))

≤
dist (𝑝, Φ (𝑥

0
)) − dist (𝑝

0
, Φ (𝑥

0
))

𝜎

≤

𝑝 − 𝑝
0



𝜎
≤ 𝜏.

(68)

Hence, 𝐵(𝑝
0
, 𝜎𝜏) ⊂ Φ(𝐵(𝑥

0
, 𝜏)).
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(b) Take any 𝜌
2
∈ (0, (𝑟/2)]. We can get the conclusion

immediately from (67).
(c) Clearly, Φ(𝑥) − 𝑝


⊂ Φ(𝑥) − 𝑝 + 𝑝 − 𝑝


⊂ Φ(𝑥) −

𝑝 + ‖𝑝

− 𝑝‖𝐵

𝑌
. We can verify that condition (iii)

of Theorem 7 holds for 𝐹 with modulus 𝑙 = 1. The
conclusion follows immediately fromTheorem 7.

(d) Clearly, for any (𝑥, 𝑝) ∈ 𝐵(𝑥
0
, 𝑟) × 𝐵(𝑝

0
, 𝑟), the

multifunction 𝐹(𝑥, ⋅) is l.s.c. at 𝑝. The conclusion
follows immediately fromTheorem 9.

Remark 12. We obtain the same result with Huy et al. [15,
Corollary 3.1] under much weaker coderivative condition.
Similar results presented in [10, Corollary 3.10] are estab-
lished in terms of Mordukhovich normal coderivative in
Asplund spaces. Moreover, [10, Corollary 3.10] requires the
assumption of the inner semicompactness of the metric
projection mapping. However, Corollary 11 does not require
this assumption.
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