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Based on discretization methods for solving semi-infinite programming problems, this paper presents a spline smoothing Newton
method for semi-infinite minimax problems. The spline smoothing technique uses a smooth cubic spline instead of max function
and only few components in the max function are computed; that is, it introduces an active set technique, so it is more efficient
for solving large-scale minimax problems arising from the discretization of semi-infinite minimax problems. Numerical tests show
that the new method is very efficient.

1. Introduction

In this paper, we consider the following semi-infinite mini-
max problems:

(𝑃) min
𝑥∈𝑅
𝑛

max
𝑦∈𝑌

𝜓 (𝑥, 𝑦) , (1)

where 𝜓 : 𝑅𝑛 ×𝑅𝑚 → 𝑅. We assume (as in Assumption 3.4.1
in [1]) that both 𝜓(⋅, ⋅) and ∇

𝑥
𝜓(⋅, ⋅) are Lipschtiz continuous

on bounded sets. Such a semi-infinite minimax problem
𝑃 is an exciting part of mathematical programming. It
has very widespread application backgrounds in optimal
electronic circuit design, linear Chebyshev approximation,
minimization of floor area, optimal control, computer-aided
design, numerous engineering problems, and so forth (see
[1–8]). Over the past decade, many researchers had done a
lot of works on it and proposed some algorithms (see [9–
14]). However, efficient algorithms for solving the problem
𝑃 are few, because it is difficult to design an algorithm
to deal with the nondifferentiability of objective function
and the infinite set 𝑌. A common approach for solving
𝑃 is the discretization method. Generally, discretization of
multidimensional domains gives rise to minimax problems
with thousands of component functions. Computation cost is

increased; efficiency of the discretization method is affected.
To overcome these problems, Polak et al. proposed algorithms
with smoothing techniques for solving finite and semi-
infinite minimax problems (see [15, 16]). In [16], an active set
strategy which can be used in conjunction with exponential
(entropic) smoothing for solving large-scale minimax prob-
lems arising from the discretization of semi-infinite mini-
max problems had been proposed. But the active set grew
monotonically. In this paper, using the feedback precision-
adjustment smoothing parameter rule which was proposed
by Polak et al. in [15], we propose a new discretization
smoothing algorithm for solving 𝑃. The smoothing function
is cubic spline function not exponential function in our algo-
rithm. The spline smoothing technique uses a smooth spline
function instead of thousands of component functions and
acts also as an active set technique, so only few components
in the max function are computed at each iteration. And the
active set does not growmonotonically; hence the number of
gradients and Hessian calculations is dramatically reduced,
and the computation cost is greatly reduced. Numerical
tests show that the new method is very efficient for semi-
infinite minimax problems with complicated component
functions.
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We assume that the problem 𝑃 can be approximated by a
sequence of finite minimax problems of the form

(𝑃
𝑌
𝑁

) min
𝑥∈𝑅
𝑛

max
𝑦∈𝑌
𝑁

𝜓 (𝑥, 𝑦) , (2)

where the sets 𝑌
𝑁
, 𝑁 = 1, 2, 3,. . . have finite cardinality. In

practice, we can expect that𝑌
𝑁

⊂ 𝑌
𝑁+1

, that is, that they grow
monotonically, and that the closure of ∪∞

𝑁=1
𝑌
𝑁
is equal to 𝑌.

However, it suffices to assume, as in Assumption 3.4.2 in [1].

Assumption 1. There exist a strictly positive valued, strictly
monotone decreasing function Θ : 𝑁 → 𝑅 and constants
𝐾 > 0 and 𝑁

0
> 0, such that for every 𝑁 > 𝑁

0
and 𝑦 ∈ 𝑌,

there exists a 𝑦 ∈ 𝑌
𝑁
such that


𝑦 − 𝑦



≤ 𝐾Θ (𝑁) . (3)

It is easy to satisify with Assumption 1. For example, let
𝑌 = [𝑎, 𝑏], 𝑌

𝑁
= [𝑎, 𝑎 + (𝑏 − 𝑎)/2𝑁, 𝑎 + 2((𝑏 − 𝑎)/2𝑁), . . . , 𝑎 +

(2𝑁 − 1)((𝑏 − 𝑎)/2𝑁), 𝑏], Θ(𝑁) = 1/(2𝑁 − 1), 𝐾 = 1/2‖𝑌‖ =

(1/2)(𝑏 − 𝑎).
We assume that 𝑌

𝑁
= {𝑦

𝑁
1

, . . . , 𝑦
𝑁
𝑞
𝑁

}.
Next, we let

𝑓
𝑁
𝑗 (𝑥) ≜ 𝜓 (𝑥, 𝑦

𝑁
𝑗

) , 𝑗 ∈ 𝑄
𝑁

= {1, 2, . . . , 𝑞
𝑁
} , (4)

and define

𝜙 (𝑥) = max
𝑦∈𝑌

𝜓 (𝑥, 𝑦) ,

𝜙
𝑁

(𝑥) = max
𝑗∈𝑄
𝑁

𝑓
𝑁
𝑗 (𝑥) ,

(5)

and with this notation, the problems 𝑃
𝑌
𝑁

assume the form

(𝑃
𝑁
) min

𝑥∈𝑅
𝑛

𝜙
𝑁

(𝑥) . (6)

The optimality functions 𝜌
𝑁

for the problems 𝑃
𝑁

are
defined by

𝜌
𝑁

(𝑥) ≜ −min
𝜆∈Σ

{

{

{

∑
𝑗∈𝑄
𝑁

𝜆
𝑗

[𝜙
𝑁

(𝑥) − 𝑓
𝑁
𝑗 (𝑥)]

+
1

2



∑
𝑗∈𝑄
𝑁

𝜆
𝑗

∇𝑓
𝑁
𝑗(𝑥)



2

}

}

}

,

(7)

where Σ ≜ {𝜆 ∈ 𝑅𝑄
𝑁 | 𝜆𝑗 ≥ 0,∑

𝑗∈𝑄
𝑁

𝜆𝑗 = 1}.
In [1], we find the following result.

Theorem 2. Suppose that 𝑥 is an optimal solution to problems
𝑃
𝑁
; then, 𝜌

𝑁
(𝑥) = 0.

The corresponding optimality function for 𝑃 is defined
(see Theorem 3.1.6 in [1]) by

𝜌 (𝑥) = − min
𝜂∈𝐹𝜙(𝑥)

{𝜂
0

+
1

2

𝜂

2

} , (8)

where

𝐹𝜙 (𝑥) = conv
𝑦∈𝑌

{(
𝜙 (𝑥) − 𝜓 (𝑥, 𝑦)

∇
𝑥
𝜓 (𝑥, 𝑦)

)} . (9)

Referring to Lemma 3.4.3 in [1], we see that, under
Assumption 1, the following result must hold.

Theorem3. Suppose that {𝑥
𝑁
}
∞

𝑁=0
is a sequence in𝑅𝑛 converg-

ing to a point 𝑥. Then, 𝜙
𝑁
(𝑥

𝑁
) → 𝜙(𝑥) and 𝜌

𝑁
(𝑥

𝑁
) → 𝜌(𝑥)

as N → ∞.

In this paper, we consider to approximate uniformly
𝜙
𝑁
(𝑥) by the smooth spline introduced in [17].
Let us first recall the formulation of multivariate spline.

Let 𝐷 be a polyhedral domain of 𝑅
𝑞
𝑁 which is partitioned

with irreducible algebraic surfaces into cells Δ = {Δ
𝑖
| 𝑖 =

1, . . . , 𝑁}. A function 𝑠(𝑧) defined on 𝐷 is called a 𝑘-spline
function with 𝑟th order smoothness, expressed for short as
𝑠(𝑧) ∈ 𝑆

𝑟

𝑘
(𝐷, Δ), if 𝑠(𝑧) ∈ 𝐶𝑟(𝐷) and 𝑠(𝑧)|

Δ
𝑖

= 𝑝
𝑖

∈ 𝑃
𝑘
,

where 𝑃
𝑘
is the set of all polynomials of degree 𝑘 or less in 𝑞

𝑁

variables. Similar to the smooth spline which approximates
uniformlymin{𝑧

1
, 𝑧

2
, . . . , 𝑧

𝑞
𝑁

} given in [17], we can construct
a spline function 𝑠2

3
(𝑧; 𝜀) ∈ 𝑆2

3
(𝑅𝑞
𝑁 , Δ2

MS) to approximate
uniformly max{𝑧

1
, 𝑧

2
, . . . , 𝑧

𝑞
𝑁

} (as 𝜀 → +0), where Δ2

MS is
the homogenous Morgan-Scott partition of type two in [17],
as follows:

𝑠
2

3
(𝑧

1
, 𝑧

2
, . . . , 𝑧

𝑞
𝑁

; 𝜀) = 𝑧
𝑖
1

+

𝑘−1

∑
𝑙=1

𝑐
𝑙
(𝑙𝑧

𝑖
𝑙+1

−

𝑙

∑
𝑗=1

𝑧
𝑖
𝑗

+ 𝜀)

3

,

for 𝑧 ∈ Δ
𝑖
1
,...,𝑖
𝑘

(𝜀) ,

(10)

where 𝑐
1

= 1/(6𝜀2), 𝑐
𝑘
/𝑐

𝑘+1
= (𝑘 + 2)/𝑘, 1 ≤ 𝑘 ≤ 𝑞

𝑁
,

and the cell Δ
𝑖
1
,...,𝑖
𝑘

(𝜀) is the region defined by the following
inequalities:

𝑧
𝑖
𝑙

− 𝑧
𝑖
𝑙+1

≥ 0, when 1 ≤ 𝑙 < 𝑘,

(𝑘 − 1) 𝑧
𝑖
𝑘

−

𝑘−1

∑
𝑗=1

𝑧
𝑖
𝑗

+ 𝜀 ≥ 0,

𝑘𝑧
𝑖
𝑙

−

𝑘

∑
𝑗=1

𝑧
𝑖
𝑗

+ 𝜀 ≤ 0, when 𝑘 + 1 ≤ 𝑙 ≤ 𝑞
𝑁
.

(11)

The composite function 𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥) approximates uniformly
𝜙
𝑁
(𝑥) as 𝑡

𝑁
→ +0, where

𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥) = 𝑠
2

3
(𝑓

1

(𝑥) , 𝑓
2

(𝑥) , . . . , 𝑓
𝑞
𝑁 (𝑥) ; 𝑡

𝑁
) ,

for 𝑥 such that

(𝑓
1

(𝑥) , 𝑓
2

(𝑥) , . . . , 𝑓
𝑞
𝑁 (𝑥)) ∈ Δ

𝑖
1
,...,𝑖
𝑘

(𝑡
𝑁
) .

(12)

Proposition4. Suppose that 𝑡
𝑁

> 0. For any𝑥 ∈ 𝑅𝑛, we define

Ω̂ (𝑥) ≜ {𝑗 ∈ 𝑄
𝑁

| 𝑓
𝑁
𝑗 (𝑥) = 𝜙

𝑁
(𝑥)} . (13)
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If the function 𝑓𝑗(⋅) is continuous, then 𝛾
𝑞
𝑁
,𝑡
𝑁

(⋅) is continuous
and is increasing with respect to 𝑡

𝑁
. Furthermore,

𝜙
𝑁

(𝑥) +
𝑡
𝑁

3
(1 −

1

Ω̂ (𝑥)



) ≤ 𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥)

≤ 𝜙
𝑁

(𝑥) +
𝑡
𝑁

3
(1 −

1

𝑘
) ,

(14)

where |Ω̂(𝑥)| denotes the cardinality of Ω̂(𝑥).

Proof. 𝑠2
3
(𝑧

1
, 𝑧

2
, . . . , 𝑧

𝑞
𝑁

; 𝜀) is twice continuously differen-
tiable and if the functions 𝑓𝑗(⋅), 𝑗 ∈ 𝑄

𝑁
are continuous, it

is easy to know that 𝛾
𝑞
𝑁
,𝑡
𝑁

(⋅) is continuous. From Lemma 1.1
in [18], we know 𝛾

𝑞
𝑁
,𝑡
𝑁

(⋅) is increasing with respect to 𝑡
𝑁
.

According to (12), we have

𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥)

= 𝑓
𝑁
𝑖
1 (𝑥) + 𝑐

1
(𝑓

𝑁
𝑖
1 (𝑥) − 𝑓

𝑁
𝑖
2 (𝑥) + 𝑡

𝑁
)
3

+ ⋅ ⋅ ⋅ + 𝑐
|
̂
Ω(𝑥)|

(

Ω̂ (𝑥)


𝑓
𝑁
𝑖
|Ω̂(𝑥)|+1 (𝑥)

− (𝑓
𝑁
𝑖
1 (𝑥) + ⋅ ⋅ ⋅ + 𝑓

𝑁
𝑖
|Ω̂(𝑥)| (𝑥)) + 𝑡

𝑁
)
3

+ ⋅ ⋅ ⋅ + 𝑐
𝑘−1

((𝑘 − 1) 𝑓
𝑁
𝑖
𝑘 (𝑥)

− (𝑓
𝑁
𝑖
1 (𝑥) + ⋅ ⋅ ⋅ + 𝑓

𝑁
𝑖
𝑘−1 (𝑥)) + 𝑡

𝑁
)
3

.

(15)

From the definition of Ω̂(𝑥), we know (𝑙 − 1)𝑓
𝑁
𝑖
𝑙 (𝑥) −

(𝑓𝑁
𝑖
1 (𝑥) + ⋅ ⋅ ⋅ + 𝑓

𝑁
𝑖
𝑙−1 (𝑥)) + 𝑡

𝑁
= 𝑡

𝑁
, 1 ≤ 𝑙 ≤ |Ω̂(𝑥)|. From

the definition of Δ
𝑖
1
,...,𝑖
𝑘

(𝑡
𝑁
), we know 𝑡

𝑁
≥ (𝑙 − 1)𝑓

𝑁
𝑖
𝑙 (𝑥) −

(𝑓𝑁
𝑖
1 (𝑥) + ⋅ ⋅ ⋅ + 𝑓

𝑁
𝑖
𝑙−1 (𝑥)) + 𝑡

𝑁
≥ 0, 1 ≤ 𝑙 < 𝑘. Then, we have

𝑓
𝑁
𝑖
1 (𝑥) +

|
̂
Ω(𝑥)|−1

∑
𝑙=1

𝑐
𝑙
𝑡
3

𝑁
≤ 𝛾

𝑞
𝑁
,𝑡
𝑁

(𝑥) ≤ 𝑓
𝑁
𝑖
1 (𝑥) +

𝑘−1

∑
𝑙=1

𝑐
𝑙
𝑡
3

𝑁
. (16)

By 𝑐
𝑙
/𝑐

𝑙+1
= (𝑙 + 2)/𝑙, we can obtain 𝑐

𝑙
= (2/(𝑙(𝑙 + 1)))𝑐

1
=

1/(3𝑙(𝑙 + 1)𝑡2
𝑁
). Thus ∑

|
̂
Ω(𝑥)|−1

𝑙=1
𝑐
𝑙
𝑡3
𝑁

= (𝑡
𝑁
/3)(1 − (1/|Ω̂(𝑥)|))

and ∑
𝑘−1

𝑙=1
𝑐
𝑙
𝑡3
𝑁

= (𝑡
𝑁
/3)(1 − (1/𝑘)) and 𝑓𝑁

𝑖
1 (𝑥) = 𝜙

𝑁
(𝑥).

Hence the desired result follows.

The following proposition is proved in [19].

Proposition 5. (1) If all the functions 𝑓𝑁
𝑗(⋅), 𝑗 ∈ 𝑄

𝑁

are continuously differentiable, then 𝛾
𝑞
𝑁
,𝑡
𝑁

(⋅) is continuously
differentiable and

∇
𝑥
𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥) =

𝑞
𝑁

∑
𝑖=1

𝜆
𝑖

𝑞
𝑁
,𝑡
𝑁

(𝑥) ∇
𝑥
𝑓
𝑁
𝑖 (𝑥)

=

𝑘

∑
𝑗=1

𝜆
𝑖
𝑗

𝑞
𝑁
,𝑡
𝑁

(𝑥) ∇
𝑥
𝑓
𝑁
𝑖
𝑗 (𝑥) ,

(17)

where

𝜆
𝑖
𝑗

𝑞
𝑁
,𝑡
𝑁

(𝑥)

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

1 − 3

𝑘−1

∑
𝑙=1

𝑐
𝑙
(ℎ

𝑙
(𝑥, 𝑡

𝑁
))

2

, 𝑓𝑜𝑟 𝑗 = 1,

3 (𝑗 − 1) 𝑐
𝑗−1

(ℎ
𝑗−1

(𝑥, 𝑡
𝑁
))

2

−3

𝑘−1

∑
𝑙=𝑗

𝑐
𝑙
(ℎ

𝑙
(𝑥, 𝑡

𝑁
))

2

, 𝑓𝑜𝑟 2 ≤ 𝑗 < 𝑘,

3 (𝑘 − 1) 𝑐
𝑘−1

(ℎ
𝑘−1

(𝑥, 𝑡
𝑁
))

2

, 𝑓𝑜𝑟 𝑗 = 𝑘,

0, 𝑓𝑜𝑟 𝑘 < 𝑗 ≤ 𝑞
𝑁
,

(18)

and ℎ
𝑙
(𝑥, 𝑡

𝑁
) = 𝑙𝑓

𝑁
𝑖
𝑙+1 (𝑥) − ∑

𝑙

𝑟=1
𝑓𝑁
𝑖𝑟 (𝑥) + 𝑡

𝑁
.

(2) For any 𝑥 ∈ 𝑅𝑛 and 𝑡
𝑁

> 0, 𝜆𝑖
𝑗

𝑞
𝑁
,𝑡
𝑁

(𝑥) ∈ [0, 1), 𝑖
𝑗
∈ 𝑄

𝑁

and ∑
𝑖
𝑗
∈𝑄
𝑁

𝜆
𝑖
𝑗

𝑞
𝑁
,𝑡
𝑁

(𝑥) = 1.

(3) If all the functions, 𝑓𝑁
𝑗(⋅), 𝑗 ∈ 𝑄

𝑁
, are twice

continuously differentiable, then 𝛾
𝑞
𝑁
,𝑡
𝑁

(⋅) is twice continuously
differentiable and

∇
2

𝑥𝑥
𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥) =

𝑘

∑
𝑗=1

𝜆
𝑖
𝑗

𝑞
𝑁
,𝑡
𝑁

(𝑥) ∇
2

𝑥𝑥
f𝑁𝑖𝑗 (𝑥)

+

𝑘

∑
𝑗=1

(

𝑘

∑
̆𝚥=1

𝜆
𝑖
𝑗, ̆𝚥

𝑞
𝑁
,𝑡
𝑁

(𝑥) ∇
𝑥
𝑓
𝑁
𝑖
̆𝚥 (𝑥))

× (∇
𝑥
𝑓
𝑁
𝑖
𝑗 (𝑥))

𝑇

,

(19)

where

𝜆
𝑖
1, ̆𝚥

𝑞
𝑁
,𝑡
𝑁

(𝑥)

=

{{{{{{{{{{

{{{{{{{{{{

{

6

𝑘−1

∑
𝑙=1

𝑐
𝑙
(ℎ

𝑙
(𝑥, 𝑡

𝑁
)) 𝑤ℎ𝑒𝑛 ̆𝚥 = 1,

− 6 ( ̆𝚥 − 1) 𝑐
̆𝚥−1

(ℎ
̆𝚥−1

(𝑥, 𝑡
𝑁
))

+ 6

𝑘−1

∑
𝑙= ̆𝚥

c
𝑙
(ℎ

𝑙
(𝑥, 𝑡

𝑁
)) 𝑤ℎ𝑒𝑛 2 ≤ ̆𝚥 < 𝑘,

− 6 (𝑘 − 1) 𝑐
𝑘−1

(ℎ
𝑘−1

(𝑥, 𝑡
𝑁
)) 𝑤ℎ𝑒𝑛 ̆𝚥 = 𝑘,

𝜆
𝑖
𝑗, ̆𝚥

𝑞
𝑁
,𝑡
𝑁

(𝑥)

=

{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{

{

−6 (𝑗 − 1) 𝑐
𝑗−1

(ℎ
𝑗−1

(𝑥, 𝑡
𝑁
))

+ 6

𝑘−1

∑
𝑙=𝑗

𝑐
𝑙
(ℎ

𝑙
(𝑥, 𝑡

𝑁
)) 𝑤ℎ𝑒𝑛 1 ≤ ̆𝚥 < 𝑗,

− 6 ( ̆𝚥 − 1) 𝑐
̆𝚥−1

(ℎ
̆𝚥−1

(𝑥, 𝑡
𝑁
))

+ 6

𝑘−1

∑
𝑙= ̆𝚥

𝑐
𝑙
(ℎ

𝑙
(𝑥, 𝑡

𝑁
)) 𝑤ℎ𝑒𝑛 𝑗 < ̆𝚥 < 𝑘,

6( ̆𝚥 − 1)
2

𝑐
̆𝚥−1

(ℎ
̆𝚥−1

(𝑥, 𝑡
𝑁
))

+ 6

𝑘−1

∑
𝑙= ̆𝚥

𝑐
𝑙
(ℎ

𝑙
(𝑥, 𝑡

𝑁
)) 𝑤ℎ𝑒𝑛 ̆𝚥 = 𝑗,

− 6 (𝑘 − 1) 𝑐
𝑘−1

(ℎ
𝑘−1

(𝑥, 𝑡
𝑁
))

𝑤ℎ𝑒𝑛 ̆𝚥 = 𝑘, 𝑓𝑜𝑟 2 ≤ 𝑗 < 𝑘,
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𝜆
𝑖
𝑘, ̆𝚥

𝑞
𝑁
,𝑡
𝑁

(𝑥)

= {
− 6 (𝑘 − 1) 𝑐

𝑘−1
(ℎ

𝑘−1
(𝑥, 𝑡

𝑁
)) 𝑤ℎ𝑒𝑛 1 ≤ ̆𝚥 < 𝑘,

6(𝑘 − 1)
2

𝑐
𝑘−1

(ℎ
𝑘−1

(𝑥, 𝑡
𝑁
)) 𝑤ℎ𝑒𝑛 ̆𝚥 = 𝑘.

(20)

From Proposition 5, we obtain the following results.

Corollary 6. For any 𝑥 ∈ 𝑅𝑛 and 𝑖
𝑗
∈ 𝑄

𝑁
,

lim
𝑡
𝑁
→0

𝜆
𝑖
𝑗

𝑞
𝑁
,𝑡
𝑁

(𝑥)

=

{{{{

{{{{

{

1

Ω̂ (𝑥)



, i𝑓 𝑖
𝑗
∈ Ω̂ (𝑥) ,

0, i𝑓 𝑖
𝑗
∉ Ω̂ (𝑥) ,

lim
𝑡
𝑁
→0

∇
𝑥
𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥) = ∑

𝑗∈
̂
Ω(𝑥)

1

Ω̂ (𝑥)



∇
𝑥
𝑓
𝑗

(𝑥) .

(21)

Proof. According to the definition of Δ
𝑖
1
,...,𝑖
𝑘

(𝑡
𝑁
), we know

that 𝑘 → |Ω̂(𝑥)| as 𝑡
𝑁

→ 0. From Proposition 5 (1), we
know

lim
𝑡
𝑁
→0

𝜆
𝑖
1

𝑞
𝑁
,𝑡
𝑁

(𝑥) = 1 − 3

|
̂
Ω(𝑥)|−1

∑
𝑙=1

𝑐
𝑙
𝑡
2

𝑁

= 1 − 3

|
̂
Ω(𝑥)|−1

∑
𝑙=1

1

3𝑙 (𝑙 + 1) 𝑡2
𝑁

𝑡
2

𝑁
=

1

Ω̂ (𝑥)



.

(22)

If 𝑖
𝑗
∈ Ω̂(𝑥), (1 < 𝑗 < 𝑘), then

lim
𝑡
𝑁
→0

𝜆
𝑖
𝑗

𝑞
𝑁
,𝑡
𝑁

(𝑥) = 3 (𝑗 − 1) 𝑐
𝑗−1

𝑡
2

𝑁
− 3

|
̂
Ω(𝑥)|−1

∑
𝑙=𝑗

𝑐
𝑙
𝑡
2

𝑁

= 3 (𝑗 − 1)
1

3 (𝑗 − 1) 𝑗𝑡2
𝑁

𝑡
2

𝑁

− 3

|
̂
Ω(𝑥)|−1

∑
𝑙=𝑗

1

3𝑡2
𝑁

(
1

𝑙
−

1

𝑙 + 1
) 𝑡

2

𝑁
=

1

Ω̂ (𝑥)



.

(23)

If 𝑖
𝑘
∈ Ω̂(𝑥), then 𝑘 = |Ω̂(𝑥)|. That is

lim
𝑡
𝑁
→0

𝜆
𝑖
𝑘

𝑞
𝑁
,𝑡
𝑁

(𝑥) = 3 (

Ω̂ (𝑥)


− 1) 𝑐

|
̂
Ω(𝑥)|−1

𝑡
2

𝑁
=

1

Ω̂ (𝑥)



. (24)

Then, lim
𝑡
𝑁
→0

𝜆
𝑖
𝑗

𝑞
𝑁
,𝑡
𝑁

(𝑥) = 1/|Ω̂(𝑥)|, 𝑖
𝑗
∈ Ω̂(𝑥).

If 𝑖
𝑗
∉ Ω̂(𝑥), (1 < 𝑗 < 𝑘), then lim

𝑡
𝑁
→0

𝜆
𝑖
𝑗

𝑞
𝑁
,𝑡
𝑁

(𝑥) = 0.
It now follows from (21) and (17) that (21) holds.The proof

is completed.

Next, let {𝑡
𝑁
}
∞

𝑁=1
be an infinite sequence such that 𝑡

𝑁
→

0, as 𝑁 → ∞, and consider the sequence of approximating
problems

(𝑃
𝑞
𝑁
,𝑡
𝑁

)min
𝑥∈𝑅
𝑛

𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥) , 𝑁 = 1, 2, 3, . . . , (25)

with 𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥) defined as in (12).

Theorem 7. The problems (𝑃
𝑞
𝑁
,t
𝑁

) epiconverge to the problem
𝑃.

Proof. Referring toTheorem 3.3.2 in [1], we see that to prove
the theorem it is sufficient to show that if {𝑥

𝑁
}
∞

𝑁=1
is a

sequence in 𝑅𝑛 converging to a point 𝑥, then 𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥) →

𝜙(𝑥).
Thus, suppose that 𝑥

𝑁
→ 𝑥 as 𝑁 → ∞. Then,


𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥
𝑁
) − 𝜙 (𝑥)



≤

𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥
𝑁
) − 𝜙

𝑁
(𝑥

𝑁
)

+

𝜙𝑁 (𝑥
𝑁
) − 𝜙 (𝑥)

 .

(26)

Now, by Theorem 2, 𝜙
𝑁
(𝑥

𝑁
) − 𝜙(𝑥) → 0 as 𝑁 → ∞, and,

since by assumption of 𝑡
𝑁

→ 0, as 𝑁 → ∞, it follows
from (14) that 𝛾

𝑞
𝑁
,𝑡
𝑁

(𝑥
𝑁
) − 𝜙

𝑁
(𝑥

𝑁
) → 0 as 𝑁 → ∞, which

completes our proof.

2. Spline Smoothing Newton
Method and Its Convergence

We combine Algorithm 3.1 in [18] with a discretization
precision test to produce an algorithm for solving the semi-
infinite minimax problems 𝑃. The Hessian ∇2

𝑥𝑥
𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥) of
the smoothing spline function 𝛾

𝑞
𝑁
,𝑡
𝑁

(𝑥) can be modified by
adding a multiple of the identity introduced in [20]; that is,

𝐵
𝑞
𝑁
,𝑡N

(𝑥) = 𝜃 (𝑥) 𝐼 + ∇
2

𝑥𝑥
𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥) , (27)

where 𝜃(𝑥) = max{0, 𝜗 − 𝑒(𝑥)} with 𝑒(𝑥) denoting the
minimum eigenvalue of ∇2

𝑥𝑥
𝛾
𝑞
𝑁
,𝑡
𝑁

(𝑥) and 𝜗 > 0.

Algorithm 8.

Data. Given 𝑥(0) ∈ 𝑅𝑛, a monotone increasing sequence of
sets {𝑌

𝑁
}
∞

𝑁=0
, 𝑌

𝑁
= {𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑞
𝑁

}, of cardinality 𝑞
𝑁
, with

𝑞
𝑁

→ ∞ as𝑁 → ∞, satisfying Assumption 1, and defining
the functions𝑓𝑁

𝑗(𝑥) = 𝜓(𝑥, 𝑦
𝑁
𝑗

), 𝑗 = 1, 2, . . . , 𝑞
𝑁
, a sequence

of monotone decreasing parameters {𝜋
𝑁
}
∞

𝑁=0
> 0, such that

𝜋
𝑁

→ 0 as 𝑁 → ∞, 𝜗 > 0, and 𝛿 > 0. Functions
𝜖
𝑎
(𝑡), 𝜖

𝑏
(𝑡), 𝜏(𝑡): (0,∞) → (0,∞), satisfying 𝜖

𝑏
(𝑡) ≥ 𝜖

𝑎
(𝑡) >

𝜏(𝑡), for all 𝑡 > 0, �̂� ≫ 1, 𝜅
1
∈ (0, 1), 𝜅

2
≫ 1, 0 < 𝜅

3
≪ 1.

Parameter. Set 𝛼, 𝛽 ∈ (0, 1).

Step 0. Set 𝑁 = 0.

Step 1. Set 𝑖 = 0, 𝑡
0
= 𝜋

𝑁
, 𝑘 = 0, 𝑠 = 1, 𝑙 = 9, 𝑥𝑘,𝑖 = 𝑥(0).

Step 2. Let 𝐼 = {𝑗 | max{𝑓𝑁
1(𝑥𝑘,𝑖), . . . , 𝑓𝑁

𝑞
𝑁 (𝑥𝑘,𝑖)}−𝑓𝑁

𝑗(𝑥𝑘,𝑖)

< 𝑡
𝑘
}; let 𝑘 be the cardinality of 𝐼, and 𝐼 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
}. Range
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{𝑓
𝑁
𝑖
𝑗 (𝑥𝑘,𝑖)}

𝑘

𝑗=1
according to 𝑓𝑁

𝑖
1 (𝑥𝑘,𝑖) ≥ 𝑓𝑁

𝑖
2 (𝑥𝑘,𝑖) ≥ ⋅ ⋅ ⋅ ≥

𝑓
𝑁
𝑖

𝑘 (𝑥𝑘,𝑖).
If 𝑘 = 1, the cell is Δ

𝑖
1

(𝑡
𝑘
).

Else if (�̃� − 1)𝑓
𝑁
𝑖
̃
𝑘 (𝑥

(𝑘,𝑖)

) − ∑
̃
𝑘−1

𝑗=1
𝑓
𝑁
𝑖
𝑗 (𝑥

(𝑘,𝑖)

) + 𝑡
𝑘
≥ 0, for

every �̃� ∈ {𝑘, 𝑘−1, . . . , 2}, we have �̃� ∈ 𝐼 ⊆ {𝑘, 𝑘−1, . . . , 2}. Let
�̂� be the maximum element of 𝐼; then the cell is Δ

𝑖
1
,...,𝑖̂
𝑘

(𝑡
𝑘
).

Step 3. Compute ∇
𝑥
𝛾
𝑞
𝑁
,𝑡
𝑘

(𝑥𝑘,𝑖). If ‖∇
𝑥
𝛾
𝑞
𝑁
,𝑡
𝑘

(𝑥𝑘,𝑖)‖
2

> 𝜏(𝑡
𝑘
), go

to Step 4. Else go to Step 9.

Step 4. Compute 𝐵
𝑞
𝑁
,𝑡
𝑘

(𝑥𝑘,𝑖) according to (27); then compute
Cholesky factor 𝑅 such that 𝐵

𝑞
𝑁
,𝑡
𝑘

(𝑥𝑘,𝑖) = 𝑅𝑅𝑇 and the
reciprocal condition number 𝑐(𝑅) of 𝑅.

If 𝑐(𝑅) ≥ 𝜅
1
and 𝑡

𝑘
≥ 𝜅

3
, go to Step 5.

Else if 𝑐(𝑅) ≥ 𝜅
1
and the largest eigenvalue 𝜎

𝑡
𝑘
,max(𝑥

𝑘,𝑖) of
𝐵
𝑞
𝑁
,𝑡
𝑘

(𝑥𝑘,𝑖) satisfies 𝜎
𝑡
𝑘
,max(𝑥

𝑘,𝑖) ≤ 𝜅
2
, go to Step 5.

Else go to Step 6.

Step 5. Compute the search direction

ℎ
𝑘,𝑖

= −𝐵
𝑞
𝑁
,𝑡
𝑘

(𝑥
𝑘,𝑖

)
−1

∇
𝑥
𝛾
𝑞
𝑁
,𝑡
𝑘

(𝑥
𝑘,𝑖

) ; (28)

go to Step 7.

Step 6. Compute the search direction

ℎ
𝑘,𝑖

= −∇
𝑥
𝛾
𝑞
𝑁
,𝑡
𝑘

(𝑥
𝑘,𝑖

) . (29)

Step 7. Compute the step length 𝜆
𝑘,𝑖

= 𝛽𝑙, where 𝑙 ≥ 0 is the
smallest integer satisfying

𝛾
𝑞
𝑁
,𝑡
𝑘

(𝑥
𝑘,𝑖

+ 𝛽
𝑙

ℎ
𝑘,𝑖

) − 𝛾
𝑞
𝑁
,𝑡
𝑘

(𝑥
𝑘,𝑖

)

≤ 𝛼𝛽
𝑙

⟨∇
𝑥
𝛾
𝑞
𝑁
,𝑡
𝑘

(𝑥
𝑘,𝑖

) , ℎ
𝑘,𝑖

⟩ .

(30)

Step 8. Set 𝑥𝑘,𝑖+1 = 𝑥𝑘,𝑖 + 𝜆
𝑘,𝑖

ℎ
𝑘,𝑖
, 𝑖 = 𝑖 + 1. Go to Step 2.

Step 9. If 𝑠 = 1, compute 𝑡∗ such that

𝜖
𝑎
(𝑡

𝑘
) ≤


∇
𝑥
𝛾
𝑞
𝑁
,𝑡
∗ (𝑥

𝑘,𝑖

)


2

≤ 𝜖
𝑏
(𝑡

𝑘
) ; (31)

go to Step 10.
Else set 𝑡

𝑘+1
= 1/𝑠(𝑘+2), 𝑘 = 𝑘+1, and 𝑖 = 0; go to Step 2.

Step 10. If 𝑡∗ ≥ �̂�, set 𝑡
𝑘+1

= min{𝑡∗, 𝑡
𝑘
/(𝑡

𝑘
+ 1)}, 𝑘 = 𝑘 + 1, and

𝑖 = 0; go to Step 2. Else set 𝑠 = max{2, ((1/ �̂� ) + 2)/(𝑘 + 1)},
𝑡
𝑘+1

= 1/𝑠(𝑘 + 2), 𝑘 = 𝑘 + 1, and 𝑖 = 0; go to Step 2.

Step 11. If
1

2


∇
𝑥
𝛾
𝑞
𝑁
,𝑡
𝑘

(𝑥
𝑘,𝑖

)


2

≤ 𝛿,

𝑞
𝑁

∑
𝑗=1

𝜆
𝑗

𝑞
𝑁
,𝑡
𝑘

(𝑥
𝑘,𝑖

) [𝜙
𝑁

(𝑥
𝑘,𝑖

) − 𝑓
𝑁
𝑗 (𝑥

𝑘,𝑖

)] ≤ 𝛿,

(32)

where the 𝜆
𝑗

𝑞
𝑁
,𝑡
𝑘

(𝑥𝑘,𝑖) are defined by (17), set 𝜉
𝑁

= 𝑥𝑘,𝑖, 𝑡
𝑁

=

𝑡
𝑘
, replace 𝑁 by 𝑁 + 1, 𝛿 by 𝛿/2, and go to Step 1.
Else go to Step 1.

Theorem9. Suppose that {𝜉
𝑁
}
∞

𝑁=0
is a sequence constructed by

Algorithm 8. Then, any accumulation point 𝜉 of this sequence
satisfies 𝜃(𝜉) = 0.

Proof. First note that it follows from Corollary 6 that condi-
tion (32) will be eventually satisfied, since Algorithm 8 keeps
abating 𝑡

𝑘
. Next, note that

−

𝑞
𝑁

∑
𝑗=1

𝜆
𝑗

𝑞
𝑁
,𝑡
𝑁

[𝜙
𝑁

(𝜉
𝑁
) − 𝑓

𝑁
𝑗 (𝜉

𝑁
)]

−
1

2


∇
𝑥
𝛾
𝑞
𝑁
,𝑡
𝑁

(𝜉
𝑁
)


2

≤ 𝜌
𝑁

(𝜉
𝑁
) ≤ 0.

(33)

Since by construction

−

𝑞
𝑁

∑
𝑗=1

𝜆
𝑗

𝑞
𝑁
,𝑡
𝑁

[𝜙
𝑁

(𝜉
𝑁
) − 𝑓

𝑁
𝑗 (𝜉

𝑁
)]

−
1

2


∇
𝑥
𝛾
𝑞
𝑁
,𝑡
𝑁

(𝜉
𝑁
)


2

→ 0, as 𝑁 → ∞,

(34)

and 𝜌
𝑁
(𝜉

𝑁
)→ 𝑘𝜌(𝜉) on any infinite subsequence {𝜉

𝑁
}
𝑁∈𝐾

that converges to 𝜉, the desired result follows.

3. Numerical Experiment

We have implemented Algorithm 8 using Matlab. In order
to show the efficiency of the algorithm, we also have
implemented algorithm in [16] (denote PWY) using similar
procedures. Algorithm PWY was proposed by Polak et al. in
[16], which has been introduced in Section 1.

The test results were obtained by running Matlab R2011a
on a desktop with Windows XP Professional operation
system, Intel(R) Core (TM) i3-370 2.40GHz processor, and
2.92GB of memory.

InAlgorithm 8, parameters are chosen as follows:𝛼 = 0.8,
𝛽 = 0.77, �̂� = 10

5 ln 𝑞
𝑁
, 𝜅

1
= 10−7, 𝜅

2
= 1030, 𝜅

3
= 1000 �̂�,

𝜏(𝑡) = min{0.1, 1000𝑡/(𝑁+1)
2

}, (𝜖
𝑎
, 𝜖

𝑏
) = (0.01, 0.2), 𝜗 = 0.1,

𝛿 = 1, 𝑞
𝑁

= 100 ⋅ 2
𝑁

+ 1, and 𝜋
𝑁

= 1/(𝑁
2

+ (1/𝑝
𝑁
)). In

the PWY algorithm, parameters are chosen as follows: 𝜀 =

0.1, 𝜏(𝑝) = min{0.1, 1000/((𝑁 + 1)
2

𝑝)}. The results are listed
in Tables 1, 2, 3, 4, and 5. 𝑥∗ denotes the final approximate
solution point and 𝜙

∗ is the value of the objective function of
discretized problems 𝑃

𝑌
𝑁

at 𝑥∗. 𝑚 is the maximum number
of discrete points. Time is the CPU time in seconds.

Example 1 (see [21]). Let 𝑥 = (𝑥
1
, 𝑥

2
, 𝑥

3
, 𝑥

4
, 𝑥

5
, 𝑥

6
) ∈ 𝑅6

𝜙 (𝑥, 𝑦) = 𝑥
2

1
exp (−𝑥

2
𝑦) cos2 (𝑥

3
𝑦 + 𝑥

4
) − cos (𝑦)

+ 𝑥
2

2
𝑥
2

3
exp (−𝑥

1
𝑦) sin2 (𝑥

2
𝑦)

+ exp ((1 − 𝑥
6
)
2

𝑦) + x2
5
,

𝑌 = [0, 10] .

(35)
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Table 1: Test results for Example 1.

𝑚 Method 𝜙∗ Time 𝑥∗

1638401 Algorithm 8 2.000062 9.4203 (1.1065, 1.0071, 1.1483, 1.0785, 0.0022, 1.0000)
819201 PWY 2.000056 51.4509 (0.9586, 1.0027, 1.1604, 1.0501, −0.0023, 0.9999)

Table 2: Test results for Example 2.

𝑚 Method 𝜙
∗ Time 𝑥

∗

1638401 Algorithm 8 0.948184 5.8026 (−4.9016, 0.0002, 1.0046, −0.1800)
1638401 PWY 0.948046 14.8421 (−4.7261, −0.0000, 1.0000, −0.1472)

Table 3: Test results for Example 3.

𝑚 Method 𝜙
∗ Time 𝑥

∗

819201 Algorithm 8 4.999999 1.5466 (2.0363, 1.9958, 0.0095, 1.5724)
819201 PWY 5.000483 18.2670 (1.4796, 1.3277, 0.62892, 1.5704)

Table 4: Test results for Example 4.

𝑚 Method 𝜙
∗ Time 𝑥

∗

6553601 Algorithm 8 −0.999999 3.6721 (0.0000, −44.0111)
3276801 PWY −0.999986 86.8183 (−0.0036, −44.0000)

Table 5: Test results for Example 5.

𝑚 Method 𝜙
∗ Time 𝑥

∗

2560000 Algorithm 8 1.828804 2.8550 (0.5548, 0.6475, 0.5946, 0.7662)
640000 PWY 1.828698 4.1854 (0.5556, 0.6497, 0.5971, 0.7684)

Example 2 (see [21]). Let 𝑥 = (𝑥
1
, 𝑥

2
, 𝑥

3
, 𝑥

4
) ∈ 𝑅4

𝜙 (𝑥, 𝑦) = (𝑥
1
+ √𝑥2

1
+ cos (𝑦) + 4)

× ln (sin𝑦 + exp (cos𝑥
1
+ 𝑥

2

2
))

+ (exp (−𝑦) −
𝑥
3
+ 𝑦𝑥

4

1 + 𝑥2

3

)

2

,

𝑌 = [0, 10] .

(36)

Example 3. Let 𝑥 = (𝑥
1
, 𝑥

2
, 𝑥

3
, 𝑥

4
) ∈ 𝑅4

𝜙 (𝑥, 𝑦) = 𝑥
2

2
𝑥
2

3
exp (−𝑥

1
𝑦) sin2 (𝑥

2
𝑦)

− 𝑥
1
cos (𝑦) − 𝑥

4
sin (𝑦) + 5,

𝑌 = [0, 2𝜋] .

(37)

Example 4. Let 𝑥 = (𝑥
1
, 𝑥

2
) ∈ 𝑅2

𝜙 (𝑥, 𝑦) = 𝑥
2

1
+ 2𝑥

1
𝑦
2

+ 𝑒
𝑥
1
+𝑥
2 − 𝑒

𝑦

,

𝑌 = [0, 10] .
(38)

Example 5. Let 𝑥 = (𝑥
1
, 𝑥

2
, 𝑥

3
, 𝑥

4
) ∈ 𝑅4

𝜙 (𝑥, 𝑦) =
(𝑦

1
− 𝑥

1
)
2

𝑥2

3

+
(𝑦

2
− 𝑥

2
)
2

𝑥2

4
− 1

,

𝑌 = [0, 1] × [0, 1] .

(39)

4. Conclusion

We have developed a spline smoothing Newton method for
the solution of semi-infiniteminimax problems using smooth
cubic spline anddiscretization strategy.At each iteration, only
few components in the max function are computed; hence,
the computation cost is greatly reduced. For semi-infinite
minimax problems with complicated component functions,
numerical tests show that the new method is very efficient.
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