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In many systems such as computer network, fuel distribution, and transportation system, it is necessary to change the capacity
of some arcs in order to increase maximum flow value from source s to sink t, while the capacity change incurs minimum cost.
In real-time networks, some factors cause loss of arc’s flow. For example, in some flow distribution systems, evaporation, erosion
or sediment in pipes waste the flow. Here we define a real capacity, or the so-called functional capacity, which is the operational
capacity of an arc. In other words, the functional capacity of an arc equals the possible maximum flow that may pass through the
arc. Increasing the functional arcs capacities incurs some cost. There is a certain resource available to cover the costs. First, we
construct a mathematical model to minimize the total cost of expanding the functional capacities to the required levels. Then, we
consider the loss of flow on each arc as a stochastic variable and compute the system reliability.

1. Introduction

Given a directed network flow with unique source 𝑠 and
unique sink 𝑡, one of the common problems is the max-
imum flow problem where the value of flow from 𝑠 to 𝑡

should be maximized. Various algorithms have been pre-
sented to solve this problem. The first algorithm devel-
oped by Ford and Fulkerson [1] was called Augmenting
Path Algorithm. Karzanov [2] introduced the first preflow-
push algorithm on layered networks. He obtained an 𝑂(𝑛

3
)

algorithm. Capacity scaling is another polynomial algo-
rithm developed by Ahuja and Orlin [3]. It seems that
the best available time bounds algorithms to solve this
problem are based on Alon [4] and Ahuja and Orlin
[5].

The budgeted capacity expansion problem has been
investigated for different systems. One of them is flow expan-
sion on transportation networks with budget constraints.
This problem was studied by Elalouf et al. [6]. The general
budget-restricted max flow problem was first discussed by
Eiselt and Frajer [7]. Also, another algorithm for optimal
expansion problems was provided by Ahuja et al. [8].

Many physical flow systems are regarded as stochastic
network flows. In such a system, the system reliability
is an important criterion for system performance. Several
studies have evaluated network reliability of maximum flow.
Yeh evaluated the reliability factor of a network, where
arc capacities are stochastic. He defined a simple approach
to evaluate reliability of a multistate network [9]. Xiao et
al. [10] presented a model for reliability computation in
power distribution system. Later, the presented approach
in [9] was considerably improved by Salehi Fathabadi and
Forghani-elahabadi [11]. In another paper, Yeh [12] designed
a survivable network under cost constraints and computed
its reliability. For this case, Salehi Fathabadi and Khodaei
[13] presented a different method to find the optimal system
parameters and computed its reliability. Lin and Yeh [14]
proposed a genetic algorithm to find maximal reliability of
networks. Also Lin studied stochastic flow network with
two commodities [15] and network reliability with budget
constraint [16]. In all of the above studies the probability
function of the arcs’ capacity was assumed to be discrete.
However, in many real-life systems, where the flow is liquid,
this assumption is not applicable.
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In this paper, we consider network flow systems in
which the functional capacities of the arcs are continuous
random variables. The investigated problem is to expand
the nominal capacities of arcs so that the system would be
capable of securing the demands, while the expansion cost is
minimal.Then,we evaluate the reliability of the systems as the
probability that the network can transfer a desired amount
of flow from the source, 𝑠, to the sink, 𝑡. The former goal is
achieved by running the algorithm CEA, which is explained
in Section 3 and the later goal is accomplished in Section 4.

Regarding the previous studies [17, 18], our contribution
has been compiled based on the following. (i) We define
and use the arcs’ functional capacities which are quite
different from arcs’ nominal capacities in real-life systems.
(ii) The probability functions of the stochastic functional
capacities are continuous. (iii) The capacity expansion cost is
minimum. The capacity expansion takes place in a discrete
manner until the maximum flow reaches the required level.
This paper has been arranged as follows. Section 2 defines
notations, primary assumptions, and the related theorems.
Also, the mathematical model of the problem is constructed
in Section 2. Section 3 explains the capacity expansion algo-
rithm. System reliability is computed in Section 4 and even-
tually a numerical example will be considered in Section 5.

2. Notations and Assumptions

Weuse the following definitions and assumptions throughout
this paper.

𝐺(𝑉,𝐴): A directed network flow with a unique
source 𝑠 and a unique sink 𝑡, where 𝑉 is the set of
nodes and 𝐴 ⊆ 𝑉 × 𝑉 is the set of arcs.
𝑢
𝑖𝑗
: Nominal capacity of (𝑖, 𝑗) ∈ 𝐴 (the initial built-in

capacity of arc(𝑖, 𝑗)).

𝑢
𝑓

𝑖𝑗
: Functional capacity of arc(𝑖, 𝑗) ∈ 𝐴, (the current

operational capacity of arc(𝑖, 𝑗) ∈ 𝐴).
𝑤
𝑖𝑗
: Amount of capacity expansion on arc(𝑖, 𝑗) ∈ 𝐴.

𝑀
𝑖𝑗
: Maximum capacity expansion for arc(𝑖, 𝑗) ∈ 𝐴.

𝑐
𝑖𝑗
: Expansion cost per unit of capacity on arc(𝑖, 𝑗) ∈

𝐴.
𝛼
𝑖𝑗
: Loss factor on (𝑖, 𝑗) ∈ 𝐴. The fraction of arc’s

capacity is lost due to some stochastic events. Then
𝛼
󸀠

𝑖𝑗
= 1 − 𝛼

𝑖𝑗
is fraction of arc’s capacity that is able to

transmit the flow. We call them transmission factor.
𝑃
𝑖
: The 𝑖th simple path from 𝑠 to 𝑡. A simple path does

not include repeated arcs and/or nodes.
Ω
𝑟: The 𝑟th category 𝑟 = 1, 2, . . . , 𝑅. Each category

includes several subsets of transmission factors. In
addition, each category is related to set of simple paths
that are capable of sending maximum flow from 𝑠 to
𝑡.

The network flow satisfies the following assumption.
(i) Each node is perfectly reliable. This means that the

amount of flow passing through a node does not
change.

(ii) The loss factors and transmission factors of different
arcs are statistically independent random variable.

3. Problem Statement

Assume 𝐺 = (𝑉,𝐴) is a network flow with node set, 𝑉; arc
set, 𝐴; source node 𝑠; and sink node 𝑡. We assume 𝐺 includes
𝑛 nodes and 𝑚 arcs. Each arc, (𝑖, 𝑗), has a nominal capacity
of 𝑢
𝑖𝑗
. There are some factors in this network that cause loss

of flow on each arc. For example, in a water distribution
system, evaporation, erosion, or sediment in pipes waste the
flow in some parts. For each arc we define a real capacity
or the so-called functional capacity and denote it by 𝑢

𝑓

𝑖𝑗
. 𝑢𝑓
𝑖𝑗

equals the real amount of maximum flow that can pass along
the arc(𝑖, 𝑗). According to the current functional capacities,
the real maximum flow value from 𝑠 to 𝑡 is V. This value
is equal to the functional capacity of the current minimum
cut, (𝑆, 𝑆) [19]. We are going to expand the nominal capacity,
𝑢
𝑖𝑗
, such that the real maximum flow value is increased by

V0 and the total expansion cost is minimized. We know that
the expansion cost on arc(𝑖, 𝑗), for each unit of capacity, is 𝑐

𝑖𝑗

and the maximum capacity expansion is 𝑀
𝑖𝑗
units. For each

arc, say, (𝑖, 𝑗), there is a loss factor, 𝛼
𝑖𝑗
, which is a continuous

random variable in interval [0, 1] and shows the fraction of
nominal capacity that is wasted. Thus transmission factor
(𝛼󸀠
𝑖𝑗
= 1−𝛼

𝑖𝑗
, for all (𝑖, 𝑗) ∈ 𝐴) is computable for any arc. Note

that this factor is a continuous random number in interval
[0, 1] as well. Therefore, the functional capacity of arc(𝑖, 𝑗) is
computed as 𝑢𝑓

𝑖𝑗
= 𝛼
󸀠

𝑖𝑗
𝑢
𝑖𝑗
. 𝑢𝑓
𝑖𝑗
𝑠 satisfy 0 ≤ 𝑢

𝑓

𝑖𝑗
= 𝛼
󸀠

𝑖𝑗
𝑢
𝑖𝑗
≤ 𝑢
𝑖𝑗
,

(𝑖, 𝑗) ∈ 𝐴.
Now using the above notations and assuming (𝑆, 𝑆) is the

current minimum 𝑠 − 𝑡 cut, the mathematical model of the
problem is constructed as

min 𝑧 = ∑

(𝑖,𝑗)∈𝐴

𝑐
𝑖𝑗
𝑤
𝑖𝑗
, (1)

s.t. ∑

𝑗∈𝑉

𝑥
𝑖𝑗
− ∑

𝑗∈𝑉

𝑥
𝑗𝑖
=

{
{

{
{

{

V + V0, if 𝑖 = 𝑠,

0, if 𝑖 ̸= 𝑠, 𝑡,

− (V + V0) , if 𝑖 = 𝑡,

(2)

∑

(𝑖,𝑗)∈(𝑆,𝑆)

𝛼
󸀠

𝑖𝑗
𝑢
𝑖𝑗
= V, (3)

0 ≤ 𝑥
𝑖𝑗
≤ 𝛼
󸀠

𝑖𝑗
(𝑢
𝑖𝑗
+ 𝑤
𝑖𝑗
) , (𝑖, 𝑗) ∈ 𝐴, (4)

𝛼
󸀠

𝑖𝑗
∈ [0, 1] , (𝑖, 𝑗) ∈ 𝐴. (5)

Constraints (2) show the flows are balanced at each node
other than the source and sink; for the source and sink nodes
the amount of out-flow from 𝑠 equals the amount of in-
flow to 𝑡 and equals V + V0. Constraint (3) shows that the
maximum flow, before changing the arcs’ capacities, is equal
to V. The constraints (4) guaranty the arc flows do not exceed
the functional arcs’ capacities. Finally, continuity of 𝛼󸀠

𝑖𝑗
𝑠, and

therefore continuity of 𝑥
𝑖𝑗
are the impact of constraints (5).
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3.1. The Capacity Expansion Algorithm (CEA). It should be
noted that, according to the current functional capacities, the
value of the maximum flow is V and is equal to the capacity of
the minimum 𝑠 − 𝑡 cut, (𝑆, 𝑆). Using the functional capacity,
we assume that the current maximum flow is denoted by 𝑥 =

{𝑥
𝑖𝑗
}
(𝑖,𝑗)∈𝐴

and generates the residual network 𝐺(𝑥). Suppose
𝑃
𝑘
is a path from 𝑠 to 𝑡 in 𝐺. The current amount of flow

passing through this path is equal to 𝛿
𝑘
= min{𝑢𝑓

𝑖𝑗
| (𝑖, 𝑗) ∈

𝑃
𝑘
}. For some arcs, (𝑖, 𝑗) ∈ 𝑃

𝑘
say, it may be 𝛿

𝑘
< 𝑢
𝑓

𝑖𝑗
. In this

case, (𝑖, 𝑗) has some residual (free) capacity that may be used,
without any cost, to increase the flow on (𝑖, 𝑗). If 𝛿

𝑘
= 𝑢
𝑓

𝑖𝑗
,

for an arc(𝑖, 𝑗) ∈ 𝑃
𝑘
, there is no free capacity left on (𝑖, 𝑗)

and the capacity of this arc must be increased incurring some
cost. According to this point, we define capacity expanding
cost for each arc and find the cheapest path from the source
node to the sink node. For this purpose the residual network
and an auxiliary network called expansion-cost-network are
constructed. We denote the later one by 𝐺(cos 𝑡) and it is
constructed as follows.

𝐺(cos 𝑡) include all nodes of 𝐺(𝑥). For every arc(𝑖, 𝑗) ∈

𝐺(𝑥) two directed arcs in opposite directions between 𝑖 and 𝑗
are drawn in 𝐺(cos 𝑡). Note that, if there already are two arcs
between 𝑖 and 𝑗 with opposite directions, no more arcs are
drawnbetween these nodes.The arc(𝑖, 𝑗) shows the possibility
of expanding capacity with cost 𝑐󸀠

𝑖𝑗
on (𝑖, 𝑗) ∈ 𝐺(cos 𝑡). The

artificial arc(𝑗, 𝑖) represents the possibility of reducing the
expanded capacity on (𝑖, 𝑗) ∈ 𝐺(cos 𝑡). It is important to
note that, when there is a positive amount of flow going from
node 𝑖 to node 𝑗 through the arc(𝑖, 𝑗), we may decrease it by
assuming an artificial arc from 𝑗 to 𝑖 with some positive flow
𝑥
𝑗𝑖
and cost 𝑐󸀠

𝑗𝑖
. Each arc in 𝐺(cos 𝑡) is labeled by 𝑐

󸀠

𝑖𝑗
, which

is the expansion or narrowing cost per unit of capacity. If
the flow on arc(𝑖, 𝑗) is smaller than the functional capacity,
namely, 𝛿

𝑘
< 𝑢
𝑓

𝑖𝑗
, then this arc steel has room to increase the

flow. Hence there is no need to increase the current capacity.
The labels for this case are set as 𝑐󸀠

𝑖𝑗
= 𝑐
󸀠

𝑗𝑖
= 0. Otherwise,

the capacity of (𝑖, 𝑗) should be expanded. At this stage of the
algorithm, if the capacity of this arc has not been expanded so
far, namely, 𝑤

𝑖𝑗
= 0, then increasing the capacity is possible.

Hence we set 𝑐󸀠
𝑖𝑗
= 𝑐
𝑖𝑗
and 𝑐
󸀠

𝑗𝑖
= 0. If 0 < 𝑤

𝑖𝑗
< 𝑀
𝑖𝑗
, then,

for a better solution, we may increase the capacity or reduce
the increased capacity. Therefore the labels are set as 𝑐󸀠

𝑖𝑗
= 𝑐
𝑖𝑗
,

𝑐
󸀠

𝑗𝑖
= −𝑐

𝑖𝑗
. Eventually, if the expanded capacity value on

arc(𝑖, 𝑗) is equal to𝑀
𝑖𝑗
the capacity expansion is not possible

and we can only reduce it. So, the costs are set as 𝑐󸀠
𝑖𝑗
= +∞

and 𝑐
󸀠

𝑗𝑖
= −𝑐
𝑖𝑗
[6].

After setting the labels in 𝐺(cos 𝑡), the cheapest simple
path from the source to the sink is found; the capacities are
extended on this path as much as possible and the current
iteration is ended with computing the maximum flow. This
process is repeated until the value of the maximum flow
becomes equal to V + V0.

3.2. Pseudocode of CEA. For more details see Pseudocode 1.

3.3. Algorithm’s Complexity. Wenow consider the complexity
of CEA. We might compute the computational time of this
algorithm as allocated to the following four basic operations.

(1) Construction of 𝐺(𝑥) and 𝐺(cos 𝑡): concerning resid-
ual network, the algorithm allocates costs to the arcs
of 𝐺(cos 𝑡). If the network contains 𝑚 arcs, costs of
2𝑚 arcs would be calculated and assigned to the arcs.
Thus the algorithm performs this operation in 𝑂(𝑚)

time.
(2) Finding the shortest path: the algorithm finds the

cheapest (shortest) path from the source to the sink
according to the cost vector 𝑐󸀠. FIFO implementation
of the modified label correcting algorithm is the best
known algorithm for this purpose.The runtime of this
algorithm is 𝑂(𝑛𝑚), [19].

(3) Capacity expansions: for each arc belonging to the
cheapest path, it would be examinedwhether capacity
expansions are required or not. This operation would
be implemented in 𝑂(𝑚) time.

(4) Computing the maximum flow: at this stage, the
maximum flow algorithm is run. The order of the
best known algorithm (highest label preflow push) is
𝑂(𝑛
2
√𝑚) [19].

The above steps are repeated until the maximum flow for
the first time becomes equal to or greater than V+V0. Suppose
𝑆(V0) is the maximum number overall repetition needed to
reach this threshold. Finally we have the following result.

Theorem 1. The capacity expansion algorithm (CEA) runs in
𝑂(𝑆(V0)(𝑚 + 𝑛𝑚 + 𝑛

2
√𝑚)) time.

4. System Reliability

In order to increase the maximum flow value to the required
value, the above algorithm computes the optimal capacity
expansion while assuming deterministic transmission fac-
tors. But, in case of randomness the algorithm may be
used only for observation values of these factors. System
reliability is defined as the probability that themaximumflow
value satisfies a certain condition, such as appraising some
demands [3, 13]. Since the loss factors, transmission factors,
and, therefore, the functional capacities are stochastic, the
final value of maximum flow is also stochastic. In order to
establish an approach for evaluating the system reliability
of such systems, we assume the loss factors are continu-
ous uniform random variables and generate 𝑁 uniformly
distributed pseudo-random numbers in the interval [0, 1].
The method to generate these numbers is multiplication
congruent [20].Thenwe calculate the transmission factors for
any arc using loss factors. Note these factors are continuous
uniform random numbers in the interval [0, 1] as well. We
denote them by 𝛼󸀠

1
, 𝛼
󸀠

2
, . . . , 𝛼

󸀠

𝑁
. We consider several subsets of

these numbers and denote them by 𝐴𝑗, 𝑗 = 1, 2, . . . , 𝐿. Each
subset includes 𝑚members. At the beginning of each run of
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Start
Read the nominal capacities, 𝑢

𝑖𝑗
s, and subset of the transmission factors, 𝛼󸀠

𝑖𝑗
s, of the original network, 𝐺.

Calculate functional capacity, 𝑢𝑓
𝑖𝑗
s, of each arc.

Find the maximum flow, MAX.
While MAX < V + V0 Do

Define the residual graph 𝐺(𝑥) and 𝐺(cost) as follow
𝑉
𝐺(cos t) = 𝑉

𝐺(𝑥)
and 𝐴

𝐺(cos t) = {(𝑖, 𝑗) , (𝑗, 𝑖) | (𝑖, 𝑗) 𝑜𝑟 (𝑗, 𝑖) ∈ 𝐴
𝐺(𝑥)

}

and let a label for each arc which show the cost of arc expansion as following:
For each (𝑖, 𝑗) ∈ 𝐴

𝐺(cos t) Do
if 𝑢󸀠
𝑖𝑗
= 𝑢
𝑓

𝑖𝑗
− 𝑥
𝑖𝑗
> 0 and 𝑢

󸀠

𝑗𝑖
= 𝑥
𝑖𝑗
> 0 then

set 𝑐󸀠
𝑖𝑗
= 0 and 𝑐

󸀠

𝑗𝑖
= 0

else
if 𝑢󸀠
𝑖𝑗
= 0 and 𝑢

󸀠

𝑗𝑖
= 0

if 𝑤
𝑖𝑗
= 0 then
set 𝑐󸀠
𝑖𝑗
= 𝑐
𝑖𝑗
and 𝑐

󸀠

𝑗𝑖
= 0

else if 0 < 𝑤
𝑖𝑗
< 𝑀
𝑖𝑗
then

set 𝑐󸀠
𝑖𝑗
= 𝑐
𝑖𝑗
and 𝑐

󸀠

𝑗𝑖
= −𝑐
𝑖𝑗

else if 𝑤
𝑖𝑗
= 𝑀
𝑖𝑗
then

set 𝑐󸀠
𝑖𝑗
= ∞ and 𝑐

󸀠

𝑗𝑖
= −𝑐
𝑖𝑗

end if
end if
end if
Find the shortest path 𝑃 in 𝐺(cost) regarding 𝑐󸀠 value
if (sum of the costs on the shortest path < +∞)
∀ (𝑖, 𝑗) ∈ 𝑃 replace the new capacity in 𝐺 as follow:
if 𝑐󸀠
𝑖𝑗
= 0 and 𝑐

󸀠

𝑗𝑖
= 0 then

set 𝑤new
𝑖𝑗

= 0 and 𝑢
new
𝑖𝑗

= 𝑢
𝑖𝑗

else if 𝑐󸀠
𝑖𝑗
> 0 and 𝑐

󸀠

𝑗𝑖
≤ 0 or 𝑐󸀠

𝑖𝑗
≤ 0 and 𝑐

󸀠

𝑗𝑖
> 0 then

set 𝑤new
𝑖𝑗

= min
{
{

{
{

{

min {𝑀
𝑝𝑞

− 𝑤
𝑝𝑞

| (𝑝, 𝑞) ∈ 𝑃, 𝑐
󸀠

𝑝𝑞
> 0, 𝑐

󸀠

𝑞𝑝
≤ 0} ,

min {𝑢
𝑝𝑞

− 𝑥
𝑝𝑞

| (𝑝, 𝑞) ∈ 𝑃, 𝑐
󸀠

𝑝𝑞
= 0, 𝑐

󸀠

𝑞𝑝
= 0} ,

min {𝑢
𝑝𝑞

+ 𝑤
𝑝𝑞

| (𝑝, 𝑞) ∈ 𝑃, 𝑐
󸀠

𝑝𝑞
≤ 0, 𝑐

󸀠

𝑞𝑝
> 0}

}
}

}
}

}

and 𝑢
new
𝑖𝑗

= 𝑢
𝑖𝑗
+ 𝑤

new
𝑖𝑗

end if
end if
end For
Calculate functional capacity using new capacity
Find maximum flow, MAX.
end while
end.

Pseudocode 1

CEA, we take one of these subsets as the arcs’ transmission
factors and run the algorithm.At the end of CEA a set of paths
that transfer at least V+V0 unit of flow from 𝑠 to 𝑡 is generated.
It is clear that the generated paths and their number depend
on the given subset of transmission factors. Furthermore,
there may be subsets of transmission factors that generate
similar set of paths. We consider the subsets of transmission
factors that generate the same set of paths as a category and
assume that the number of categories is𝑅 (𝑅 ≤ 𝐿).We denote
the categories by Ω𝑟, 𝑟 = 1, 2, . . . , 𝑅. Also we assume that the
number of paths associated to the 𝑟th category is𝐾𝑟.

Nowwe consider V𝑟 as the final value ofmaximumflow in
each category and compute the density function of V𝑟. Since
0 ≤ 𝛼
󸀠

𝑖𝑗
≤ 1, 𝑢𝑓

𝑖𝑗
s are continuous uniform random variables on

interval [0, 𝑢
𝑖𝑗
]with density function of𝑓(𝑢𝑓

𝑖𝑗
) = (1/𝑢

𝑖𝑗
)𝐼
[𝑜,𝑢𝑖𝑗]

.
The number of paths generated at each run of CEA depends

on the applied subset of transmission factors. For each path
𝑃
𝑖
associated with the 𝑟th category, the flow value on 𝑃

𝑖
is

computed as

𝛿
𝑟

𝑖
= min {𝑢𝑓

𝑝𝑞
| (𝑝, 𝑞) ∈ 𝑃

𝑖
} ,

𝑖 = 1, 2, . . . , 𝐾
𝑟
, 𝑟 = 1, 2, . . . , 𝑅.

(6)

The total flow value V𝑟 is equal to the sum of all flow values
on the generated paths.That is, V𝑟 = ∑

𝐾
𝑟

𝑖=1
𝛿
𝑟

𝑖
. The distribution

functions of 𝛿𝑟
𝑖
may be computed according to the following

theorem. Then we determine density function of V𝑟.

Theorem 2 (see [21]). If 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
are independent ran-

dom variables with distribution function 𝐹
𝑡𝑖
(𝑡) and 𝑇

(1)
=

min{𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
}, then 𝐹

𝑇(1)
(𝑡) = 1 − ∏

𝑛

𝑖=1
[1 − 𝐹

𝑡𝑖
(𝑡)], [21].
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Now, we apply the following procedure to compute the
network reliability.

4.1. Computing the Network Reliability. After running CEA
𝐿 times with input of 𝐴𝑗, 𝑗 = 1, 2, . . . , 𝐿, and determining
the categories Ω𝑟, 𝑟 = 1, 2, . . . , 𝑅, the following procedure is
performed to compute the network reliability.

Step 1. From each category, Ω𝑟, 𝑟 = 1, 2, . . . , 𝑅, select one
subset of transmission factors, 𝐴𝑟 say.

Step 2. For each 𝑟 = 1, 2, . . . , 𝑅 and 𝑖 = 1, 2, . . . , 𝐾
𝑟, compute

𝛿
𝑟

𝑖
= min {𝑢𝑓

𝑝𝑞
| (𝑝, 𝑞) ∈ 𝑃

𝑖
} ,

𝑖 = 1, 2, . . . , 𝐾
𝑟
, 𝑟 = 1, 2, . . . , 𝑅.

(7)

Step 3. Find the probability function of 𝛿
𝑟

𝑖
, where 𝑖 =

1, 2, 3, . . . , 𝐾
𝑟 and 𝑟 = 1, 2, . . . , 𝑅.

Step 4. Calculate V𝑟 = ∑
𝐾
𝑟

𝑖=1
𝛿
𝑟

𝑖
and its probability functions

[21].

Step 5. Compute the conditional probability; that is, 𝑝
𝑟
(V𝑟 >

V | 𝛼󸀠
𝑖
, 𝑖 = 1, 2, . . . , 𝑚), 𝑟 = 1, 2, . . . , 𝑅.

Now the system’s reliability is computed using the follow-
ing equation:

𝑝 (V > V) =
∑
𝑅

𝑟=1
𝑝
𝑟
(V𝑟 > V | 𝛼󸀠

𝑖
, 𝑖 = 1, 2, . . . , 𝑚)

𝑅

.
(8)

5. Numerical Example

In order to illustrate how the algorithm works, we apply it
to the network flow shown in Figure 1. In this example, we
assume V = 3.89 and V0 = 3.28. We generate the following
sequence of pseudo-random numbers, transmission factor,
and its subsequences:

(𝛼
1
, 𝛼
2
, 𝛼
3
, 𝛼
4
, 𝛼
5
, 𝛼
6
)

= (0.11, 0.1, 0.34, 0.01, 0.2, 0.8) ,

(𝛼
󸀠

1
, 𝛼
󸀠

2
, 𝛼
󸀠

3
, 𝛼
󸀠

4
, 𝛼
󸀠

5
, 𝛼
󸀠

6
)

= (0.89, 0.9, 0.66, 0.99 ≅ 1, 0.8, 0.2) ,

𝐴
1
= (0.89, 0.9, 0.66, 0.99 ≅ 1, 0.8) ,

𝐴
2
= (0.89, 0.2, 0.9, 0.8, 0.99 ≅ 1) ,

𝐴
3
= (0.89, 0.9, 0.2, 0.99 ≅ 1, 0.8) ,

𝐴
4
= (0.89, 0.66, 0.9, 0.8, 0.99 ≅ 1) ,

𝐴
5
= (0.2, 0.8, 0.99 ≅ 1, 0.66, 0.89) .

(9)

Note that 𝐴
𝑗, 𝑗 = 1, 2, . . . , 5, has been arranged as

(𝛼
󸀠

𝑠1
, 𝛼
󸀠

1𝑡
, 𝛼
󸀠

12
, 𝛼
󸀠

𝑠2
, 𝛼
󸀠

2𝑡
).

We use 𝐴
𝑗, 𝑗 = 1, 2, . . . , 5, as transmission factors and

run CEA to find the related paths from node 𝑠 to node 𝑡.
For example, we consider 𝐴1 and run algorithm CEA. For
more explanation, we describe one stage of implementing this
algorithm using 𝐴1 in Figure 2.

Note that we show the shortest (cheapest) path in
Figure 2(b) by solid line and other arcs by dotted line. The
result of running CEA using 𝐴1 is shown in Figure 3.

Also note that the dotted lines in networks
Figures 3(a) and 3(b) from note 1 to node 2 in the last
stage indicate that no increase has taken place on this arc
and that no flow passes through this arc. We see that 𝐴3
generates the same set of paths with 𝐴

1; that is, (𝑠, 1, 𝑡) and
(𝑠, 2, 𝑡). Therefore we put 𝐴1 and 𝐴

3 in category 1, Ω1. Also,
𝐴
2 and 𝐴

4 generate the same paths: (𝑠, 1, 𝑡), (𝑠, 1, 2, 𝑡), and
(𝑠, 2, 𝑡). Hence we put𝐴2 and𝐴4 in category 2,Ω2. The result
of running CAE using 𝐴2 is shown in Figure 4.

We discard the factor 𝐴
5, because this subset of the

transmission factors reduces the functional capacity of the
arcs originating from source to the extent that these arcs
are unable to carry at least V + V0 unit of flow. For more
explanation, the result of running CEA using 𝐴5 is shown in
Figure 5.

Now,we apply the following steps to compute the network
reliability.

Step 1. We choose the subset 𝐴1 fromΩ
1.

Step 2. Let 𝛿1
1
= min{𝑢𝑓

𝑠1
, 𝑢
𝑓

1𝑡
} and 𝛿

1

2
= min{𝑢𝑓

𝑠2
, 𝑢
𝑓

2𝑡
} where

𝑢
𝑓

𝑖𝑗
are random variables that have uniform distribution on

[0, 𝑢
𝑖𝑗
]; that is, 𝑢𝑓

𝑠1
∼ 𝑈[0, 3], 𝑢𝑓

1𝑡
∼ 𝑈[0, 5], 𝑢𝑓

𝑠2
∼ 𝑈[0, 6], and

𝑢
𝑓

2𝑡
∼ 𝑈[0, 6].

Step 3. Density functions of 𝛿
1

1
and 𝛿

1

2

are computed as
𝑓
𝛿
1

1

(𝛿
1

1
) = (8/15) − (2/5)𝛿

1

1
and 𝑓

𝛿
1

2

(𝛿
1

2
) = (1/3) −

(1/18)𝛿
1

2
. Also 𝑓

𝛿
1

1
,𝛿
1

2

(𝛿
1

1
, 𝛿
1

2
) = 𝑓

𝛿
1

1

(𝛿
1

1
). 𝑓
𝛿
1

2

(𝛿
1

2
) = ((8/15) −

(2/5)𝛿
1

1
)𝐼
(0,3)

(𝛿
1

1
)((1/3) − (1/18)𝛿

1

2
)𝐼
(0,6)

(𝛿
1

2
).

Step 4. Let V1 = 𝛿
1

1
+ 𝛿
1

2
and

𝑓V1 (V
1
) =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

8

45

V1 −
1

27

(V1)
2

+

1

180

(V1)
3

, 0 ≤ V1 < 3,

54

135

−

1

18

V1, 3 ≤ V1 < 6,

162

135

−

297

135 × 6

V1 +
30

135 × 6

(V1)
2

−

1

135 × 6

(V1)
3

, 6 ≤ V1 < 9.

(10)

Step 5. Now we can calculate the following conditional
probability:

𝑃
1
(V1 > 3.89 | 𝛼

󸀠

1
= 0.89, 𝛼

󸀠

2
= 0.9, 𝛼

󸀠

3
= 0.66,

𝛼
󸀠

4
= 0.99 ≅ 1, 𝛼

󸀠

5
= 0.8) = 0.29.

(11)
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Figure 1: An example of network flow; arc labels present as (𝑢
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,𝑀
𝑖𝑗
, 𝑐
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).
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(a) Functional capacity—maximum flow: 3.89 unit
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t

(d) Functional capacity—maximum flow: 5.57 unit

Figure 2: The network after one stage of running CEA using 𝐴1.

Also we implement the above steps for 𝐴2 from Ω
2 and get

the following probability:

𝑃
2
(V2 > 3.89 | 𝛼

󸀠

1
= 0.89, 𝛼

󸀠

2
= 0.2, 𝛼

󸀠

3
= 0.9,

𝛼
󸀠

4
= 0.8, 𝛼

󸀠

5
= 0.99 ≅ 1) = 0.37.

(12)

Finally, we can calculate the system reliability:

𝑝 (V > 3.89) = 0.33. (13)

Although the reliability network in this example was equal
to 0.33, yet this is an effective algorithm which presents a
new method for calculating the reliability in networks with
continuous components. Although previous algorithms [11–
14] also have presented methods for calculating the reliability
in the network, but in all of these methods, components,
including arcs’ capacity, have been assumed to be discrete,
while this assumption is not true for all networks. By

presenting this algorithm, we have created an innovation in
regardwith reliability of networkswith continuous capacities.
Finally, we would give another example and calculate the
reliability of a network in order to elucidate efficiency of these
algorithms.

5.1. Another Example. In order to elucidate efficiency of CEA,
we consider the network flow shown in Figure 6. Also we
assume V = 7.25 and V0 = 5.05. We generate the following
pseudo-random numbers and transmission factors:

(𝛼
1
, 𝛼
2
, 𝛼
3
, 𝛼
4
, 𝛼
5
, 𝛼
6
, 𝛼
7
, 𝛼
8
, 𝛼
9
, 𝛼
10
)

= (0.15, 0.32, 0.1, 0.3, 0.11, 0.34, 0.8, 0.7, 0.6, 0.01) ,

(𝛼
󸀠

1
, 𝛼
󸀠

2
, 𝛼
󸀠

3
, 𝛼
󸀠

4
, 𝛼
󸀠

5
, 𝛼
󸀠

6
, 𝛼
󸀠

7
, 𝛼
󸀠

8
, 𝛼
󸀠

9
, 𝛼
󸀠

10
)

= (0.85, 0.68, 0.9, 0.7, 0.89, 0.66, 0.2, 0.3, 0.4, 0.99) .

(14)
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Figure 3: The result of running CEA using 𝐴1.
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Figure 4: The result of running CEA using 𝐴2.

0.99

1

S

2

3 +
3
=
6

5
+
0
=
5

5
+
0
=
5

t

1 +
2
=
3

(a) Extended capacities

0.99

3.6

4

4.45

1

S

2

0.6

t

(b) Functional capacities

Figure 5: The result of running CEA using 𝐴5.

3

42

1

S

(5, 4
, 3$)

(6, 3, 2$)
(5, 4, 1$)

(7, 2, 2$)

(2, 7, 7$) (4, 5, 7$)

(6, 3, 4$)

(8,
1, 3

$)

t

Figure 6: An example of the network flow; arc labels present as (𝑢
𝑖𝑗
,𝑀
𝑖𝑗
, 𝑐
𝑖𝑗
).



8 Journal of Applied Mathematics

Table 1: Final result of example.

𝑟 Category The subset of 𝐴𝑗 related to Ω𝑟 The corresponding set of paths withΩ
𝑟 Conditional probability

1 Ω
1 (0.85, 0.9, 0.89, 0.99, 0.3, 0.7, 0.2, 0.68) (s, 1, 3, t) 0.43

(0.66, 0.68, 0.7, 0.85, 0.3, 0.89, 0.2, 0.9) (s, 2, 4, t)

2 Ω
2 (0.99, 0.85, 0.89, 0.4, 0.66, 0.7, 0.2, 0.68)

(0.85, 0.89, 0.9, 0.4, 0.3, 0.7, 0.2, 0.68)

(s, 1, 3, t)
0.52(s, 2, 4, t)

(s, 1, 2, 4, t)

3 Ω
3 (0.89, 0.9, 0.4, 0.85, 0.2, 0.68, 0.66, 0.99)

(0.89, 0.9, 0.4, 0.7, 0.3, 0.68, 0.66, 0.99)

(s, 1, 3, t)
0.57(s, 2, 4, t)

(s, 1, 3, 4, t)

4 Ω
4 (0.99, 0.9, 0.66, 0.4, 0.3, 0.7, 0.68, 0.89)

(s, 1, 3, t)

0.64(s, 2, 4, t)
(s, 1, 2, 4, t)
(s, 1, 3, 4, t)

We consider several subsets 𝐴𝑗 of these numbers that each
subset includes 𝑚members. Note that 𝐴𝑗 has been arranged
as 𝐴𝑗 = (𝛼

󸀠

𝑠1
, 𝛼
󸀠

13
, 𝛼
󸀠

3𝑡
, 𝛼
󸀠

𝑠2
, 𝛼
󸀠

12
, 𝛼
󸀠

24
, 𝛼
󸀠

34
, 𝛼
󸀠

4𝑡
). Also, we imple-

ment CEA using 𝐴𝑗. In order to classify the result, we place
the result of implementing CEA and reliability algorithm in
Table 1.

We discard the subset (0.2, 0.9, 0.7, 0.3, 0.66, 0.7, 0.68, 0.4)
or (0.85, 0.9, 0.2, 0.7, 0.8, 0.9, 0.4, 0.3) because these subsets of
transmission factors reduce the functional capacity of the arcs
which originate from the source or reach the sink, to the
extent that these arcs are unable to carry at least V+ V0 unit of
flow.

Finally we can calculate the system reliability as follows:

𝑝 (V > 7.25) = 0.54. (15)

6. Conclusion

In this study, first, we proposed an algorithm to change the
arcs capacities so that the maximum flow value exceeds a
predefined value and the total cost of change is minimum.
In the algorithm (CEA), arc capacities were expanded on the
cheapest paths from the source node to the sink node. Then,
system reliability was evaluated when the arcs’ functional
capacities were stochastic with continuous probability func-
tion. There are several different methods in the literature for
evaluating of network reliability, when the random compo-
nents are mostly discrete. In contrast, we studied that system
which has continuous random components. For each arc, a
functional capacity was defined that had continuous uniform
distribution on [0, 𝑢

𝑖𝑗
] and then, the network reliability is

calculated.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors are pleased to appreciate the respectful referee(s)
for their valuable comments and guidance that made this
paper more accurate and credible.

References

[1] L. Ford and D. Fulkerson, “Maximal flow through a network,”
Canadian Journal of Mathematics, vol. 8, no. 3, pp. 399–404,
1956.

[2] A. V. Karzanov, “Determining themaximal flow in a network by
the method of pre-flows,” Soviet Mathematics Doklady, vol. 15,
pp. 434–437, 1974.

[3] R. K. Ahuja and J. Orlin, “A capacity scaling algorithm for the
constrained maximum flow problem,” Networks, vol. 25, no. 2,
pp. 89–98, 1995.

[4] N. Alon, “Generating pseudo-random permutations and max-
imum flow algorithms,” Information Processing Letters, vol. 35,
no. 4, pp. 201–204, 1990.

[5] R. K. Ahuja and J. B. Orlin, “A fast and simple algorithm for the
maximum flow problem,”Operations Research, vol. 37, no. 5, pp.
748–759, 1989.

[6] A. Elalouf, R. Adany, and A. Ceder, “Flow expansion on
transportation networks with budget constraints,” Social and
Behavioral Sciences, vol. 54, pp. 1168–1175, 2012.

[7] H. Eiselt and H. von Frajer, “On the budget-restricted max flow
problem,” OR Spektrum, vol. 3, no. 4, pp. 225–231, 1982.

[8] R. K. Ahuja, J. L. Batra, S. K. Gupta, and A. P. Punnen, “Optimal
expansion of capacitated transshipment networks,” European
Journal of Operational Research, vol. 89, no. 1-2, pp. 176–184,
1996.

[9] W. C. Yeh, “A simple approach to search for all d-MCs of a
limited-flow network,” Reliability Engineering & System Safety,
vol. 71, no. 1, pp. 15–19, 2001.

[10] J. Xiao, G.-Q. Zu, X.-X. Gong, and C.-S. Wang, “Model and
topological characteristics of power distribution system secu-
rity region,” Journal of Applied Mathematics, vol. 2014, Article
ID 327078, 13 pages, 2014.

[11] H. Salehi Fathabadi and M. Forghani-elahabadi, “A note on
“A simple approach to search for all d-MCs of a limited-flow



Journal of Applied Mathematics 9

network”,” Reliability Engineering and System Safety, vol. 94, no.
11, pp. 1878–1880, 2009.

[12] W. C. Yeh, “A new approach to evaluate reliability of multistate
networks under the cost constraint,” Omega, vol. 33, no. 3, pp.
203–209, 2005.

[13] H. Salehi Fathabadi and M. Khodaei, “Reliability evaluation
of network flows with stochastic capacity and cost constraint,”
International Journal of Mathematics in Operational Research,
vol. 4, no. 4, pp. 439–452, 2012.

[14] Y. K. Lin and C. T. Yeh, “Maximal network reliability with
optimal transmission line assignment for stochastic electric
power networks via genetic algorithms,”Applied SoftComputing
Journal, vol. 11, no. 2, pp. 2714–2724, 2011.

[15] Y. K. Lin, “Using minimal cuts to study the system capacity for
a stochastic-flow network in two-commodity case,” Computers
& Operations Research, vol. 30, no. 11, pp. 1595–1607, 2003.

[16] J. S. Lin, “Reliability evaluation of capacitated-flow networks
with budget constraints,” IIE Transactions, vol. 30, no. 12, pp.
1175–1180, 1998.

[17] T. Aven, “Some considerations on reliability theory and its
applications,” Reliability Engineering and System Safety, vol. 21,
no. 3, pp. 215–223, 1988.

[18] M. O. Ball, “Computational complexity of network reliability
analysis: an overview,” IEEE Transaction on Reliability, vol. 35,
no. 3, pp. 230–239, 1986.

[19] R. K. Ahuja and T. L. Magnanti, Network Flows, Theory,
Algorithms, and Applications, Prentice Hall, Englewood Cliffs,
NJ, USA, 1993.

[20] J. Banks and J. Carson, Discrete-Event System Simulation,
Prentice Hall, New York, NY, USA, 1984.

[21] A. M. Mood, F. M. Graybill, and D. C. Boes, Introduction to
Theory of Statistics, McGraw Hill, 1974.


