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We introduce two proximal iterative algorithms with errors which converge strongly to the common solution of certain variational
inequality problems for a finite family of pseudocontractive mappings and a finite family of monotone mappings. The strong
convergence theorems are obtained under some mild conditions. Our theorems extend and unify some of the results that have
been proposed for this class of nonlinear mappings.

1. Introduction

In many problems, for example, convex optimization, lin-
ear programming, monotone inclusions, elliptic differential
equations, and variational inequalities, it is quite often to seek
a proximal point of a given nonlinear problem.The proximal
point algorithm is recognized as a powerful and successful
algorithm in finding a common point of the fixed points of
pseudocontractive mappings and the solutions of monotone
mappings. Let 𝐶 be a closed convex subset of a real Hilbert
space 𝐻 with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖. We recall
that a mapping 𝐴 : 𝐶 → 𝐻 is called monotone if and only if

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶. (1)

A mapping 𝐴 : 𝐶 → 𝐻 is called 𝛼-inverse strongly
monotone if there exists a positive real number 𝛼 > 0 such
that

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶. (2)

Obviously, the class of monotone mappings includes the
class of the 𝛼-inverse strongly monotone mappings. The
class of monotone mappings is one of the most important
classes of mappings among nonlinearmappings.The classical

variational inequality problem is formulated as finding a
point 𝑢 ∈ 𝐶 such that ⟨V − 𝑢, 𝐴𝑢⟩ ≥ 0, for all V ∈ 𝐶. The
set of solutions of variational inequality problems is denoted
by VI(𝐶, 𝐴).

A mapping 𝑇 : 𝐶 → 𝐻 is called pseudocontractive if, for
all 𝑥, 𝑦 ∈ 𝐶, we have

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

. (3)

A mapping 𝑇 : 𝐶 → 𝐻 is called 𝜅-strict pseudocontrac-
tive if there exists a constant 0 ≤ 𝜅 ≤ 1 such that

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 𝜅
󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦

󵄩󵄩󵄩󵄩

2

,

∀𝑥, 𝑦 ∈ 𝐶.

(4)

A mapping 𝑇 : 𝐶 → 𝐶 is called nonexpansive if
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (5)

Clearly, the class of pseudocontractivemappings includes
the class of strict pseudocontractivemappings and the class of
nonexpansive mappings. We denote by 𝐹(𝑇) the set of fixed
points of 𝑇; that is, 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}.
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A mapping 𝑓 : 𝐶 → 𝐶 is called contractive with a
contraction coefficient if there exists a constant 𝜌 ∈ (0, 1)

such that
󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝜌
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (6)

Recently viscosity approximation methods for finding
fixed points of pseudocontractive mappings have received
vast investigations because of their extensive applications in
a variety of applied areas of partial differential equations,
image recovery, and signal processing. In Hilbert spaces,
many authors have studied the fixed-point problems of the
nonexpansive mappings and monotone mappings by the
viscosity approximation methods and obtained a series of
good results; see [1–18] and the reference therein.

For finding an element of the set of fixed points of the
nonexpansivemappings, Halpern [1] was the first to study the
convergence of the scheme in 1967:

𝑥
𝑛+1

= 𝛼
𝑛+1

𝑢 + (1 − 𝛼
𝑛+1

) 𝑇 (𝑥
𝑛
) . (7)

In 2000, Moudafi [2] introduced the viscosity approxi-
mation methods and proved the strong convergence of the
following iterative algorithm under some suitable conditions:

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑇 (𝑥

𝑛
) . (8)

Takahashi et al. [19, 20] introduced the following scheme
and studied the weak and strong convergence theorems of
the elements of 𝐹(𝑇) ∩VI(𝐶, 𝐴), respectively, under different
conditions:

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴𝑥
𝑛
) , (9)

where 𝑇 is a nonexpansive mapping and 𝐴 is an 𝛼-inverse
strongmonotone operator. Recently, Zegeye and Shahzad [21]
introduced the mappings as follows:

𝑇
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝑇𝑧⟩

−
1

𝑟
⟨𝑦 − 𝑧, (1 + 𝑟) 𝑧 − 𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐶} .

𝐹
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴𝑧⟩

+
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(10)

Very recently, Tang [22] introduced the following se-
quence and obtained the strong convergence theorems:

𝑦
𝑛
= 𝜆
𝑛
𝑥
𝑛
+ (1 − 𝜆

𝑛
)

𝑚

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛

𝑚

∑

𝑖=1

𝜎
𝑖
𝑇
𝑖𝑟
𝑛

𝑦
𝑛
.

(11)

For other related results, see [11–13, 23–25]. On the other
side, there are perturbations always occurring in the iterative
processes because the manipulations are inaccurate. There

is no doubt that researching the convergent problems of
iterative methods with perturbation members is a significant
job. Starting from any initial guess, 𝑧

0
∈ 𝐻, the proximal

point algorithm generates a sequence {𝑧
𝑘
} according to the

inclusion:

𝑧
𝑘
∈ 𝑧
𝑘+1

+ 𝑐
𝑘
𝐴𝑧
𝑘+1

, (12)

where 𝐴 is a maximal monotone operator and 𝑐
𝑘
> 0 is

a parameter. For solving the original problem of finding a
solution to the inclusion 0 ∈ 𝐴𝑧, Rockafellar [23] introduced
the following algorithm:

𝑧
𝑘
+ 𝑒
𝑘
∈ 𝑧
𝑘+1

+ 𝑐
𝑘
𝐴𝑧
𝑘+1

, (13)

where {𝑒
𝑘
} is a sequence of errors. Rockafellar [23] obtained

the weak convergence of the algorithm. Very recently Yao
and Shahzad [24] proved that sequences generated from the
method of resolvent are given by

𝑥
𝑚
= 𝑃
𝐶
(𝛼
𝑚
𝑢
𝑚
+ (1 − 𝛼

𝑚
) 𝑇𝑥
𝑚
) , 𝑚 ≥ 0, (14)

where {𝛼
𝑚
} is a sequence in [0, 1], the sequence {𝑢

𝑚
} ⊂ 𝐻 is

a small perturbation, and 𝑇 is a nonexpansive mapping.
The following is our concern now: Is it possible to

construct a new sequence with general errors that converges
strongly to a common element of fixed points of pseudocon-
tractivemappings and the solution set ofmonotonemappings
and converges strongly to the unique solution of certain
variational inequality?

In this paper, motivated and inspired by the above
results, we introduce two iterations with perturbations which
converge strongly to a common element of the set of fixed
points of a finite family of pseudocontractive mappings more
general than nonexpansive mappings and the solution set of
a finite family of monotone mappings more general than 𝛼-
inverse strongly monotone mappings or maximal monotone
mappings. Our theorems presented in this paper improve
and extend the corresponding results of Yao and Shahzad
[24], Zegeye and Shahzad [21], and Tang [22] and some other
results in this direction.

2. Preliminaries

In the sequel, we will use the following lemmas.

Lemma 1 (see [6]). Let {𝑎
𝑛
} be a sequence of nonnegative real

numbers satisfying the following relation:

𝑎
𝑛+1

≤ (1 − 𝜃
𝑛
) 𝑎
𝑛
+ 𝜎
𝑛
, 𝑛 ≥ 0, (15)

where {𝜃
𝑛
} is a sequence in (0,1) and {𝜎

𝑛
} is a real sequence such

that

(i) ∑∞
𝑛=0

𝜃
𝑛
= ∞;

(ii) lim sup
𝑛→∞

(𝜎
𝑛
/𝜃
𝑛
) ≤ 0 or ∑∞

𝑛=0
𝜎
𝑛
< ∞.

Then lim
𝑛→∞

𝑎
𝑛
= 0.

Let 𝐶 be a nonempty closed and convex subset of a real
Hilbert space 𝐻; a mapping 𝑃

𝐶
: 𝐻 → 𝐶 is called the metric
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projection if, for all 𝑥 ∈ 𝐻, there exists a unique point in 𝐶,
denoted by 𝑃

𝐶
𝑥 such that
󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶𝑥

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝐶. (16)

It is well known that 𝑃
𝐶
is a nonexpansive mapping.

Lemma 2 (see [25]). Let 𝐶 be a nonempty closed and convex
subset of a real smooth Hilbert space 𝐻. Let 𝑥 ∈ 𝐻; then 𝑃

𝐶
𝑥

have the property as follows:

⟨𝑥 − 𝑃
𝐶
𝑥, 𝑦 − 𝑃

𝐶
𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶,

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

≥
󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶𝑥

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦 − 𝑃𝐶𝑥

󵄩󵄩󵄩󵄩

2

, ∀𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶.

(17)

Lemma 3 (see [21]). Let 𝐶 be closed convex subset of Hilbert
space𝐻. Let𝐴 : 𝐶 → 𝐻 be a continuous monotone mapping,
let 𝑇 : 𝐶 → 𝐶 be a continuous pseudocontractive mapping,
and define the mappings 𝑇

𝑟
and 𝐹

𝑟
as follows: for 𝑥 ∈ 𝐻, 𝑟 ∈

(0,∞),

𝑇
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝑇𝑧⟩

−
1

𝑟
⟨𝑦 − 𝑧, (1 + 𝑟) 𝑧 − 𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐶} ,

𝐹
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴𝑧⟩

+
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(18)

Then the following hold:

(i) 𝑇
𝑟
and 𝐹

𝑟
are single valued;

(ii) 𝑇
𝑟
and 𝐹

𝑟
are firmly nonexpansive mappings; that is,

‖𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦‖
2
≤ ⟨𝑇
𝑟
𝑥 − 𝑇

𝑟
𝑦, 𝑥 − 𝑦⟩, ‖𝐹

𝑟
𝑥 − 𝐹
𝑟
𝑦‖
2
≤

⟨𝐹
𝑟
𝑥 − 𝐹
𝑟
𝑦, 𝑥 − 𝑦⟩;

(iii) 𝐹(𝑇
𝑟
) = 𝐹(𝑇), 𝐹(𝐹

𝑟
) = 𝑉𝐼(𝐶, 𝐴);

(iv) 𝐹(𝑇) and 𝑉𝐼(𝐶, 𝐴) are closed convex.

Lemma 4 (see [11]). Let {𝑥
𝑛
} and {𝑧

𝑛
} be bounded sequences

in a Banach space and let {𝛽
𝑛
} be a sequence in [0, 1] which

satisfies the following condition:

0 < lim inf
𝑛→∞

𝛽
𝑛
< lim sup
𝑛→∞

𝛽
𝑛
< 1. (19)

Suppose

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑧
𝑛
, 𝑛 ≥ 0,

lim
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩) ≤ 0.

(20)

Then lim
𝑛→∞

‖𝑧
𝑛
− 𝑥
𝑛
‖ = 0.

Lemma 5 (see [22]). Let 𝐶 be a nonempty closed convex and
bounded subset of a Hilbert space𝐻, and let {Γ

𝑖
: 𝐶 → 𝐶, 𝑖 =

1, 2, . . . 𝑚} be a finite family of nonexpansive mappings such
that ∩𝑚

𝑖
𝐹(Γ
𝑖
) ̸= 0. Suppose that 𝛼 = inf{𝛼

𝑖
} > 0 and Σ𝑚

𝑖=1
𝛼
𝑖
= 1.

Then there exists nonexpansive mapping Γ : 𝐶 → 𝐶 such that
𝐹(Γ) = ∩

𝑚

𝑖=1
𝐹(Γ
𝑖
).

3. Main Results

Let 𝐶 be closed convex subset of Hilbert space 𝐻. Let {𝐴
𝑖
:

𝐶 → 𝐻, 𝑖 = 1, 2, . . . , 𝑁} be a finite family of continuous
monotone mappings, and let {𝑇

𝑖
: 𝐶 → 𝐶, 𝑖 = 1, 2, . . . , 𝑁}

be a finite family of continuous pseudocontractive mappings.
For the rest of this paper, 𝑇

𝑖𝑟
𝑛

: 𝐸 → 𝐶 and 𝐹
𝑖𝑟
𝑛

: 𝐸 → 𝐶 are
mappings defined as follows: for 𝑥 ∈ 𝐸, 𝑟

𝑛
∈ (0,∞),

𝑇
𝑖𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝑇
𝑖
𝑧⟩

−
1

𝑟
𝑛

⟨𝑦 − 𝑧, (1 + 𝑟
𝑛
) 𝑧 − 𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐶} ,

(21)

𝐹
𝑖𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴
𝑖
𝑧⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(22)

By using Lemmas 2.3–2.6 in Zegeye and Shahzad [21], we
have that the mappings 𝑇

𝑖𝑟
𝑛

and 𝐹
𝑖𝑟
𝑛

are well defined and they
are nonexpansive and 𝐹(𝑇

𝑖𝑟
𝑛

) = 𝐹(𝑇
𝑖
), 𝐹(𝐹
𝑖𝑟
𝑛

) = VI(𝐶, 𝐴
𝑖
) are

closed convex. Denote 𝐹
1
= ∩
𝑁

𝑖=1
𝐹(𝑇
𝑖𝑟
𝑛

), 𝐹
2
= ∩
𝑁

𝑖=1
𝐹(𝐹
𝑖𝑟
𝑛

).

Theorem 6. Let 𝐶 be a nonempty closed convex subset of
uniformly smooth strictly convex real Hilbert space 𝐻. Let
{𝑇
𝑖

: 𝐶 → 𝐶, 𝑖 = 1, 2, . . . , 𝑁} be a finite family of
continuous pseudocontractive mappings, let {𝐴

𝑖
: 𝐶 →

𝐻, 𝑖 = 1, 2, . . . , 𝑁} be a finite family of continuous monotone
mappings such that 𝐹 = 𝐹

1
∩ 𝐹
2

̸= 0, and let 𝑓 : 𝐶 → 𝐶

be contraction with a contraction coefficient 𝜌 ∈ (0, 1). 𝑇
𝑖𝑟
𝑛

and 𝐹
𝑖𝑟
𝑛

are defined as (21) and (22), respectively. Let {𝑥
𝑛
} be a

sequence generated by 𝑥
0
∈ 𝐶:

𝑦
𝑛
= 𝑃
𝐶
(𝜀
𝑛
𝑢
𝑛
+ (1 − 𝜀

𝑛
)

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛

𝑁

∑

𝑖=1

𝜎
𝑖
𝑇
𝑖𝑟
𝑛

𝑦
𝑛
,

(23)

where {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝜀
𝑛
} are sequences of nonnegative real

numbers in [0, 1] and 𝜇
𝑖
≥ 0, 𝜎

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑁, and the

sequence {𝑢
𝑛
} ⊂ 𝐻 is a small perturbation such that

(i) 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
= 1, 𝑛 ≥ 0, ∑𝑁

𝑖=1
𝜇
𝑖
= 1, and ∑𝑁

𝑖=1
𝜎
𝑖
= 1;

(ii) lim
𝑛→∞

𝛼
𝑛
= 0, ∑∞

𝑛=1
𝛼
𝑛
= ∞, and lim

𝑛→∞
𝜀
𝑛
= 0;

(iii) 0 < lim inf
𝑛→∞

𝛽
𝑛
< lim sup

𝑛→∞
𝛽
𝑛
< 1;

(iv) lim sup
𝑛→∞

𝑟
𝑛

> 0, ∑
∞

𝑛=1
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞,

lim
𝑛→∞

‖𝑢
𝑛
‖ = 0, and ∑∞

𝑛=0
𝜀
𝑛
‖𝑢
𝑛
‖ < ∞.

Then the sequence {𝑥
𝑛
} converges strongly to an element

𝑤 = Π
𝐹
𝑓(𝑤) and also 𝑤 is the unique solution of the varia-

tional inequality

⟨(𝑓 − 𝐼)𝑤, 𝑦 − 𝑤⟩ ≤ 0, ∀𝑦 ∈ 𝐹. (24)
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Proof. By using Lemmas 3 and 5, the mappings ∑𝑁
𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

and ∑
𝑁

𝑖=1
𝜎
𝑖
𝑇
𝑖𝑟
𝑛

are well defined. First we prove that {𝑥
𝑛
} is

bounded. Take 𝑝 ∈ 𝐹, because𝐹
𝑖𝑟
𝑛

,𝑃
𝐶
are nonexpansive; then

we have that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃
𝐶
(𝜀
𝑛
𝑢
𝑛
+ (1 − 𝜀

𝑛
)

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
[
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩] + (1 − 𝜀𝑛)

𝑁

∑

𝑖=1

𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
− 𝐹
𝑖𝑟
𝑛

𝑝
󵄩󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
[
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩] + (1 − 𝜀𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(25)

For 𝑛 ≥ 0, because 𝑇
𝑖𝑟
𝑛

and 𝐹
𝑖𝑟
𝑛

are nonexpansive and 𝑓 is
contractive, we have from (25) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛

𝑁

∑

𝑖=1

𝜎
𝑖
𝑇
𝑖𝑟
𝑛

𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑝)
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛾𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (𝜌𝛼
𝑛
+ 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛾
𝑛
[𝜀
𝑛
(
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩) + (1 − 𝜀𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩]

≤ (1 − 𝛼
𝑛
+ 𝜌𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩

+ 𝜀
𝑛
(
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛾𝑛𝜀𝑛
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩)

≤ (1 − (1 − 𝜌) 𝛼
𝑛
− 𝛾
𝑛
𝜀
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛾𝑛𝜀𝑛
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝜌) 𝛼
𝑛
(

1

1 − 𝜌

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩) + 𝜀

𝑛

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 ,

1

1 − 𝜌

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩}

+ 𝜀
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 .

(26)

This implies that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑝

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 ,

1

1 − 𝜌

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩}

+ Σ
𝑛−1

𝑖=0
𝜀
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 .

(27)

Notice condition (iv); therefore, {𝑥
𝑛
} is bounded. Conse-

quently, we get that {𝐹
𝑖𝑟
𝑛

𝑥
𝑛
}, {𝑇
𝑖𝑟
𝑛

𝑦
𝑛
} and {𝑦

𝑛
}, {𝑓(𝑥

𝑛
)} are

bounded.
Next, we show that ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ → 0. We have from (23)

that
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦𝑛

󵄩󵄩󵄩󵄩 ≤ 𝜀
𝑛+1

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩

+ (1 − 𝜀
𝑛+1

) Σ
𝑁

𝑖=1
𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑖𝑟
𝑛+1

𝑥
𝑛+1

− 𝐹
𝑖𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜀𝑛+1 − 𝜀𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− Σ
𝑁

𝑖=1
𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(28)

Let V
𝑖,𝑛

= 𝐹
𝑖𝑟
𝑛

𝑥
𝑛
, V
𝑖,𝑛+1

= 𝐹
𝑖𝑟
𝑛+1

𝑥
𝑛+1

; by the definition of
mapping 𝐹

𝑖𝑟
𝑛

, we have that

⟨𝑦 − V
𝑖,𝑛
, 𝐴
𝑖
V
𝑖,𝑛
⟩ +

1

𝑟
𝑛

⟨𝑦 − V
𝑖,𝑛
, V
𝑖,𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(29)

⟨𝑦 − V
𝑖,𝑛+1

, 𝐴
𝑖
V
𝑖,𝑛+1

⟩ +
1

𝑟
𝑛+1

⟨𝑦 − V
𝑖,𝑛+1

, V
𝑖,𝑛+1

− 𝑥
𝑛+1

⟩ ≥ 0,

∀𝑦 ∈ 𝐶.

(30)

Putting 𝑦 := V
𝑖,𝑛+1

in (29) and letting 𝑦 := V
𝑖,𝑛

in (30), we
have that

⟨V
𝑖,𝑛+1

− V
𝑖,𝑛
, 𝐴
𝑖
V
𝑖,𝑛
⟩ +

1

𝑟
𝑛

⟨V
𝑖,𝑛+1

− V
𝑖,𝑛
, V
𝑖,𝑛
− 𝑥
𝑛
⟩ ≥ 0,

(31)

⟨V
𝑖,𝑛
− V
𝑖,𝑛+1

, 𝐴
𝑖
V
𝑖,𝑛+1

⟩ +
1

𝑟
𝑛+1

⟨V
𝑖,𝑛
− V
𝑖,𝑛+1

, V
𝑖,𝑛+1

− 𝑥
𝑛+1

⟩ ≥ 0.

(32)

Adding (31) and (32), we have that

⟨V
𝑖,𝑛+1

− V
𝑖,𝑛
, 𝐴
𝑖
V
𝑖,𝑛
− 𝐴
𝑖
V
𝑖,𝑛+1

⟩

+ ⟨V
𝑖,𝑛+1

− V
𝑖,𝑛
,
V
𝑖,𝑛
− 𝑥
𝑛

𝑟
𝑛

−
V
𝑖,𝑛+1

− 𝑥
𝑛+1

𝑟
𝑛+1

⟩ ≥ 0.

(33)

Since {𝐴
𝑖
, 𝑖 = 1, 2, . . . , 𝑁} aremonotonemappings, which

implies that

⟨V
𝑖,𝑛+1

− V
𝑖,𝑛
,
V
𝑖,𝑛
− 𝑥
𝑛

𝑟
𝑛

−
V
𝑖,𝑛+1

− 𝑥
𝑛+1

𝑟
𝑛+1

⟩ ≥ 0, (34)

we have that

⟨V
𝑖,𝑛+1

− V
𝑖,𝑛
, V
𝑖,𝑛
− 𝑥
𝑛
−
𝑟
𝑛
(V
𝑖,𝑛+1

− 𝑥
𝑛+1

)

𝑟
𝑛+1

+ V
𝑖,𝑛+1

− V
𝑖,𝑛+1

⟩

≥ 0;

(35)

that is,
󵄩󵄩󵄩󵄩V𝑖,𝑛+1 − V

𝑖,𝑛

󵄩󵄩󵄩󵄩

2

≤ ⟨V
𝑖,𝑛+1

− V
𝑖,𝑛
, 𝑥
𝑛+1

− 𝑥
𝑛
+ (1 −

𝑟
𝑛

𝑟
𝑛+1

) (V
𝑖,𝑛+1

− 𝑥
𝑛+1

)⟩

≤
󵄩󵄩󵄩󵄩V𝑖,𝑛+1 − V

𝑖,𝑛

󵄩󵄩󵄩󵄩 {
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛

𝑟
𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩V𝑖,𝑛+1 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩} .

(36)

Without loss of generality, let 𝑏 be a real number such that
𝑟
𝑛
> 𝑏 > 0, for all 𝑛 ∈ 𝑁; then we have that

󵄩󵄩󵄩󵄩V𝑖,𝑛+1 − V
𝑖,𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛

𝑟
𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩V𝑖,𝑛+1 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
1

𝑏

󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟𝑛
󵄨󵄨󵄨󵄨 𝐾,

(37)
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where 𝐾 = sup{‖V
𝑖,𝑛+1

− 𝑥
𝑛+1

‖, 𝑖 = 1, 2, . . . , 𝑁}. Then we have
from (37) and (28) that

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 ≤ (1 − 𝜀

𝑛+1
)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜀𝑛+1
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+
(1 − 𝜀

𝑛+1
)
󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟𝑛

󵄨󵄨󵄨󵄨

𝑏
𝐾

+
󵄨󵄨󵄨󵄨𝜀𝑛+1 − 𝜀𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− Σ
𝑁

𝑖=1
𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(38)

On the other hand, let 𝑤
𝑖,𝑛

= 𝑇
𝑖𝑟
𝑛

𝑦
𝑛
, 𝑤
𝑖,𝑛+1

= 𝑇
𝑖𝑟
𝑛+1

𝑦
𝑛+1

;
we have that

⟨𝑦 − 𝑤
𝑖,𝑛
, 𝑇
𝑖
𝑤
𝑖,𝑛
⟩ −

1

𝑟
𝑛

⟨𝑦 − 𝑤
𝑖,𝑛
, (1 + 𝑟

𝑛
) 𝑤
𝑖,𝑛
− 𝑦
𝑛
⟩ ≤ 0,

∀𝑦 ∈ 𝐶,

(39)

⟨𝑦 − 𝑤
𝑖,𝑛+1

, 𝑇
𝑖
𝑤
𝑖,𝑛+1

⟩

−
1

𝑟
𝑛+1

⟨𝑦 − 𝑤
𝑖,𝑛+1

, (1 + 𝑟
𝑛+1

) 𝑤
𝑖,𝑛+1

− 𝑦
𝑛+1

⟩ ≤ 0, ∀𝑦 ∈ 𝐶.

(40)

Let 𝑦 := 𝑤
𝑖,𝑛+1

in (39) and let 𝑦 := 𝑤
𝑖,𝑛

in (40); we have
that

⟨𝑤
𝑛+1

− 𝑤
𝑖,𝑛
, 𝑇
𝑖
𝑤
𝑖,𝑛
⟩

−
1

𝑟
𝑛

⟨𝑤
𝑛+1

− 𝑤
𝑖,𝑛
, (1 + 𝑟

𝑛
) 𝑤
𝑖,𝑛
− 𝑦
𝑛
⟩ ≤ 0,

(41)

⟨𝑤
𝑖,𝑛
− 𝑤
𝑖,𝑛+1

, 𝑇
𝑖
𝑤
𝑖,𝑛+1

⟩

−
1

𝑟
𝑛+1

⟨𝑤
𝑖,𝑛
− 𝑤
𝑖,𝑛+1

, (1 + 𝑟
𝑛+1

) 𝑤
𝑖,𝑛+1

− 𝑦
𝑛+1

⟩ ≤ 0.

(42)

Adding (41) and (42) and because {𝑇
𝑖
, 𝑖 = 1, 2, . . . , 𝑁} are

pseudocontractive mappings, we have that

⟨𝑤
𝑖,𝑛+1

− 𝑤
𝑖,𝑛
,
𝑤
𝑖,𝑛
− 𝑦
𝑛

𝑟
𝑛

−
𝑤
𝑖,𝑛+1

− 𝑦
𝑛+1

𝑟
𝑛+1

⟩ ≥ 0. (43)

Therefore we have

⟨𝑤
𝑖,𝑛+1

− 𝑤
𝑖,𝑛
, 𝑤
𝑖,𝑛
− 𝑦
𝑛
−
𝑟
𝑛
(𝑤
𝑖,𝑛+1

− 𝑦
𝑛+1

)

𝑟
𝑛+1

+ 𝑤
𝑖,𝑛+1

− 𝑤
𝑖,𝑛+1

⟩ ≥ 0.

(44)

Hence we have that

󵄩󵄩󵄩󵄩𝑤𝑖,𝑛+1 − 𝑤𝑖,𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 +

1

𝑏

󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟𝑛
󵄨󵄨󵄨󵄨𝑀, (45)

where𝑀 = sup{‖𝑤
𝑖,𝑛
− 𝑦
𝑛
‖, 𝑖 = 1, 2, . . . , 𝑁}.

Let 𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
)𝑧
𝑛
. Hence we have that

𝑧
𝑛+1

− 𝑧
𝑛
=

𝛼
𝑛+1

1 − 𝛽
𝑛+1

(𝑓 (𝑥
𝑛+1

) − 𝑓 (𝑥
𝑛
))

+ (
𝛼
𝑛+1

1 − 𝛽
𝑛+1

−
𝛼
𝑛

1 − 𝛽
𝑛

)𝑓 (𝑥
𝑛
)

+
𝛾
𝑛+1

1 − 𝛽
𝑛+1

Σ
𝑁

𝑖=1
𝜎
𝑖
(𝑤
𝑖,𝑛+1

− 𝑤
𝑖,𝑛
)

+ (
𝛾
𝑛+1

1 − 𝛽
𝑛+1

−
𝛾
𝑛

1 − 𝛽
𝑛

)Σ
𝑁

𝑖=1
𝜎
𝑖
𝑤
𝑖,𝑛
.

(46)

Then we have from (46), (45), and (38) that

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

≤
(𝜌 − 1) 𝛼

𝑛+1

1 − 𝛽
𝑛+1

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼
𝑛+1

1 − 𝛽
𝑛+1

−
𝛼
𝑛

1 − 𝛽
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
Σ
𝑁

𝑖=1
𝜎
𝑖
𝑤
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
}

+
𝛾
𝑛+1

1 − 𝛽
𝑛+1

󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟𝑛
󵄨󵄨󵄨󵄨

𝑏
((1 − 𝜀

𝑛+1
)𝐾 +𝑀)

+
𝛾
𝑛+1

1 − 𝛽
𝑛+1

󵄨󵄨󵄨󵄨𝜀𝑛+1 − 𝜀𝑛
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− Σ
𝑁

𝑖=1
𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+
𝛾
𝑛+1

1 − 𝛽
𝑛+1

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩 .

(47)

Notice conditions (ii), (iii), and (iv); we have that

lim sup
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩) = 0. (48)

Hence we have from Lemma 4 that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (49)

Therefore we have that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 =

󵄨󵄨󵄨󵄨1 − 𝛽𝑛
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (50)

Hence we have from (37), (38), and (45) that

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0,

󵄩󵄩󵄩󵄩𝑤𝑖,𝑛+1 − 𝑤𝑖,𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0,

󵄩󵄩󵄩󵄩V𝑖,𝑛+1 − V
𝑖,𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

(51)

In addition, since 𝑥
𝑛+1

= 𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
Σ
𝑁

𝑖=1
𝜎
𝑖
𝑤
𝑖,𝑛
,

𝑦
𝑛
= 𝑃
𝐶
(𝜀
𝑛
𝑢
𝑛
+ (1 − 𝜀

𝑛
)Σ
𝑁

𝑖=1
𝜇
𝑖
V
𝑖,𝑛
), for all 𝑝 ∈ 𝐹, we have from
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the monotonicity of 𝐴
𝑖
, the nonexpansivity of 𝑇

𝑖𝑟
𝑛

, and the
convexity of ‖ ⋅ ‖2 that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
Σ
𝑁

𝑖=1
𝜎
𝑖
𝑤
𝑖,𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛼𝑛(𝑓(𝑥𝑛) − 𝑝) + 𝛽𝑛(𝑥𝑛 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
Σ
𝑁

𝑖=1
𝜎
𝑖
𝑤
𝑖,𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛
𝜀
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜀
𝑛
) 𝛾
𝑛
Σ
𝑁

𝑖=1
𝜇
𝑖

󵄩󵄩󵄩󵄩V𝑖,𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛
𝜀
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜀
𝑛
) 𝛾
𝑛
Σ
𝑁

𝑖=1
𝜇
𝑖
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − V

𝑖,𝑛

󵄩󵄩󵄩󵄩

2

)

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (1 − 𝜀
𝑛
) 𝛾
𝑛
Σ
𝑁

𝑖=1
𝜇
𝑖

󵄩󵄩󵄩󵄩𝑥𝑛 − V
𝑖,𝑛

󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛
𝜀
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

.

(52)

So we have that

(1 − 𝜀
𝑛
) 𝛾
𝑛
Σ
𝑁

𝑖=1
𝜇
𝑖

󵄩󵄩󵄩󵄩𝑥𝑛 − V
𝑖,𝑛

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛
𝜀
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩)

+ 𝛾
𝑛
𝜀
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

.

(53)

Since 𝛼
𝑛
→ 0, 𝜀

𝑛
→ 0, we have from (50) that
󵄩󵄩󵄩󵄩𝑥𝑛 − V

𝑖,𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (54)

In a similar way, we have that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤𝑖,𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (55)

Consequently, we have that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄨󵄨󵄨󵄨(1 − 𝜀𝑛)

󵄨󵄨󵄨󵄨 Σ
𝑁

𝑖=1
𝜇
𝑖

󵄩󵄩󵄩󵄩𝑥𝑛 − V
𝑖,𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑤𝑖,𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤𝑖,𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0.

(56)

Since the sequence {𝑥
𝑛
} is bounded, there exists a subse-

quence {𝑥
𝑛𝑘
} of {𝑥

𝑛
} and 𝑤 ∈ 𝐶 such that 𝑥

𝑛𝑘
→ 𝑤 weakly.

And because 𝑥
𝑛
→ V
𝑖,𝑛
, V
𝑖,𝑛𝑘

→ 𝑤 weakly. Next we show
that 𝑤 ∈ 𝐹.

Because V
𝑖,𝑛

= 𝐹
𝑖𝑟
𝑛

𝑥
𝑛
, by the definition of mapping 𝐹

𝑖𝑟
𝑛

,
we have that

⟨𝑦 − V
𝑖,𝑛
, 𝐴
𝑖
V
𝑖,𝑛
⟩ +

1

𝑟
𝑛

⟨𝑦 − V
𝑖,𝑛
, V
𝑖,𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

⟨𝑦 − V
𝑖,𝑛𝑘

, 𝐴
𝑖
V
𝑖,𝑛𝑘

⟩ + ⟨𝑦 − V
𝑖,𝑛𝑘

,
V
𝑖,𝑛𝑘

− 𝑥
𝑛𝑘

𝑟
𝑛

⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(57)

Let V
𝑡
= 𝑡V+ (1 − 𝑡)𝑤, 𝑡 ∈ [0, 1], for all V ∈ 𝐶; we have that

⟨V
𝑡
− V
𝑖,𝑛𝑘

, 𝐴
𝑖
V
𝑡
⟩ ≥ ⟨V

𝑡
− V
𝑖,𝑛𝑘

, 𝐴
𝑖
V
𝑡
⟩ − ⟨V

𝑡
− V
𝑖,𝑛𝑘

, 𝐴
𝑖
V
𝑖,𝑛𝑘

⟩

− ⟨V
𝑡
− V
𝑖,𝑛𝑘

,
V
𝑖,𝑛𝑘

− 𝑥
𝑛𝑘

𝑟
𝑛

⟩

= ⟨V
𝑡
− V
𝑖,𝑛𝑘

, 𝐴
𝑖
V
𝑡
− 𝐴
𝑖
V
𝑖,𝑛𝑘

⟩

− ⟨V
𝑡
− V
𝑖,𝑛𝑘

,
V
𝑖,𝑛𝑘

− 𝑥
𝑛𝑘

𝑟
𝑛

⟩ .

(58)

Because {𝐴
𝑖
, 𝑖 = 1, 2, . . . , 𝑁} are monotone and because

𝑥
𝑛𝑘
− V
𝑖,𝑛𝑘

→ 0, we have that

0 ≤ lim
𝑘→∞

⟨V
𝑡
− V
𝑖,𝑛𝑘

, 𝐴
𝑖
V
𝑡
⟩ = ⟨V

𝑡
− 𝑤,𝐴

𝑖
V
𝑡
⟩ . (59)

Consequently we have that

⟨V − 𝑤,𝐴
𝑖
V
𝑡
⟩ ≥ 0. (60)

If 𝑡 → 0, by the continuity of 𝐴
𝑖
, we have that ⟨V −

𝑤,𝐴
𝑖
𝑤⟩ ≥ 0; that is, 𝑤 ∈ VI(𝐶, 𝐴

𝑖
) and then 𝑤 ∈ 𝐹

2
.

Similarly, because 𝑤
𝑖,𝑛

= 𝑇
𝑖𝑟
𝑛

𝑦
𝑛
, by the definition of

mapping 𝑇
𝑖𝑟
𝑛

, we have that

⟨𝑦 − 𝑤
𝑖,𝑛
, 𝑇
𝑖
𝑤
𝑖,𝑛
⟩ −

1

𝑟
𝑛

⟨𝑦 − 𝑤
𝑖,𝑛
, (1 + 𝑟

𝑛
) 𝑤
𝑖,𝑛
− 𝑦
𝑛
⟩ ≤ 0,

∀𝑦 ∈ 𝐶.

⟨𝑦 − 𝑤
𝑖,𝑛𝑘

, 𝑇
𝑖
𝑤
𝑖,𝑛𝑘

⟩ −
1

𝑟
𝑛

⟨𝑦 − 𝑤
𝑖,𝑛𝑘

, (1 + 𝑟
𝑛
) 𝑤
𝑖,𝑛𝑘

− 𝑦
𝑛𝑘
⟩ ≤ 0,

∀𝑦 ∈ 𝐶.

(61)

Let V
𝑡
= 𝑡V + (1 − 𝑡)𝑤, 𝑡 ∈ [0, 1], for all V ∈ 𝐶. Because

{𝑇
𝑖
, 𝑖 = 1, 2, . . . , 𝑁} are pseudocontractive mappings, we have

that

⟨𝑤
𝑖,𝑛𝑘

− V
𝑡
, 𝑇
𝑖
V
𝑡
⟩

≥ ⟨𝑤
𝑖,𝑛𝑘

− V
𝑡
, 𝑇
𝑖
V
𝑡
⟩ + ⟨V

𝑡
− 𝑤
𝑖,𝑛𝑘

, 𝑇
𝑖
𝑤
𝑖,𝑛𝑘

⟩

−
1

𝑟
𝑛

⟨V
𝑡
− 𝑤
𝑖,𝑛𝑘

, (1 + 𝑟
𝑛
) 𝑤
𝑖,𝑛𝑘

− 𝑦
𝑛𝑘
⟩

= ⟨V
𝑡
− 𝑤
𝑖,𝑛𝑘

, 𝑇
𝑖
𝑤
𝑖,𝑛𝑘

− 𝑇
𝑖
V
𝑡
⟩

− ⟨V
𝑡
− 𝑤
𝑖,𝑛𝑘

,
1 + 𝑟
𝑛

𝑟
𝑛

𝑤
𝑖,𝑛𝑘

−
1

𝑟
𝑛

𝑦
𝑛𝑘
⟩

≥ −
󵄩󵄩󵄩󵄩V𝑡 − 𝑤𝑖,𝑛𝑘

󵄩󵄩󵄩󵄩

2

−
1

𝑟
𝑛

⟨V
𝑡
− 𝑤
𝑖,𝑛𝑘

, 𝑤
𝑖,𝑛𝑘

− 𝑦
𝑛𝑘
⟩

− ⟨V
𝑡
− 𝑤
𝑖,𝑛𝑘

, 𝑤
𝑖,𝑛𝑘

⟩

= − ⟨V
𝑡
− 𝑤
𝑖,𝑛𝑘

, V
𝑡
⟩ −

1

𝑟
𝑛

⟨V
𝑡
− 𝑤
𝑖,𝑛𝑘

, 𝑤
𝑖,𝑛𝑘

− 𝑦
𝑛𝑘
⟩ .

(62)
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Because 𝑦
𝑛𝑘
− 𝑤
𝑖,𝑛𝑘

→ 0, so we have that

lim
𝑘→∞

⟨𝑤
𝑖,𝑛𝑘

− V
𝑡
, 𝑇
𝑖
V
𝑡
⟩ ≥ lim
𝑘→∞

⟨𝑤
𝑖,𝑛𝑘

− V
𝑡
, V
𝑡
⟩ . (63)

Consequently we have that

⟨𝑤 − V
𝑡
, 𝑇
𝑖
V
𝑡
⟩ ≥ ⟨𝑤 − V

𝑡
, V
𝑡
⟩ ; (64)

that is,

⟨V − 𝑤, 𝑇
𝑖
V
𝑡
⟩ ≤ ⟨V − 𝑤, V

𝑡
⟩. (65)

If 𝑡 → 0, by the continuity of𝑇
𝑖
, we have that ⟨V−𝑤, 𝑇

𝑖
𝑤−

𝑤⟩ ≤ 0, for all V ∈ 𝐶; we conclude that 𝑤 = 𝑇
𝑖
𝑤; that is,

𝑤 ∈ 𝐹(𝑇
𝑖
) and then 𝑤 ∈ 𝐹

1
. Consequently 𝑤 ∈ 𝐹 = 𝐹

1
∩ 𝐹
2
.

Denote 𝑥∗ = Π
𝐹
𝑓(𝑤); then 𝑥∗ ∈ 𝐹 is the unique element

that satisfies inf
𝑥∈𝐹

‖𝑥−𝑓(𝑤)‖ = ‖𝑥
∗
−𝑓(𝑤)‖. From Lemma 1,

we have that ⟨𝑓(𝑤) − 𝑥∗, 𝑦 − 𝑥∗⟩ ≤ 0, for all 𝑦 ∈ 𝐶. If we take
𝑦 = 𝑓(𝑤), then ⟨𝑓(𝑤) − 𝑥∗, 𝑓(𝑤) − 𝑥∗⟩ ≤ 0; consequently we
have that 𝑓(𝑤) = 𝑥

∗.
By using the weakly lower semicontinuity of the norm on

𝐻, we get that

󵄩󵄩󵄩󵄩𝑥
∗
− 𝑓 (𝑤)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑤 − 𝑓 (𝑤)

󵄩󵄩󵄩󵄩 ≤ lim inf
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑘

− 𝑓 (𝑤)
󵄩󵄩󵄩󵄩󵄩

≤ lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑘

− 𝑓 (𝑤)
󵄩󵄩󵄩󵄩󵄩

≤ inf
𝑥∈𝐹

󵄩󵄩󵄩󵄩𝑥 − 𝑓 (𝑤)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥
∗
− 𝑓 (𝑤)

󵄩󵄩󵄩󵄩 ,

(66)

which implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑓 (𝑤)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥
∗
− 𝑓 (𝑤)

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑤 − 𝑓 (𝑤)

󵄩󵄩󵄩󵄩

= inf
𝑥∈𝐹

󵄩󵄩󵄩󵄩𝑥 − 𝑓 (𝑤)
󵄩󵄩󵄩󵄩 .

(67)

Thus, from Lemma 1, we have that

⟨𝑧 − 𝑥
∗
, 𝑥
∗
− 𝑓 (𝑤)⟩ ≥ 0, ∀𝑧 ∈ 𝐶, (68)

⟨𝑧 − 𝑤,𝑤 − 𝑓 (𝑤)⟩ ≥ 0, ∀𝑧 ∈ 𝐶. (69)

Putting 𝑧 := 𝑤 in (68) and 𝑧 := 𝑥
∗ in (69), we get that

⟨𝑤 − 𝑥
∗
, 𝑥
∗
− 𝑓 (𝑤)⟩ ≥ 0, ∀𝑧 ∈ 𝐶, (70)

⟨𝑥
∗
− 𝑤,𝑤 − 𝑓 (𝑤)⟩ ≥ 0, ∀𝑧 ∈ 𝐶. (71)

Adding (70) and (71) we get that ⟨𝑥∗ −𝑤, 𝑥∗ −𝑤⟩ ≤ 0; that is,
‖𝑤 − 𝑥

∗
‖
2
≤ 0; thus 𝑤 = 𝑥

∗. Furthermore, from (67), we get
that the sequence 𝑥

𝑛
→ 𝑤 = 𝑃

𝐹
𝑓(𝑤) strongly and 𝑤 is the

solution of the following variational inequality:

⟨𝑧 − 𝑤, (𝑓 − 𝐼)𝑤⟩ ≤ 0, ∀𝑧 ∈ 𝐶. (72)

Now we show that 𝑤 is the unique solution of the
variational inequality ⟨𝑧 − 𝑤, (𝑓 − 𝐼)𝑤⟩ ≤ 0, for all 𝑧 ∈ 𝐶.
Suppose that 𝑤 ∈ 𝐹 is another solution of the variational
inequality; that is,

⟨𝑧 − 𝑤, (𝑓 − 𝐼)𝑤⟩ ≤ 0, ∀𝑦 ∈ 𝐶. (73)

Let 𝑧 := 𝑤 in (72) and let 𝑧 := 𝑤 in (73); we have that

⟨𝑤 − 𝑤, 𝑓 (𝑤) − 𝑤⟩ ≤ 0, (74)

⟨𝑤 − 𝑤, 𝑓 (𝑤) − 𝑤⟩ ≤ 0. (75)

Adding (74) and (75), we have that

⟨𝑤 − 𝑤 − (𝑓 (𝑤) − 𝑓 (𝑤)) , 𝑤 − 𝑤⟩ ≤ 0. (76)

Hence

(1 − 𝜌) ‖𝑤 − 𝑤‖
2
≤ 0. (77)

Because 𝜌 ∈ (0, 1), we conclude that 𝑤 = 𝑤; the uniqueness
of the solution is obtained. The proof is complete.

Theorem 7. Let 𝐶 be a nonempty closed convex subset of
a uniformly smooth strictly convex real Hilbert space 𝐻. Let
{𝑇
𝑖

: 𝐶 → 𝐶, 𝑖 = 1, 2, . . . , 𝑁} be a finite family of
continuous pseudocontractive mappings, let {𝐴

𝑖
: 𝐶 →

𝐻, 𝑖 = 1, 2, . . . , 𝑁} be a finite family of continuous monotone
mappings such that 𝐹 = 𝐹

1
∩ 𝐹
2

̸=Ø, and let 𝑓 : 𝐶 → 𝐶

be a contraction with a contraction coefficient 𝜌 ∈ (0, 1). 𝑇
𝑖𝑟
𝑛

and 𝐹
𝑖𝑟
𝑛

are defined as (21) and (22), respectively. Let {𝑥
𝑛
} be a

sequence generated by 𝑥
0
∈ 𝐶,

𝑦
𝑛
= (1 − 𝜆

𝑛
) 𝑥
𝑛
+ 𝜆
𝑛
𝑃
𝐶
(𝜀
𝑛
𝑢
𝑛
+ (1 − 𝜀

𝑛
)

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛

𝑁

∑

𝑖=1

𝜎
𝑖
𝑇
𝑖𝑟
𝑛

𝑦
𝑛
,

(78)

where {𝛼
𝑛
}, {𝜆
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝜀
𝑛
} are sequences of nonnegative

real numbers in [0, 1] and 𝜇
𝑖
≥ 0, 𝜎

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑁, and

the sequence {𝑢
𝑛
} ⊂ 𝐻 is a small perturbation such that

(i) 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
= 1, 𝑛 ≥ 0, ∑𝑁

𝑖=1
𝜇
𝑖
= 1, and ∑𝑁

𝑖=1
𝜎
𝑖
= 1;

(ii) lim
𝑛→∞

𝛼
𝑛
= 0, ∑∞

𝑛=1
𝛼
𝑛
= ∞, and lim

𝑛→∞
𝜀
𝑛
= 0;

(iii) 0 < lim inf
𝑛→∞

𝛽
𝑛
< lim sup

𝑛→∞
𝛽
𝑛
< 1;

(iv) lim sup
𝑛→∞

𝑟
𝑛

> 0, ∑
∞

𝑛=1
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞,

lim
𝑛→∞

‖𝑢
𝑛
‖ = 0, and ∑∞

𝑛=0
𝜀
𝑛
‖𝑢
𝑛
‖ < ∞.

Then the sequence {𝑥
𝑛
} converges strongly to an element

𝑤 = Π
𝐹
𝑓(𝑤) and also 𝑥 is the unique solution of the

variational inequality

⟨(𝑓 − 𝐼) (𝑤) , 𝑦 − 𝑤⟩ ≤ 0, ∀𝑦 ∈ 𝐹. (79)

Proof. Take𝑝 ∈ 𝐹; because𝐹
𝑖𝑟
𝑛

,𝑃
𝐶
are nonexpansive, then we

have that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝜆
𝑛
) 𝑥
𝑛
+ 𝜆
𝑛
𝑃
𝐶
(𝜀
𝑛
𝑢
𝑛
+ (1 − 𝜀

𝑛
)

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
[
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝜆𝑛
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩] + (1 − 𝜆𝑛𝜀𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(80)
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For 𝑛 ≥ 0, because 𝑇
𝑖𝑟
𝑛

and 𝐹
𝑖𝑟
𝑛

are nonexpansive and 𝑓 is
contractive, we have from (28) that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛

𝑁

∑

𝑖=1

𝜎
𝑖
𝑇
𝑖𝑟
𝑛

𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑝)
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛾𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (𝜌𝛼
𝑛
+ 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛾
𝑛
[𝜀
𝑛
(
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝜆𝑛
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩) + (1 − 𝜆𝑛𝜀𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩]

≤ (1 − 𝛼
𝑛
+ 𝜌𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩

+ 𝜀
𝑛
(
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛾𝑛𝜀𝑛
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩)

≤ (1 − (1 − 𝜌) 𝛼
𝑛
− 𝛾
𝑛
𝜆
𝑛
𝜀
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛾𝑛𝜀𝑛𝜆𝑛
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝜌) 𝛼
𝑛
(

1

1 − 𝜌

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩) + 𝜀

𝑛

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 ,

1

1 − 𝜌

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩} + 𝜀

𝑛

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 .

(81)

This implies that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑝

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 ,

1

1 − 𝜌

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩}

+ Σ
𝑛−1

𝑖=0
𝜀
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 .

(82)

Notice condition (iv); therefore, {𝑥
𝑛
} is bounded. Conse-

quently, we get that {𝐹
𝑖𝑟
𝑛

𝑥
𝑛
}, {𝑇
𝑖𝑟
𝑛

𝑦
𝑛
} and {𝑦

𝑛
}, {𝑓(𝑥

𝑛
)}, and

𝑃
𝐶
(𝜀
𝑛
𝑢
𝑛
+ (1 − 𝜀

𝑛
) ∑
𝑁

𝑖=1
𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
) are bounded.

Next, we show that ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0. Denote 𝜏

𝑛
= 𝜀
𝑛
𝑢
𝑛
+

(1 − 𝜀
𝑛
) ∑
𝑁

𝑖=1
𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
; then we get that

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 ≤ (1 − 𝜆

𝑛+1
)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜆𝑛+1
󵄩󵄩󵄩󵄩𝜏𝑛+1 − 𝜏𝑛

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜆𝑛+1 − 𝜆𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑃𝐶𝜏𝑛

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝜏𝑛+1 − 𝜏𝑛
󵄩󵄩󵄩󵄩 ≤ 𝜀
𝑛+1

[
󵄩󵄩󵄩󵄩𝑢𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩]

+ (1 − 𝜀
𝑛+1

)

𝑁

∑

𝑖=1

𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑖𝑟
𝑛+1

𝑥
𝑛+1

− 𝐹
𝑖𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜀𝑛+1 − 𝜀𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢
𝑛
−

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(83)

Repeating equations from (29) to (38), we have that

󵄩󵄩󵄩󵄩𝜏𝑛+1 − 𝜏𝑛
󵄩󵄩󵄩󵄩 ≤ 𝜀
𝑛+1

[
󵄩󵄩󵄩󵄩𝑢𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩]

+ (1 − 𝜀
𝑛+1

)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝜀
𝑛+1

)

󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟𝑛
󵄨󵄨󵄨󵄨 𝐾

𝑏

+
󵄨󵄨󵄨󵄨𝜀𝑛+1 − 𝜀𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢
𝑛
−

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(84)

Therefore,

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 ≤ (1 − 𝜆

𝑛+1
)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝜆
𝑛+1

(𝜀
𝑛+1

[
󵄩󵄩󵄩󵄩𝑢𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩]

+ (1 − 𝜀
𝑛+1

)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝜀
𝑛+1

)

󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟𝑛
󵄨󵄨󵄨󵄨 𝐾

𝑏

+
󵄨󵄨󵄨󵄨𝜀𝑛+1 − 𝜀𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢
𝑛
−

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

+
󵄨󵄨󵄨󵄨𝜆𝑛+1 − 𝜆𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑃𝐶𝜏𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝜆
𝑛+1

𝜀
𝑛+1

)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝜆
𝑛+1

𝜀
𝑛+1

[
󵄩󵄩󵄩󵄩𝑢𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩]

+ 𝜆
𝑛+1

(1 − 𝜀
𝑛+1

)

󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟𝑛
󵄨󵄨󵄨󵄨 𝐾

𝑏

+ 𝜆
𝑛+1

󵄨󵄨󵄨󵄨𝜀𝑛+1 − 𝜀𝑛
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢
𝑛
−

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜆𝑛+1 − 𝜆𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑃𝐶𝜏𝑛

󵄩󵄩󵄩󵄩 .

(85)

Similar to the rest of the proof of Theorem 6, we obtain the
result.

If, in Theorems 6 and 7, we let 𝑓 :≡ 𝑢 ∈ 𝐶 be a constant
mapping, we have the following corollaries.

Corollary 8. Let 𝐶 be a nonempty closed convex subset of
a uniformly smooth strictly convex real Hilbert space 𝐻. Let
{𝑇
𝑖

: 𝐶 → 𝐶, 𝑖 = 1, 2, . . . , 𝑁} be a finite family of
continuous pseudocontractive mappings, let {𝐴

𝑖
: 𝐶 →

𝐻, 𝑖 = 1, 2, . . . , 𝑁} be a finite family of continuous monotone
mappings such that𝐹 = 𝐹

1
∩𝐹
2

̸=Ø, and let𝑢 ∈ 𝐶 be a constant.
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𝑇
𝑖𝑟
𝑛

and 𝐹
𝑖𝑟
𝑛

are defined as (21) and (22), respectively. Let {𝑥
𝑛
}

be a sequence generated by 𝑥
0
∈ 𝐶,

𝑦
𝑛
= 𝑃
𝐶
(𝜀
𝑛
𝑢
𝑛
+ (1 − 𝜀

𝑛
)

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛

𝑁

∑

𝑖=1

𝜎
𝑖
𝑇
𝑖𝑟
𝑛

𝑦
𝑛
,

(86)

where {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝜀
𝑛
} are sequences of nonnegative real

numbers in [0, 1] and 𝜇
𝑖
≥ 0, 𝜎

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑁, and the

sequence {𝑢
𝑛
} ⊂ 𝐻 is a small perturbation such that

(i) 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
= 1, 𝑛 ≥ 0, ∑𝑁

𝑖=1
𝜇
𝑖
= 1, and ∑𝑁

𝑖=1
𝜎
𝑖
= 1;

(ii) lim
𝑛→∞

𝛼
𝑛
= 0, ∑∞

𝑛=1
𝛼
𝑛
= ∞, and lim

𝑛→∞
𝜀
𝑛
= 0;

(iii) 0 < lim inf
𝑛→∞

𝛽
𝑛
< lim sup

𝑛→∞
𝛽
𝑛
< 1;

(iv) lim sup
𝑛→∞

𝑟
𝑛

> 0, ∑
∞

𝑛=1
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞,

lim
𝑛→∞

‖𝑢
𝑛
‖ = 0, and ∑∞

𝑛=0
𝜀
𝑛
‖𝑢
𝑛
‖ < ∞.

Then the sequence {𝑥
𝑛
} converges strongly to an element

𝑤 = Π
𝐹
𝑢 and also 𝑥 is the unique solution of the variational

inequality

⟨𝑢 − 𝑤, 𝑦 − 𝑤⟩ ≤ 0, ∀𝑦 ∈ 𝐹. (87)

Corollary 9. Let 𝐶 be a nonempty closed convex subset of
a uniformly smooth strictly convex real Hilbert space 𝐻. Let
{𝑇
𝑖

: 𝐶 → 𝐶, 𝑖 = 1, 2, . . . , 𝑁} be a finite family of
continuous pseudocontractive mappings, let {𝐴

𝑖
: 𝐶 →

𝐻, 𝑖 = 1, 2, . . . , 𝑁} be a finite family of continuous monotone
mappings such that𝐹 = 𝐹

1
∩𝐹
2

̸=Ø, and let𝑢 ∈ 𝐶 be a constant.
𝑇
𝑖𝑟
𝑛

and 𝐹
𝑖𝑟
𝑛

are defined as (21) and (22), respectively. Let {𝑥
𝑛
}

be a sequence generated by 𝑥
0
∈ 𝐶,

𝑦
𝑛
= (1 − 𝜆

𝑛
) 𝑥
𝑛
+ 𝜆
𝑛
𝑃
𝐶
(𝜀
𝑛
𝑢
𝑛
+ (1 − 𝜀

𝑛
)

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛

𝑁

∑

𝑖=1

𝜎
𝑖
𝑇
𝑖𝑟
𝑛

𝑦
𝑛
,

(88)

where {𝛼
𝑛
}, {𝜆
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝜀
𝑛
} are sequences of nonnegative

real numbers in [0, 1] and 𝜇
𝑖
≥ 0, 𝜎

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑁, and

the sequence {𝑢
𝑛
} ⊂ 𝐻 is a small perturbation such that

(i) 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
= 1, 𝑛 ≥ 0, ∑𝑁

𝑖=1
𝜇
𝑖
= 1, and ∑𝑁

𝑖=1
𝜎
𝑖
= 1;

(ii) lim
𝑛→∞

𝛼
𝑛
= 0, ∑∞

𝑛=1
𝛼
𝑛
= ∞, and lim

𝑛→∞
𝜀
𝑛
= 0;

(iii) 0 < lim inf
𝑛→∞

𝛽
𝑛
< lim sup

𝑛→∞
𝛽
𝑛
< 1;

(iv) lim sup
𝑛→∞

𝑟
𝑛

> 0, ∑
∞

𝑛=1
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞,

lim
𝑛→∞

‖𝑢
𝑛
‖ = 0, and ∑∞

𝑛=0
𝜀
𝑛
‖𝑢
𝑛
‖ < ∞.

Then the sequence {𝑥
𝑛
} converges strongly to an element

𝑤 = Π
𝐹
𝑢 and also 𝑥 is the unique solution of the variational

inequality

⟨𝑢 − 𝑤, 𝑦 − 𝑤⟩ ≤ 0, ∀𝑦 ∈ 𝐹. (89)

Remark 10. If {𝑢
𝑛
} ⊂ 𝐶, then sequence (23) reduces to

𝑦
𝑛
= 𝜀
𝑛
𝑢
𝑛
+ (1 − 𝜀

𝑛
)

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛

𝑁

∑

𝑖=1

𝜎
𝑖
𝑇
𝑖𝑟
𝑛

𝑦
𝑛

(90)

and sequence (78) reduces to

𝑦
𝑛
= (1 − 𝜆

𝑛
) 𝑥
𝑛
+ 𝜆
𝑛
(𝜀
𝑛
𝑢
𝑛
+ (1 − 𝜀

𝑛
)

𝑁

∑

𝑖=1

𝜇
𝑖
𝐹
𝑖𝑟
𝑛

𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛

𝑁

∑

𝑖=1

𝜎
𝑖
𝑇
𝑖𝑟
𝑛

𝑦
𝑛
.

(91)

The conclusions ofTheorems 6 and 7 are true under the same
conditions.

Remark 11. Our theorems extend and unify some of the
results that have been proved for these important classes
of nonlinear operators. In particular, Theorem 6 extends
Theorem 6 of Yao and Shahzad [24] in the sense that
our convergence is for the more general class of continu-
ous pseudocontractive and continuous monotone mappings.
Theorem 6 also extendsTheorem 3.2 of Tang [22] in the sense
that our convergence is for the more general algorithm with
perturbations.
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