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The general vertex-distinguishing total chromatic number of a graph 𝐺 is the minimum integer 𝑘, for which the vertices and edges
of𝐺 are colored using 𝑘 colors such that any two vertices have distinct sets of colors of them and their incident edges. In this paper,
we figure out the exact value of this chromatic number of some special graphs and propose a conjecture on the upper bound of this
chromatic number.

1. Introduction

All graphs considered in this paper are simple and finite. For
a graph 𝐺, we denote by 𝑉(𝐺), 𝐸(𝐺), Δ(𝐺), and 𝛿(𝐺) the sets
of vertices, edges, maximum degree, and minimum degree of
𝐺, respectively. For a vertex V of 𝐺, 𝑑

𝐺
(V) is the degree of V in

𝐺. For any 𝑉󸀠 ⊆ 𝑉(𝐺), we use 𝐺[𝑉󸀠] to denote the subgraph
induced by𝑉󸀠. For any undefined terms, the reader is referred
to the book [1].

The coloring problem of graphs is one of the classical
research areas in graph theory. It has been widely applied
to various fields, such as large scheduling [2], assignment
of radio frequency [3], and separating combustible chemical
combinations [4]. Due to its extensive application, many new
variants of colorings have been studied [5].

Recall that a 𝑘-edge coloring of a graph 𝐺 is a mapping
𝑓: 𝐸(𝐺) → 𝐶, where 𝐶 is a set of 𝑘 colors. An edge
coloring is proper if adjacent edges receive distinct colors.
In 1985, Harary and Plantholt [6] first considered point-
distinguishing chromatic index, which is a variant of edge
coloring. After that, many other variants of edge coloring
were introduced, such as vertex-distinguishing proper edge
coloring [7], adjacent vertex-distinguishing edge coloring [8],
and general adjacent vertex-distinguishing edge coloring [9].

A total 𝑘-coloring of a graph𝐺 is a coloring of𝑉(𝐺)∪𝐸(𝐺)
using 𝑘 colors. A total 𝑘-coloring is proper if no two adjacent
or incident elements receive the same color. The minimum
number of colors required for a proper total coloring of 𝐺

is called the total chromatic number of 𝐺 and is denoted by
𝜒
𝑡
(𝐺). Behzad [10] and Vizing [11] independently made the

conjecture that, for any graph 𝐺,

𝜒
𝑡 (𝐺) ≤ (𝐺) + 2. (1)

This is known as the total coloring conjecture (𝑇𝐶𝐶) and is
still unproven.

Let 𝑓 be a total 𝑘-coloring of 𝐺. The total color set (with
respect to𝑓) of a vertex V ∈ 𝑉(𝐺) is the set, denoted by𝐶𝑓(V),
of colors of V and its incident edges. We denote byC𝑓(𝐺) the
set of total color sets of all vertices of 𝐺. Furthermore, let 𝑆
be a subset of 𝑉(𝐺) ∪ 𝐸(𝐺); we use 𝐶

𝑓
(𝑆) to denote the set of

colors of elements of 𝑆.
Like edge coloring, total coloring also has some variants.

In 2005, Zhang et al. [12] added a restriction to the definition
of total coloring and proposed a new type of coloring defined
as follows.

Definition 1. Let 𝑓 be a proper total 𝑘-coloring of a graph
𝐺. If, for all 𝑢, V ∈ 𝑉(𝐺), 𝐶

𝑓
(𝑢) ̸= 𝐶

𝑓
(V), then 𝑓 is called

an adjacent vertex-distinguishing total 𝑘-coloring of 𝐺, or a
𝑘-AVDTC of 𝐺 for short. The minimum number 𝑘 for which
𝐺 has a 𝑘-AVDTC is the adjacent vertex-distinguishing total
chromatic number of 𝐺, denoted by 𝜒

𝑎𝑡
(𝐺).

Zhang et al. [12] conjectured that, for any graph 𝐺, it has

𝜒
𝑎𝑡 (𝐺) ≤ Δ (𝐺) + 3. (2)
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In [13–15], authors proved that there exists a 6-AVDTC of
graphs with Δ = 3, which indicates conjecture (2) holds
for such graphs. For further research on adjacent vertex-
distinguishing total chromatic number, one may refer to [16–
23].

For a 𝑘-AVDTC𝑓 of a graph 𝐺, if 𝐶
𝑓
(𝑢) ̸= 𝐶

𝑓
(V) is

required for any two distinct vertices 𝑢, V, then 𝑓 is called
a vertex-distinguishing total 𝑘-coloring of 𝐺, abbreviated as
𝑘-VDTC.Theminimumnumber 𝑘 such that𝐺 has a 𝑘-VDTC
is called the vertex-distinguishing total chromatic number,
denoted by 𝜒V𝑡(𝐺) [24]. Zhang et al. conjectured in [24] that,
for any graph 𝐺, it follows that

𝜇
𝑡 (𝐺) ≤ 𝜒V𝑡 (𝐺) ≤ 𝜇𝑡 (𝐺) + 1, (3)

where 𝜇𝑡(𝐺) = min{𝑘 | ( 𝑘
𝑖+1
) ≥ 𝑛𝑖, 𝛿 ≤ 𝑖 ≤ Δ}.

In this paper, we introduce a variant of vertex-
distinguishing total coloring of a graph 𝐺, which relaxes the
restriction that the coloring is proper. We now present the
detailed definition as follows.

Definition 2. Let 𝐺 be a graph and 𝑘 be a positive integer.
A total coloring 𝑓 of 𝐺 using 𝑘 colors is called a general
vertex-distinguishing total 𝑘-coloring of 𝐺 (or 𝑘-GVDTC of
𝐺 briefly) if, for all𝑢, V ∈ 𝑉(𝐺),𝐶𝑓(𝑢) ̸= 𝐶

𝑓
(V).Theminimum

number 𝑘 for which 𝐺 has a 𝑘-GVDTC is the general vertex-
distinguishing total chromatic number, denoted by 𝜒

𝑔V𝑡(𝐺).

It is evident that 𝜒
𝑔V𝑡(𝐺) does exist for any graph 𝐺. In

this paper, we study the general vertex-distinguishing total
coloring of some special classes of graphs and obtain the exact
value of the general vertex-distinguishing total chromatic
number of these graphs. Furthermore, we propose a con-
jecture on the upper bound of general vertex-distinguishing
total chromatic number of a graph.

2. Main Results

We first present a trivial lower bound on the general vertex-
distinguishing total chromatic number of a graph.

Theorem 3. Let 𝐺 be a graph on 𝑛 vertices. Then

𝜒𝑔V𝑡 (𝐺) ≥ ⌈log2 (𝑛 + 1)⌉ . (4)

Proof. Let 𝜒
𝑔V𝑡(𝐺) = 𝑘. It follows that 𝑛 ≤ ( 𝑘

1
) + ( 𝑘
2
) + ⋅ ⋅ ⋅ +

( 𝑘
𝑘
) = 2
𝑘
− 1, so 𝑘 ≥ ⌈log

2
(𝑛 + 1)⌉.

Notice that the lower bound ofTheorem 3 can be attained
in graphs, such as the 𝑛-vertex path 𝑃𝑛 for 𝑛 = 1, 2, . . . , 7. One
can readily check that 𝜒

𝑔V𝑡(𝑃
1
)
= 1 and 𝜒

𝑔V𝑡(𝑃
𝑛
)
= 2 for 𝑛 = 2, 3

and 𝜒
𝑔V𝑡(𝑃
𝑛
)
= 3 for 𝑛 = 4, 5, 6, 7.

Theorem 4. Let 𝐺 be a graph without isolated vertices and
isolated edges. Then

𝜒𝑔V𝑡 (𝐺) ≤ 𝜒
󸀠

𝑔V𝑑 (𝐺) . (5)

Proof. Suppose that 𝑓 is a 𝑘-GVDEC of 𝐺. For any 𝑢 ∈ 𝑉(𝐺),
let 𝑓(𝑢) = 𝑓(𝑢V), where 𝑢V ∈ 𝐸(𝐺). Obviously, 𝑓 is a
𝑘-GVDTC of 𝐺.

We now turn to investigating the general vertex-
distinguishing total chromatic number of an 𝑛-vertex path.

Theorem 5. Let 𝑃
𝑛
be a path on 𝑛 vertices, 𝑛 ≥ 1. Then

𝜒
𝑔V𝑡 (𝑃𝑛) =

[
[
[
[

3
√3𝑛 + √9𝑛2 +

125

27
+
3
√3𝑛 − √9𝑛2 +

125

27

]
]
]
]

.

(6)

Proof. Denote by 𝑃
𝑛
= V
1
V
2
⋅ ⋅ ⋅ V
𝑛
a path 𝑃

𝑛
with vertex

set {V
1
, V
2
, . . . , V

𝑛
} and edge set {V

1
V
2
, V
2
V
3
, . . . , V

𝑛−1
V
𝑛
}. Let

𝜒
𝑔V𝑡(𝑃𝑛) = 𝑘, and let 𝑓 be a 𝑘-GVDTC of 𝑃

𝑛
. Let 𝛼

𝑘
= ( 𝑘−1
1
)+

( 𝑘−1
2
) + ( 𝑘−1

3
), 𝛽
𝑘
= ( 𝑘
1
) + ( 𝑘
2
) + ( 𝑘
3
), 𝛾
𝑘
= 1 + ( 𝑘−1

1
) + ( 𝑘−1

2
),

and

𝑘
∗
= [[
[
[

3
√3𝑛 + √9𝑛2 +

125

27
+
3
√3𝑛 − √9𝑛2 +

125

27

]
]
]
]

. (7)

Evidently, |𝐶𝑓(V𝑖)| ≤ 3, and 𝑛 ≤ 𝛽𝑘 (which implies 𝑘 ≥

𝑘
∗). In order to prove the conclusion, 𝑘 = 𝑘

∗, it suffices
to give a 𝑘∗-GVDTC of 𝑃

𝑛
. When 𝑛 ≤ 7, it is not hard

to construct the corresponding general vertex-distinguishing
total colorings. Let 𝑛 ≥ 8. We first construct a 𝑘∗-GVDTC𝑓󸀠
of 𝑃
𝛽
𝑘

recursively. Note that when 𝑛 = 𝛽
𝑘
, it has 𝑘∗ = 𝑘.

Procedure 1. Construct a 4-GVDTC𝑓
4
of 𝑃
𝛽
4

(i.e., 𝑃
14
) as

follows: the vertices V
1
, V
2
, . . . , V

14
are colored by 1, 3, 4, 2, 3, 1,

4, 2, 3, 4, 3, 4, 4, 1, respectively; the edges V
1
V
2
, V
2
V
3
,

V
3
V
4
, . . . , V

13
V
14

are colored by 1, 3, 1, 1, 2, 4, 2, 2, 2, 3, 3, 4, 4,
respectively. It is easy to see that 𝑓

4
is a 4-GVDTC of 𝑃

14
.

Procedure 2. Construct a 𝑘-GVDTC𝑓
𝑘
of 𝑃
𝛽
𝑘

based on a (𝑘 −
1)-GVDTC𝑓𝑘−1 of 𝑃𝛽

𝑘−1

. Let 𝑓𝑘 be

𝑓
𝑘
(V
𝑖+𝛾
𝑘

) = 𝑓
𝑘−1

(V
𝑖
) + 1, 𝑖 = 1, 2, . . . , 𝛼

𝑘
− 1;

𝑓
𝑘
(V
𝛼
𝑘
+𝛾
𝑘

) = 𝑓
𝑘−1

(V
𝛼
𝑘

) = 1;

𝑓𝑘 (V𝑖+𝛾
𝑘

V𝑖+1+𝛾
𝑘

) = 𝑓𝑘−1 (V𝑖V𝑖+1) + 1, 𝑖 = 1, 2, . . . , 𝛼𝑘 − 1;

𝑓
𝑘
(V
1
) = 1, 𝑓

𝑘
(V
𝛾
𝑘

) = 𝑘;

(8)

V
2
, V
3
, . . . , V

𝛾
𝑘
−1

are colored by

𝑘 − 1, 𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2 elements
, 𝑘 − 2, 𝑘 − 1, 𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

3 elements
, . . . , 2, 3, . . . , 𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘−1 elements
; (9)

when 𝑘 is even, V
1
V
2
, V
2
V
3
, V
3
V
4
, . . . , V

𝛾
𝑘

V
𝛾
𝑘+1

are colored by
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1⏟⏟⏟⏟⏟⏟⏟

1 element
, 𝑘 − 1, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2 elements
, 1, 𝑘 − 2, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

3 elements
, 𝑘 − 3, 1, 𝑘 − 3, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

4 elements
, 1, 𝑘 − 4, 1, 𝑘 − 4, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

5 elements
,

...,

1, 𝑘 − (𝑘 − 4), . . . , 1, 𝑘 − (𝑘 − 4), 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘−3 elements
, 𝑘 − (𝑘 − 3), 1, . . . , 𝑘 − (𝑘 − 3), 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘−2 elements
,

2, 1, . . . , 2, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘−2 elements
, 2, 2⏟⏟⏟⏟⏟⏟⏟

2 elements
;

(10)

when 𝑘 is odd, V1V2, V2V3, V3V4, . . . , V𝛾
𝑘

V𝛾
𝑘+1

are colored by

1⏟⏟⏟⏟⏟⏟⏟

1 element
, 𝑘 − 1, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2 elements
, 1, 𝑘 − 2, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

3 elements
, 𝑘 − 3, 1, 𝑘 − 3, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

4 elements
, 1, 𝑘 − 4, 1, 𝑘 − 4, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

5 elements
,

...,

𝑘 − (𝑘 − 4), 1, . . . , 𝑘 − (𝑘 − 4), 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘−3 elements
, 1, 𝑘 − (𝑘 − 3), . . . , 1, 𝑘 − (𝑘 − 3), 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘−2 elements
,

1, 2, . . . , 1, 2, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘−2 elements
, 2, 2⏟⏟⏟⏟⏟⏟⏟

2 elements
.

(11)

It should be pointed out that when 𝑗 is odd for 𝑗 ∈

{1, 2, . . . , 𝑘 − 3}, the colors’ form is 𝑘− 𝑗, 1, 𝑘 − 𝑗, 1, . . . , 𝑘 − 𝑗, 1
with totally 𝑗 + 1 elements, and when 𝑗 is even for 𝑗 ∈

{1, 2, . . . , 𝑘−3}, the colors’ form is 1, 𝑘−𝑗, 1, 𝑘−𝑗, . . . , 1, 𝑘−𝑗, 1
with 𝑗 + 1 elements in total.

According to 𝑓
𝑘−1

, we can see that, for any 𝑖, 𝑗 = 𝛾
𝑘
+

1, 𝛾
𝑘
+ 2, . . . , 𝛽

𝑘
− 1, and 𝑖 ̸= 𝑗, it follows that {2, 𝑘} is not

a total color set of vertices V𝑖, 1 ∉ 𝐶𝑓
𝑘

(V𝑖), and 𝐶𝑓
𝑘

(V𝑖) ̸=

𝐶𝑓
𝑘

(V𝑗). In addition, 𝐶1, 𝐶2, . . . , 𝐶𝛾−1 are as follows: {1} (1
item), {{1, 𝑘 − 1}, {1, 𝑘 − 1, 𝑘}} (2 items), {{1, 𝑘 − 2}, {1, 𝑘 −
2, 𝑘 − 1}, {1, 𝑘 − 2, 𝑘}} (3 items), . . .,{{1, 𝑘 − 𝑗}, {1, 𝑘 − 𝑗, 𝑘 −
𝑗 + 1}, {1, 𝑘 − 𝑗, 𝑘 − 𝑗 + 2}, . . . , {1, 𝑘 − 𝑗, 𝑘}} (𝑗 + 1 items), . . .,
and {{1, 2}, {1, 2, 3}, {1, 2, 4}, . . . , {1, 2, 𝑘}} (𝑘 − 1 items). And
𝐶𝑓
𝑘

(V𝛾
𝑘

) = {2, 𝑘}. So, 𝑓𝑘 is a 𝑘-GVDTC of 𝑃𝛽
𝑘

. We now show
that 𝑃𝑛 also has a 𝑘-GVDTC based on a 𝑘-GVDTC of 𝑃𝛽

𝑘

, for
( 𝑘−1
1
) + ( 𝑘−1

2
) + ( 𝑘−1

3
) < 𝑛 < 𝛽

𝑘
.

Let 𝑟 = 𝛽 − 𝑛, and let 𝑓 be a 𝑘-GVDTC of 𝑃
𝛽
𝑘

constructed by Procedures 1 and 2. We first delete 𝑟 ver-
tices V

1
, V
2
, . . . , V

𝑟
from 𝑃

𝛽
𝑘

. Obviously, the resulting graph,
denoted by V

𝑟+1
V
𝑟+2

⋅ ⋅ ⋅ V
𝛽
𝑘

, is isomorphic to 𝑃
𝑛
. Let 𝑓󸀠 be

𝑓
󸀠
(V
𝑖
V
𝑖+1
) = 𝑓(V

𝑖
V
𝑖+1
) for 𝑖 = 𝑟 + 1, 𝑟 + 2, . . . , 𝛽

𝑘
− 1; 𝑓󸀠(V

𝑖
) =

𝑓(V
𝑖
) for 𝑖 = 𝑟 + 2, . . . , 𝛽; and 𝑓󸀠(V

𝑟+1
) = 1. Then 𝑓󸀠 is a 𝑘-

GVDTC of 𝑃
𝑛
.

All the above show that the conclusion holds.

According toTheorem 5, we have the same conclusion on
cycles. Let 𝐶

𝑛
= V
1
V
2
⋅ ⋅ ⋅ V
𝑛
V
1
be an 𝑛-vertex cycle with vertex

set {V
1
, V
2
, . . . , V

𝑛
} and edge set {V

1
V
2
, V
2
V
3
, . . . , V

𝑛−1
V
𝑛
, V
𝑛
V
1
}.

Corollary 6. For any cycle 𝐶𝑛 (𝑛 ≥ 3), one has

𝜒
𝑔V𝑡 (𝐶𝑛) =

[
[
[
[

3
√3𝑛 + √9𝑛2 +

125

27
+
3
√3𝑛 − √9𝑛2 +

125

27

]
]
]
]

.

(12)
Proof. Let 𝐶𝑛 = V1V2 ⋅ ⋅ ⋅ V𝑛V1 and 𝑃𝑛 = 𝐶𝑛 \ V1V𝑛; let also

𝑘
∗
= [[
[
[

3
√3𝑛 + √9𝑛2 +

125

27
+
3
√3𝑛 − √9𝑛2 +

125

27

]
]
]
]

(13)

and let 𝑓 be a 𝑘∗-GVETC of 𝑃
𝑛
, constructed by the method

ofTheorem 5.Then we can extend𝑓 to a 𝑘∗-GVETC of𝐶
𝑛
by

assigning color 1 to edge V
1
V
𝑛
. So, the conclusion holds.

In the following (Theorem 7 to Theorem 9), we discuss
the general vertex-distinguishing total chromatic number of
some kinds of special trees. A star 𝑆

𝑛
is the complete bipartite

graph 𝐾
1,𝑛

(𝑛 ≥ 1). A double star 𝑆
𝑚,𝑛

is a tree containing
exactly two vertices that are not leaves (which are necessarily
adjacent). A tristar 𝑆

𝑝,𝑞,𝑟
is a tree with vertex set 𝑉(𝑆

𝑝,𝑞,𝑟
) =

{𝑢
𝑖
| 𝑖 = 0, 1, . . . , 𝑝}∪{V

𝑖
| 𝑖 = 0, 1, . . . , 𝑞}∪{𝑤

𝑖
| 𝑖 = 0, 1, . . . , ℓ}

and edge set 𝐸(𝑆
𝑝,𝑞,𝑟

) = {𝑢
0
𝑢
𝑖
| 𝑖 = 1, 2, . . . , 𝑝} ∪ {V

0
V
𝑖
| 𝑖 =

1, 2, . . . , 𝑞} ∪ {𝑤
0
𝑤
𝑖
| 𝑖 = 1, 2, . . . , 𝑟} ∪ {𝑢

0
V
0
, V
0
𝑤
0
}, where

𝑝, 𝑞, 𝑟 are positive integers.

Theorem 7. For a star 𝑆
𝑛
(𝑛 ≥ 1), one has

𝜒
𝑔V𝑡 (𝑆𝑛) =

{{

{{

{

2, 𝑛 = 1, 2;

⌈
√8𝑛 + 1 − 1

2
⌉ , 𝑛 ≥ 3.

(14)
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Proof. When 𝑛 = 1, 2, the conclusion is trivial. For 𝑛 ≥ 3,
let 𝜒𝑔V𝑡(𝑆𝑛) = 𝑘, and ⌈(√8𝑛 + 1 − 1)/2⌉ = 𝑘

󸀠. Since, for any
𝑢 ∈ 𝑉(𝑆𝑛) \ 𝑢0 (𝑢0 is the vertex with 𝑑𝑆

𝑛

(𝑢0) ≥ 2), |𝐶𝑓(𝑢)| ≤ 2
for any 𝑘-GVDTC𝑓 of 𝑆𝑛, it follows that 𝑛 ≤ ( 𝑘1 ) + ( 𝑘2 ); that
is, 𝑘 ≥ 𝑘

󸀠. In order to prove 𝑘 = 𝑘
󸀠, we need to show that

there exists a 𝑘󸀠-GVDTCof 𝑆
𝑛
. Otherwise, let 𝑆

𝑛
∗ be the graph

with minimum 𝑛
∗ such that 𝑆

𝑛
∗ does not have a 𝑘󸀠-GVDTC,

where 𝑛∗ ≤ 𝑛. Let 𝑢 be a vertex of degree 1 in 𝑆
𝑛
∗ . Consider the

graph 𝐺󸀠 = 𝑆
𝑛
∗ − 𝑢, obtained from 𝑆

𝑛
∗ by deleting the vertex

𝑢 and its incident edge. By the assumption of 𝑆
𝑛
∗ , 𝐺󸀠 has a

𝑘
󸀠-GVDTC, denoted by 𝑓󸀠. In addition, by interchanging the

colors of some vertex and its incident edge appropriately, we
can assume |𝐶󸀠

𝑓
(𝑢0)| ≥ 2. Since 𝑛∗ − 1 < ( 𝑘

󸀠

1
) + ( 𝑘

󸀠

2
), there

is at least one set {𝑎, 𝑏}, for 𝑎, 𝑏 ∈ {1, 2, . . . , 𝑘
󸀠
}, which is not

the total color set of the vertices of 𝐺󸀠. So, on the basis of 𝑓󸀠,
in 𝑆
𝑛
∗ we can color 𝑢 and its incident edge 𝑢𝑢

0
by 𝑎 and 𝑏,

respectively. Obviously, the resulting coloring is a 𝑘󸀠-GVDTC
of 𝑆𝑛∗ .

For two vertices 𝑢, V of a graph 𝐺, to identify these two
vertices is to replace them by a single vertex (denoted by 𝑢-V
in this paper) incident to all the edges which were incident in
𝐺 to either 𝑢 or V. The resulting graph is denoted by 𝐺/{𝑢, V}.
In what follows, we denoted by [1, 𝑘] the set of {1, 2, . . . , 𝑘}.

Theorem 8. Let 𝑆
𝑚,𝑛

(𝑚 ≥ 𝑛 ≥ 1) be a double star, and ℓ =
𝑚 + 𝑛. Then

𝜒𝑔V𝑡 (𝑆𝑚,𝑛) =

{{{{

{{{{

{

3, ℓ = 2, 3, 4, 5;

4, ℓ = 6;

⌈
√8ℓ + 1 − 1

2
⌉ , ℓ ≥ 7.

(15)

Proof. When ℓ ≤ 6, the results are easy to be proved. When
ℓ ≥ 7, let 𝑢, V be two vertices with degree more than 1, and
𝐺
󸀠
= 𝑆
𝑚,𝑛
/{𝑢, V}. Evidently, the graph 𝐺󸀠 is isomorphic to the

star 𝑆
ℓ
. Let 𝑘󸀠 = ⌈(√8ℓ + 1 − 1)/2⌉. Since |𝐶

𝑓
(𝑥)| ≤ 2 for any

𝑥 ∈ 𝑉(𝑆
𝑚,𝑛) \ {𝑢, V}, we have 𝜒𝑔V𝑡(𝑆𝑚,𝑛) ≥ 𝑘

󸀠.
By Theorem 7, 𝐺󸀠 contains a 𝑘󸀠-GVDTC𝑓󸀠. Evidently,

|𝐶
𝑓
󸀠(𝑥)| ≤ 2 for any 𝑥 ∈ 𝑉(𝐺󸀠)\{𝑢−V} and |𝐶

𝑓
󸀠(𝑢−V)| ≤ 𝑘󸀠. If

|𝐶
𝑓
󸀠(𝑢−V)| ≤ 2, thenwe can extend𝑓󸀠 to a 𝑘󸀠-GVDTCof 𝑆𝑚,𝑛

by coloring vertices 𝑢, V and edge 𝑢V with any three different
colors in [1, 𝑘]\{𝑓󸀠(𝑢−V)}; if |𝐶𝑓󸀠(𝑢−V)| = ℓ

󸀠
≥ 3, we without

loss of generality assume 𝐶
𝑓
󸀠(𝑢 − V) \ 𝑓󸀠(𝑢 − V) = [1, ℓ󸀠]. Let

𝐸
𝑢
(resp., 𝐸V) be the set of edges (except edge 𝑢V) incident

to 𝑢 (resp., V) in 𝑆
𝑚,𝑛

. We now extend 𝑓󸀠 to a 𝑘󸀠-GVDTC
of 𝑆
𝑚,𝑛

as follows. By the fact that there remain vertices 𝑢, V
and edge 𝑢V uncolored in 𝑆

𝑚,𝑛
when 𝑓󸀠 is restricted to 𝑆

𝑚,𝑛
,

we consider the following two cases. First, one of 𝑢, V, say 𝑢,
satisfies that 𝐶

𝑓
󸀠(𝐸
𝑢
) contains at most two elements. Assume

𝐶
𝑓
󸀠(𝐸
𝑢
) ⊆ {1, 2}; we then color 𝑢, 𝑢V, V by 2, 3, 𝑐, respectively,

where 𝑐 = 4 when 𝐶
𝑓
󸀠(𝐸
𝑢
) ̸= {3, 4} and 𝑐 = 2 when

𝐶
𝑓
󸀠(𝐸
𝑢
) = {3, 4}.The resulting coloring of 𝑆

𝑚,𝑛
is also denoted

by 𝑓󸀠. Then it follows in 𝑆
𝑚,𝑛

that |𝐶
𝑓
󸀠(𝑢)| ≥ 3, |𝐶

𝑓
󸀠(V)| ≥ 3,

and 4 ∉ 𝐶
𝑓
󸀠(𝑢) and 4 ∈ 𝐶

𝑓
󸀠(V). So, 𝑓󸀠 is a 𝑘󸀠-GVDTC of 𝑆

𝑚,𝑛
.

Second, |𝐶
𝑓
󸀠(𝐸V)| ≥ 3 and |𝐶𝑓󸀠(𝐸𝑢)| ≥ 3; then we will further

discuss two subcases.

(1) Consider |𝐶󸀠
𝑓
(𝐸
𝑢
)| = |𝐶

󸀠

𝑓
(𝐸V)| = 𝑘

󸀠. Suppose that 𝑉
𝑢

(and𝑉V) is the set of vertices, except V (or 𝑢), adjacent
to 𝑢 (and V) in 𝑆𝑚,𝑛. Because 𝑓

󸀠 is a 𝑘󸀠-GVDTC of
𝐺
󸀠, either 𝑉

𝑢
or 𝑉V contains no vertices with total

color set {𝑖}, for some 𝑖 ∈ {1, 2, . . . , 𝑘
󸀠
}. Without loss

of generality we assume that there is no vertex 𝑥 ∈

𝑉
𝑢
with 𝐶

󸀠

𝑓
(𝑥) = {𝑖}. For any vertex 𝑦 in 𝑉

𝑢
such

that 𝐶󸀠
𝑓
(𝑦) = {𝑖, 𝑗} and 𝑓󸀠(𝑦𝑢) = 𝑖, interchange the

two colors of 𝑦 and 𝑦𝑢. The resulting coloring, still
denoted by 𝑓󸀠, satisfies that 𝐶

𝑓
󸀠(𝐸
𝑢
) does not contain

color 𝑖. Then we color 𝑢, 𝑢V, V by any three colors in
{1, 2, . . . , 𝑘

󸀠
} \ {𝑖} and obtain a 𝑘󸀠-GVDTC of 𝑆

𝑚,𝑛
.

(2) Consider |𝐶󸀠
𝑓
(𝐸
𝑢
)| < 𝑘

󸀠 or |𝐶󸀠
𝑓
(𝐸V)| < 𝑘

󸀠; assume
|𝐶
󸀠

𝑓
(𝐸
𝑢
)| < 𝑘

󸀠 here. Let 𝑖 ∉ 𝐶󸀠
𝑓
(𝐸
𝑢
). Color V by 𝑖 and

color 𝑢, 𝑢V by any two colors in [1, 𝑘󸀠] \ {𝑖}. Obviously,
the resulting coloring is a 𝑘󸀠-GVDTC of 𝑆𝑚,𝑛.

All the above show that𝜒
𝑔V𝑡(𝑆𝑚,𝑛) ≤ 𝑘

󸀠. So, the conclusion
holds.

Theorem 9. Let 𝑆
𝑝,𝑞,ℓ

be a tristar defined as above, and ℓ =
𝑝 + 𝑞 + 𝑟. Then

𝜒
𝑔V𝑡 (𝑆𝑝,𝑞,𝑟) =

{{

{{

{

3, ℓ = 3, 4;

4, ℓ = 5, 6;

⌈(√8𝑟 + 1 − 1) /2⌉ , ℓ ≥ 7.

(16)

Proof. When ℓ = 3, 4, the conclusion is easy to be checked;
when ℓ = 5 or 6, since |𝑉(𝑆

𝑝,𝑞,𝑟
)| ≥ 8 and ( 3

1
) + ( 3
2
) + ( 3
3
) =

7, it follows that 𝜒
𝑔V𝑡(𝑆𝑝,𝑞,𝑟) > 3. In addition, it is not hard

to give a 4-GVDTC of 𝑉(𝑆
𝑝,𝑞,𝑟

) in each case of ℓ = 5 or 6,
so 𝜒
𝑔V𝑡(𝑆𝑝,𝑞,𝑟) = 4; when ℓ ≥ 7, let 𝑘󸀠 = ⌈(√8𝑟 + 1 − 1)/2⌉.

Identify vertices 𝑢
0
and V
0
in 𝑆
𝑝,𝑞,𝑟

and let 𝐺󸀠 = 𝑆
𝑝,𝑞,𝑟

/{𝑢, V}.
By Theorem 8, 𝐺󸀠 has a 𝑘󸀠-GVDTC𝑓󸀠. With the analogous
analysis method ofTheorem 8, we can also extend 𝑓󸀠 to a 𝑘󸀠-
GVDTC of 𝑆

𝑝,𝑞,𝑟
. This shows 𝜒

𝑔V𝑡(𝑆𝑝,𝑞,𝑟) ≤ 𝑘
󸀠. On the other

hand, for any 𝑘-GVDTC𝑓 of 𝑆
𝑝,𝑞,𝑟

, it has that ℓ ≤ ( 𝑘
1
) + ( 𝑘
2
);

that is, 𝑘 ≥ 𝑘󸀠. So, the result holds.

In the above, we construct a 𝑘-GVDTC of a graph 𝐺 by
extending a 𝑘-GVDTC of graph 𝐺󸀠, where 𝐺󸀠 is the resulting
graph of identifying two vertices of degree more than 1 in 𝐺.
But thismethoddoes not alwayswork. For instance, the graph
𝐺/{𝑢, V} shown in Figure 1(b) has a 4-GVDTC, but the graph
𝐺 shown in Figure 1(a) does not contain any 4-GVDTC. So
any 4-GVDTCof𝐺/{𝑢, V} can not be extended to a 4-GVDTC
of 𝐺.

In the following we are devoted to the study of the general
vertex-distinguishing chromatic number of fan graph 𝐹𝑛,
wheel graph 𝑊𝑛, and complete graph 𝐾𝑛. Let 𝐺,𝐻 be two
graphs such that𝑉(𝐺)∩𝑉(𝐻) = 0.The join𝐺+𝐻 of𝐺 and𝐻
is a graph with vertex set 𝑉(𝐺 +𝐻) = 𝑉(𝐺) ∪𝑉(𝐻) and edge
set 𝐸(𝐺 + 𝐻) = 𝐸(𝐺) ∪ 𝐸(𝐻) ∪ {𝑢V | 𝑢 ∈ 𝑉(𝐺), V ∈ 𝑉(𝐻)}. A
fan graph 𝐹

𝑛
is defined as the join of a path of 𝑛 vertices and

an isolated vertex. A wheel graph𝑊
𝑛
is defined as the join of

a cycle of 𝑛 vertices and an isolated vertex.
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Figure 1: (a) A graph, 𝐺; (b) 𝐺/{𝑢, V}.

Theorem 10. Let 𝐹
𝑛
be a fan, 𝑛 ≥ 2; then

𝜒
𝑔V𝑡 (𝐹𝑛) =

{{

{{

{

3, 𝑛 = 2, 3, . . . , 6;

4, 𝑛 = 7, 8, . . . , 14;

𝑘, 𝑛 ≥ 15,

(17)

where ( 𝑘−1
1
)+( 𝑘−1
2
)+( 𝑘−1
3
)+( 𝑘−1
4
) < 𝑛 ≤ ( 𝑘

1
)+( 𝑘
2
)+( 𝑘
3
)+( 𝑘
4
).

Proof. Let 𝑉(𝐹
𝑛
) = {V

𝑖
| 𝑖 = 0, 1, . . . , 𝑛} and 𝐸(𝐹

𝑛
) =

{V
1
V
2
, V
2
V
3
, . . . , V

𝑛−1
V
𝑛
} ∪ {V
0
V
𝑖
| 𝑖 = 1, 2, . . . , 𝑛}. When 𝑛 ≤ 14,

the conclusion is easy to show. We now consider the case of
𝑛 ≥ 15 (which implies 𝑘 ≥ 5). Since ( 𝑘−1

1
) + ( 𝑘−1

2
) + ( 𝑘−1

3
) +

( 𝑘−1
4
) < 𝑛 and |𝐶

𝑓
(V
𝑖
)| ≤ 4 for 𝑖 ∈ [1, 𝑛], we can easily deduce

that 𝜒
𝑔V𝑡(𝐹𝑛) ≥ 𝑘. So, it suffices to show that 𝐹

𝑛
contains a 𝑘-

GVDTC. In particular, we prove that𝐹
𝑛
contains a 𝑘-GVDTC

such that the total color set of V
0
contains at least 5 elements.

By induction on 𝑛. When 𝑛 = 15, it is not hard to construct
such a 𝑘(≥ 5)-GVDTC of𝐹𝑛. Suppose that, for any𝐹𝑛󸀠 , 𝑛

󸀠
< 𝑛,

there exists a 𝑘-GVDTC of 𝐹𝑛󸀠 . Consider the fan graph 𝐹𝑛−1,
and let 𝑓 be a 𝑘-GVDTC of 𝐹𝑛−1. Anyway, we can assume
that, for any color 𝑥 ∈ [1, 𝑘], there is an edge V𝑖V𝑖+1 for some
𝑖 ∈ [1, 𝑛−1] such that 𝑓(V𝑖V𝑖+1) = 𝑥 (If not, we can permutate
𝑥 and 𝑓(V𝑖V𝑖+1)).

Note that for any edge V𝑖V𝑖+1 of 𝐹𝑛−1, 𝑖 ∈ [1, 𝑘], if we
replace this edge by a vertex 𝑢 and connect this vertex to V0,
V
𝑖
, and V

𝑖+1
, then the resulting graph, denoted by 𝐹V

𝑖
,𝑢,V
𝑖+1

𝑛−1
, is

isomorphic to𝐹
𝑛
.Wewill use this to construct a 𝑘-GVDTCof

𝐹
𝑛
based on𝑓. It is obvious that there remain only 4 uncolored

elements, V
𝑖
𝑢, 𝑢V
𝑖+1
, 𝑢V
0
, and 𝑢 in 𝐹V

𝑖
,𝑢,V
𝑖+1

𝑛−1
, if we restrict 𝑓 to

𝐹
V
𝑖
,𝑢,V
𝑖+1

𝑛−1
. We need to consider the following 2 cases.

Case 1. There exist colors 𝑥, 𝑦, 𝑧 ∈ [1, 𝑘] such that {𝑥, 𝑦, 𝑧} ∉
C
𝑓
(𝐹
𝑛−1
). Let V

𝑖
V
𝑖+1

be the edge with 𝑓(V
𝑖
V
𝑖+1
) = 𝑥, 𝑖 ∈

[1, 𝑛 − 1]. In 𝐹V
𝑖
,𝑢,V
𝑖+1

𝑛−1
, let 𝑓(𝑢V𝑖) = 𝑓(𝑢V𝑖+1) = 𝑥, 𝑓(𝑢V0) = 𝑦,

and 𝑓(𝑢) = 𝑧, and the resulting coloring is still denoted by
𝑓. Evidently, in 𝐹V

𝑖
,𝑢,V
𝑖+1

𝑛−1
, 𝐶𝑓(𝑢) = {𝑥, 𝑦, 𝑧}; meanwhile 𝐶𝑓(V𝑖)

and 𝐶𝑓(V𝑖+1) are the same as those in 𝐹𝑛−1, and |𝐶𝑓(V0)| ≥ 5.
So, 𝑓 a 𝑘-GVDTC of 𝐹V

𝑖
,𝑢,V
𝑖+1

𝑛−1
.

Case 2. Four different colors 𝑥, 𝑦, 𝑧, 𝑤 ∈ [1, 𝑘] such that
{𝑥, 𝑦, 𝑧, 𝑤} ∉ C𝑓(𝐹𝑛−1). Select an edge V𝑖V𝑖+1, 𝑖 ∈ [1, 𝑛 − 1],
for which 𝑓(V𝑖V𝑖+1) = 𝑥. Since 𝑓 is a 𝑘-GVDTC of 𝐹𝑛−1,
𝐶𝑓(V𝑖) \ 𝐶𝑓(V𝑖+1) contains at least one element (here we
assume |𝐶

𝑓
(V
𝑖
)| ≥ |𝐶

𝑓
(V
𝑖+1
)|), say 𝑐. Obviously, 𝑐 ̸= 𝑥,

𝑐 ∈ 𝐶
𝑓
(V
𝑖
), and 𝑐 ∉ 𝐶

𝑓
(V
𝑖+1
) in 𝐹

𝑛−1
. We can permutate

the colors so that 𝑐 ∈ {𝑦, 𝑥, 𝑤} and 𝑓(V
𝑖
) = 𝑐 in 𝐹

𝑛−1
, say

𝑐 = 𝑦. Then, in 𝐹
V
𝑖
,𝑢,V
𝑖+1

𝑛−1
, erase the color of vertex V

𝑖
and

recolor it by color 𝑥, and let 𝑓(𝑢V
𝑖
) = 𝑦, 𝑓(𝑢V

𝑖+1
) = 𝑥,

𝑓(𝑢V
0
) = 𝑧, and 𝑓(𝑢) = 𝑤. Obviously, in 𝐹V

𝑖
,𝑢,V
𝑖+1

𝑛−1
, it follows

that 𝐶
𝑓
(𝑢) = {𝑥, 𝑦, 𝑧, 𝑤}, 𝐶

𝑓
(V
𝑖
) and 𝐶

𝑓
(V
𝑖+1
) are the same as

those in 𝐹
𝑛−1

, and |𝐶
𝑓
(V
0
)| ≥ 5. So, 𝑓 a 𝑘-GVDTC of 𝐹V

𝑖
,𝑢,V
𝑖+1

𝑛−1
.

All of the above show that 𝐹
𝑛
has a 𝑘-GVDTC.

Theorem 11. Let𝑊
𝑛
be a wheel graph, 𝑛 ≥ 2; then

𝜒
𝑔V𝑡 (𝑊𝑛) =

{{

{{

{

3, 𝑛 = 2, 3, . . . , 6;

4, 𝑛 = 7, 8, . . . , 14;

𝑘, 𝑛 ≥ 15,

(18)

where ( 𝑘−1
1
)+( 𝑘−1
2
)+( 𝑘−1
3
)+( 𝑘−1
4
) < 𝑛 ≤ ( 𝑘

1
)+( 𝑘
2
)+( 𝑘
3
)+( 𝑘
4
).

We omit the proof forTheorem 11, since it is analogous to
that of Theorem 10.

Theorem 12. For a complete graph 𝐾
𝑛
, 𝑛 ≥ 1, one has

𝜒
𝑔V𝑡 (𝐾𝑛) = 1 + ⌈log2𝑛⌉ . (19)

Proof. When 𝑛 < 10 the conclusion is easy to show. So we
assume 𝑛 ≥ 10.

Denote by𝑉(𝐾
𝑛
) = {V

1
, V
2
, . . . , V

𝑛
} and {1, 2, . . . , 𝑘} the set

of 𝑘 colors. For integer ℓ = ⌈𝑛/2⌉, we construct a ℓ-GVDTC𝑓󸀠
of 𝐾
𝑛
as follows: let 𝑓󸀠(V

𝑖
) = 𝑖 for any 𝑖 ∈ [1, ℓ]; 𝑓󸀠(V

𝑖
V
𝑗
) = 1

for 𝑖 ̸= 𝑗, 𝑖 ∈ [1, ℓ], and 𝑗 ∈ [1, 𝑛]; 𝑓(V
𝑖
) = 𝑖 − ℓ + 2 for

𝑖 ∈ [ℓ + 1, 𝑛 − 2]; 𝑓󸀠(V
𝑖
V
𝑗
) = 2 for 𝑖 ̸= 𝑗, 𝑖 ∈ [ℓ + 1, 𝑛 − 2], and

𝑗 ∈ [ℓ + 1, 𝑛]; 𝑓󸀠(V
𝑛−1

V
𝑛
) = 3; 𝑓󸀠(V

𝑛−1
) = 4; 𝑓󸀠(V

𝑛
) = 5. One

can readily check that 𝐶󸀠
𝑓
(V
1
) = {1}, 𝐶󸀠

𝑓
(V
𝑖
) = {1, 𝑖} for 𝑖 =

1, 2, . . . , ℓ;𝐶󸀠
𝑓
(V
𝑖
) = {1, 2, 𝑖−ℓ+2} for 𝑖 = ℓ+1, ℓ+2, . . . , 𝑛−2;

𝐶
󸀠

𝑓
(V
𝑛−1
) = {1, 2, 3, 4}; and 𝐶󸀠

𝑓
(V
𝑛−1
) = {1, 2, 3, 5}. Thus, 𝑓󸀠 is

a ℓ-GVDTC of𝐾𝑛, which shows 𝜒𝑔V𝑡(𝐾𝑛) ≤ ℓ.
Suppose that 𝜒𝑔V𝑡(𝐾𝑛) = 𝑘 and 𝑓 is a 𝑘-GVDTC of 𝐾𝑛.

Since for any two vertices V𝑖, V𝑗 (𝑖 ̸= 𝑗 ∈ [1, 𝑘]), 𝐶𝑓(V𝑖) ∩
𝐶𝑓(V𝑗) ̸= 0, one can see that there is at most one vertex whose
total color set contains only one color. If there is a vertex V
with |𝐶(V)| = 1, without loss of generality assume 𝐶(V) = {1};
then the total color set of each vertex contains color 1, which
indicates

𝑛 ≤ 1 + (
𝑘 − 1

1
) + (

𝑘 − 1

2
) + ⋅ ⋅ ⋅ + (

𝑘 − 1

𝑘 − 1
) = 2

𝑘−1
. (20)

If there is no vertex whose total color set contains only one
color, then for each V

𝑖
it has |𝐶(V

𝑖
)| ≥ 2. Since, for any vertex

V
𝑗
̸= V
𝑖
, |𝐶(V
𝑖
)∩𝐶(V

𝑗
)| ≥ 1, it follows that𝐶(V) and [1, 𝑘]\𝐶(V)

can not be two total color sets with respect to 𝑓. This implies
𝑛 ≤ 2
𝑘−1. So 𝑘 ≥ 1 + ⌈log

2
𝑛⌉.
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To prove 𝑘 = 1 + ⌈log
2
𝑛⌉, we need to show that 𝐾

𝑛
has a

(1+⌈log
2
𝑛⌉)-GVDTC. In particular, we show that any𝐾

𝑛
has

a (1 + ⌈log
2
𝑛⌉)-GVDTC such that for each color 𝑐 ∈ [1, 1 +

⌈log
2
𝑛⌉] there is at least one vertex in 𝐾

𝑛
being colored by 𝑐.

We prove this by induction on 𝑛. When 𝑛 = 10, 5-
GVDTC is the 𝑓󸀠 defined above for 𝑛 = 10, ℓ = 5, where
𝐶
󸀠

𝑓
(V
1
) = {1}. Consider the graph 𝐾

𝑛
− V
𝑛
obtained from 𝐾

𝑛

by deleting vertex V𝑛 and its incident edges. Obviously,𝐾𝑛−V𝑛
is isomorphic to𝐾𝑛−1. By the induction hypothesis,𝐾𝑛−1 has
a (1 + ⌈log

2
𝑛 − 1⌉)-GVDTC, say 𝑓, such that for each color

𝑐 ∈ [1, 1 + ⌈log
2
𝑛 − 1⌉] there is at least one vertex of 𝐾

𝑛−1

being colored by 𝑐. Since 𝑛 ≤ 2
𝑘−1, there must be some set

𝐶 (denoted by {𝑐
1
, 𝑐
2
, . . . , 𝑐

ℓ
}) ∉ C

𝑓
(𝐾
𝑛−1
). We consider the

following two cases.

(1) Consider ⌈log
2
𝑛 − 1⌉ = ⌈log

2
𝑛⌉. By the induction

hypothesis, each color 𝑐𝑖 ∈ [1, 1+ ⌈log2𝑛−1⌉] appears
at a vertex. Without loss of generality assume 𝑓(V𝑖) =
𝑐𝑖 for 𝑖 = 1, 2, . . . , ℓ. Then, 𝑓 is extended to a (1 +
⌈log
2
𝑛 − 1⌉)-GVDTC of 𝐾𝑛 via coloring V𝑛 by one

of the colors in [𝑐1, 𝑐2, . . . , 𝑐ℓ]; coloring V𝑛V𝑖 for 𝑖 =
1, 2, . . . , ℓ by 𝑐𝑖; and coloring V𝑛V𝑗 for 𝑗 = ℓ+1, . . . , 𝑛−1
by one of the colors in 𝐶𝑓(V𝑗) (V𝑗 ∈ 𝑉(𝐾𝑛−1)).

(2) Consider ⌈log
2
𝑛 − 1⌉ = ⌈log

2
𝑛⌉ − 1. Then on the basis

of 𝑓, we only need to color V
𝑛
and all of its incident

edges in𝐾
𝑛
by color 1 + ⌈log

2
𝑛 − 1⌉.

One can readily check that the resulting coloring of𝐾
𝑛
in

the above two cases is (1 + ⌈log
2
𝑛⌉)-GVDTCs of𝐾

𝑛
such that

each color in [1, 1+ ⌈log
2
𝑛⌉] appears at a vertex of𝐾

𝑛
. Hence,

𝐾𝑛 has a (1+⌈log2𝑛⌉)-GVDTC, and the conclusion holds.

In the following, we present a trivial upper bound of the
general vertex-distinguishing total chromatic number of the
join graph of two graphs.

Theorem 13. Suppose𝐺,𝐻 are two simple graphs and𝐺∩𝐻 =

0. Then

𝜒
𝑔V𝑡 (𝐺 + 𝐻) ≤ 𝜒𝑔V𝑡 (𝐺) + 𝜒𝑔V𝑡 (𝐻) . (21)

Proof. Let 𝑉(𝐺)={𝑢
𝑖
| 𝑖 = 1, 2, . . . , 𝑚} and 𝑉(𝐻) = {V

𝑖
| 𝑖 =

1, 2, . . . , 𝑛}. Suppose that 𝑓
1
is a 𝜒
𝑔V𝑡(𝐺)-GVDTC of 𝐺 and 𝑓

2

is a 𝜒
𝑔V𝑡(𝐻)-GVDTC of𝐻, where the sets of colors of 𝑓

1
and

𝑓
2
are 𝐶
1
and 𝐶

2
(𝐶
1
∩ 𝐶
2
= 0), respectively.

Define 𝑓 as 𝑓(𝑢
𝑖
V
𝑗
) = 𝑓

1
(𝑢
𝑖
) (or 𝑓

2
(V
𝑗
)), 𝑖 =

1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛.
Combining colorings 𝑓

1
, 𝑓
2
, 𝑓, we can obtain a (𝜒

𝑔V𝑡(𝐺)+

𝜒
𝑔V𝑡(𝐻))-GVDTC of 𝐺 + 𝐻.

3. Remarks

Based on the above results, we propose two conjectures as
follows.

Conjecture 14. Let 𝐺 be a graph without isolated vertices.
Then

𝜒𝑔V𝑡 (𝐺) ≤ ⌈
𝑛

2
⌉ . (22)

Conjecture 15. Let𝐺 be a connected graph on 𝑛 vertices.Then

𝜒𝑔V𝑡 (𝐺) ≤ 1 + ⌈log2𝑛⌉ . (23)

Note that if Conjecture 15 is true, then Conjecture 14 is
true. On the other hand, if Conjecture 14 is true, then the
upper bound cannot be improved. For instance, the graph 𝐺
contains exactly three𝐾2 components. It is easy to show that
𝜒𝑔V𝑡(𝐺) = 3.

In addition, there is a very interesting observation about
the general vertex-distinguishing total chromatic number.

Observation 1. Let 𝐻 be a subgraph of a graph 𝐺. Then it
possibly follows that

𝜒
𝑔V𝑡 (𝐻) > 𝜒𝑔V𝑡 (𝐺) . (24)

As an illustration of this observation,we consider the path
𝑃
15

and the fan graph 𝐹
14
. 𝑃
15

is a subgraph of 𝐹
14
, while

𝜒
𝑔V𝑡(𝑃15)(= 5) > 𝜒𝑔V𝑡(𝐹14)(= 4).
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porânea, vol. 39, pp. 101–110, 2010.

[20] W. Wang and D. Huang, “The adjacent vertex distinguishing
total coloring of planar graphs,” Journal of Combinatorial
Optimization, vol. 27, no. 2, pp. 379–396, 2014.

[21] X. Chen and Z. Zhang, “AVDTC numbers of generalized Halin
graphs with maximum degree at least 6,” Acta Mathematicae
Applicatae Sinica, vol. 24, no. 1, pp. 55–58, 2008.

[22] D. Huang, W. Wang, and C. Yan, “A note on the adjacent vertex
distinguishing total chromatic number of graphs,” Discrete
Mathematics, vol. 312, no. 24, pp. 3544–3546, 2012.

[23] A. Papaioannou and C. Raftopoulou, “On the AVDTC of 4-
regular graphs,”Discrete Mathematics, vol. 330, pp. 20–40, 2014.

[24] Z. Zhang, P. X. Qiu, B. G. Xu, J. Li, X. Chen, and B. Yao, “Vertex-
distinguishing total coloring of graphs,” Ars Combinatoria, vol.
87, pp. 33–45, 2008.


