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Copyright © 2014 Bogdan Batko.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We deal with the stability of the exponential Cauchy functional equation 𝐹(𝑥 + 𝑦) = 𝐹(𝑥)𝐹(𝑦) in the class of functions 𝐹 : 𝐺 → 𝐿

mapping a group (𝐺, +) into a Riesz algebra 𝐿. The main aim of this paper is to prove that the exponential Cauchy functional
equation is stable in the sense of Hyers-Ulam and is not superstable in the sense of Baker. To prove the stability we use the Yosida
Spectral RepresentationTheorem.

1. Introduction

In 1979 Baker et al. (cf. [1]) proved that the exponential func-
tional equation

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) 𝑓 (𝑦) for 𝑥, 𝑦 ∈ 𝑉 (1)

in the class of functions mapping a vector space 𝑉 to the real
numbers R is superstable; that is, any function 𝑓 satisfying,
with given 𝛿 > 0, the inequality

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) 𝑓 (𝑦)
 ≤ 𝛿 for 𝑥, 𝑦 ∈ 𝑉 (2)

is either bounded or exponential (satisfies (1)). Then Baker
generalized this famous result in [2]. We quote this theorem
here since it will be used in the sequel.

Theorem 1 (cf. [2,Theorem 1]). Let (𝑆, +) be a semigroup and
let 𝛿 > 0 be given. If a function 𝑓 : 𝑆 → C satisfies the
inequality

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) 𝑓 (𝑦)
 ≤ 𝛿 (3)

for all 𝑥, 𝑦 ∈ 𝑆, then either |𝑓(𝑥)| ≤ (1 + √1 + 4𝛿)/2 for all
𝑥 ∈ 𝑆 or 𝑓(𝑥 + 𝑦) = 𝑓(𝑥)𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑆.

After that the stability of the exponential functional equa-
tion has been widely investigated (cf., e.g., [3–6]).

This paper will primarily be concerned with the question
if similar result holds true in the class of functions taking
values in Riesz algebra 𝐿 with the common notion of the
absolute value |𝑥| = sup{𝑥, −𝑥} of an element𝑥 ∈ 𝐿 stemming
from the order structure of 𝐿.

The main aim of the present paper is to show that the
superstability phenomenon does not hold in such an order
setting. However, we prove that the exponential functional
equation (1) is stable in the Ulam-Hyers sense; that is, for
any given 𝑓 : 𝐺 → 𝐿 satisfying inequality (3) there exists
an exponential function 𝑔 : 𝐺 → 𝐿 which approximates 𝑓
uniformly on𝐺 in the sense that the set {|𝑓(𝑥)−𝑔(𝑥)| : 𝑥 ∈ 𝐺}
is bounded in 𝐿.

As a method of investigation we apply spectral represen-
tation theory for Riesz spaces; to be more precise, we use
the Yosida Spectral RepresentationTheorem for Riesz spaces
with a strong order unit.

For some recent results concerning stability of functional
equations in vector lattices we refer the interested reader to
[7–12].

2. Preliminaries

Throughout the paperN,Z,R, andR
+
are used to denote the

sets of all positive integers, integers, real numbers and non-
negative real numbers, respectively.
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2 Abstract and Applied Analysis

For the readers convenience we quote basic definitions
and properties concerning Riesz spaces (cf. [13]).

Definition 2 (cf. [13, Definitions 11.1 and 22.1]). We say that a
real linear space 𝐿, endowed with a partial order ≤, is a Riesz
space if sup{𝑥, 𝑦} exists for all 𝑥, 𝑦 ∈ 𝐿 and

𝑎𝑥 + 𝑦 ≤ 𝑎𝑧 + 𝑦 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑥 ≤ 𝑧, 𝑎 ∈ R
+
. (4)

We define the absolute value of 𝑥 ∈ 𝐿 by the formula |𝑥| :=
sup{𝑥, −𝑥} ≥ 0. A Riesz space 𝐿 is called Archimedean if,
for each 𝑥 ∈ 𝐿, the inequality 𝑥 ≤ 0 holds whenever the
set {𝑛𝑥 : 𝑛 ∈ N} is bounded above. We say that 𝐿 is a
Riesz algebra if 𝐿 is a Riesz space endowed with the common
algebra multiplication satisfying 𝑥𝑦 ≥ 0 for 𝑥, 𝑦 ≥ 0. A Riesz
algebra 𝐿 is termed an 𝑓-algebra, whenever inf{𝑥, 𝑦} = 0

implies inf{𝑥𝑧, 𝑦} = inf{𝑧𝑥, 𝑦} = 0 for every 𝑧 ≥ 0.

There are several types of convergence that may be
defined according to the order structure. One of them is the
relatively uniform convergence defined as follows.

Definition 3 (cf. [13, Definition 39.1]). Let 𝐿 be a Riesz space
and let 𝑢 ∈ 𝐿

+
:= {𝑥 ∈ 𝐿 : 𝑥 ≥ 0}. A sequence {𝑓

𝑛
}
𝑛∈N in 𝐿 is

said to converge 𝑢-uniformly to an element 𝑓 ∈ 𝐿 whenever,
for every 𝜀 > 0, there exists a positive integer 𝑛

0
such that

|𝑓 − 𝑓
𝑛
| ≤ 𝜀𝑢 holds for all 𝑛 ≥ 𝑛

0
. A sequence {𝑓

𝑛
}
𝑛∈N in 𝐿 is

called 𝑢-uniform Cauchy sequence whenever, for every 𝜀 > 0,
there exists a positive integer 𝑛

1
such that |𝑓

𝑚
−𝑓
𝑛
| ≤ 𝜀𝑢 holds

for all𝑚, 𝑛 ≥ 𝑛
1
.

Definition 4 (cf. [13, Definition 39.3]). A Riesz space 𝐿 is
called 𝑢-uniformly complete (with a given 𝑢 ∈ 𝐿

+
) whenever

every 𝑢-uniformCauchy sequence has a 𝑢-uniform limit in 𝐿.
Furthermore𝐿 is called uniformly complete if it is 𝑢-uniformly
complete with any 𝑢 ∈ 𝐿

+
.

There is a large class of spaces satisfying the above
conditions. In particular every Dedekind 𝜎-complete space
(see Definition 5 below) is an Archimedean and uniformly
complete Riesz space.

Definition 5 (cf. [13, Definition 1.1]). We say that a Riesz space
𝐿 isDedekind 𝜎-complete if any non-empty at most countable
subset which is bounded above has a supremum.

Definition 6 (cf. [13, Definition 21.4]). The element 𝑒 ∈ 𝐿
+
is

called a strong unit if for every 𝑙 ∈ 𝐿 there exists 𝛼 ∈ R such
that |𝑙| ≤ 𝛼𝑒.

For more detailed information and, in particular, exam-
ples of Riesz spaces posessing the above properties we refer
the interested reader to [13].

In further considerations the Yosida Spectral Representa-
tionTheorem, which is quoted below, will be used.

Theorem 7. Yosida Spectral Representation Theorem (cf. [13,
Theorem 45.3]). Let 𝐿 be an Archimedean Riesz space with a
strong unit 𝑒 ∈ 𝐿

+
. Then there exists a topological space 𝑋

and a Riesz subspace �̂� of the space 𝐶(𝑋) of all real continuous

functions on 𝑋 (with the pointwise order and pointwise
operations of addition and scalar multiplication) and a Riesz
isomorphism of 𝐿 onto �̂�.

We will not distinguish 𝑙 ∈ 𝐿 and its Yosida representant,
if no confusion can occur.

Directly from the construction of the Yosida repesenta-
tives one can deduce that the Yosida representative of a strong
unit 𝑒 ∈ 𝐿

+
is a constant function 𝑒 ≡ 1. We omit the formal

details here as they exceed the scope of the paper.
In general, the space �̂� of Yosida representatives is a Riesz

subspace of 𝐶(𝑋). The following theorem gives us conditions
under which �̂� is the whole 𝐶(𝑋).

Theorem8 (cf. [13,Theorem 45.4]). Let 𝐿 be anArchimedean
Riesz space with a strong unit 𝑒 ∈ 𝐿

+
and let �̂� and 𝐶(𝑋) be

as in the previous Theorem. The following conditions are now
mutually equivalent.

(i) 𝐿 is uniformly complete.
(ii) �̂� = 𝐶(𝑋).
(iii) Every 𝑒-uniform Cauchy sequence in 𝐿 has an 𝑒-

uniform limit in 𝐿.

Hence, if 𝐿 is a Dedekind 𝜎-complete space with a strong unit,
then �̂� = 𝐶(𝑋).

In the case where �̂� = 𝐶(𝑋), the Yosida representation
�̂� of 𝐿 is not only a Riesz space but also a Riesz algebra with
respect to the pointwise multiplication of functions in 𝐶(𝑋).
But then, since 𝐿 and �̂� are isomorphic as Riesz spaces, we
may introduce ring multiplication for the elements 𝑓, 𝑔 ∈ 𝐿
induced by the multiplication of representatives, that is,

ℎ = 𝑓𝑔 if 𝜋ℎ = 𝜋𝑓𝜋𝑔, (5)

where 𝜋 : 𝐿 → 𝐶(𝑋) is the Riesz isomorphism. Notice
that ℎ ∈ 𝐿 given by (5) is uniquely determined. Such a
multiplicationmakes𝐿 into a commutative Riesz algebrawith
a unit element (a strong unit 𝑒 ∈ 𝐿

+
is an algebra unit element,

that is, 𝑓𝑒 = 𝑒𝑓 = 𝑓 for 𝑓 ∈ 𝐿).
From now on a multiplication in a Riesz space 𝐿 will be

construed in the above sense.

3. The Main Result

We start with some, easy to prove, properties of exponential
real functions on a 2-divisible group.

Remark 9. Let (𝐺, +) be a 2-divisible group and let 𝑓 :

𝐺 → R satisfy exponential functional equation (1).Then the
following conditions hold.

(i) 𝑓(𝑥) ≥ 0 for 𝑥 ∈ 𝐺.
(ii) If there exists 𝑥 ∈ 𝐺 \ {0} such that 𝑓(𝑥) = 0, then

𝑓 ≡ 0.
(iii) If 𝑓 ̸≡ 0, then 𝑓(0) = 1.
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(iv) If 𝑓 is bounded, then 𝑓 ≡ 0 or 𝑓 ≡ 1.
(v) If 𝑓 ̸≡ 0 then 𝑓(−𝑥) = 1/𝑓(𝑥) for 𝑥 ∈ 𝐺.

Our main result reads us the following.

Theorem 10. Let (𝐺, +) be an Abelian 2-divisible group and let
𝐿 be an Archimedean Riesz space with a strong unit 𝑒 ∈ 𝐿

+
. We

assume that𝐿 is 𝑒-uniformly complete. If a function𝐹 : 𝐺 → 𝐿

satisfies

𝐹 (𝑥 + 𝑦) − 𝐹 (𝑥) 𝐹 (𝑦)
 ≤ 𝑢
2

− 𝑢 𝑓𝑜𝑟 𝑥, 𝑦 ∈ 𝐺, (6)

with given 𝑢 ∈ 𝐿
+
, then there exists an exponential function

𝐸 : 𝐺 → 𝐿 such that

|𝐹 (𝑥) − 𝐸 (𝑥)| ≤ 𝑢 + 𝑒 𝑓𝑜𝑟 𝑥 ∈ 𝐺. (7)

Proof. The idea of the proof is based on the use of the Yosida
Spectral Representation Theorem which enables us to apply
Theorem 1 of Baker.

The proof runs in four steps.

Step 1. Consider 𝐹 : 𝐺 → 𝐿 satisfying (6). According to the
Yosida Spectral Representation Theorem, for every 𝑥, 𝑦 ∈ 𝐺,
we have 𝐹(𝑥), 𝐹(𝑦), 𝐹(𝑥+𝑦), 𝑢2−𝑢 ∈ 𝐶(𝑋).Therefore, by (6),
one has

𝐹 (𝑥 + 𝑦) (𝑠) − 𝐹 (𝑥) (𝑠) 𝐹 (𝑦) (𝑠)
 ≤ 𝑢
2

(𝑠) − 𝑢 (𝑠)

for 𝑥, 𝑦 ∈ 𝐺, 𝑠 ∈ 𝑋.
(8)

It means that, for any 𝑠 ∈ 𝑋, 𝐹(⋅)(𝑠) satisfies all the assump-
tions of Theorem 1. By Theorem 1 either 𝐹(⋅)(𝑠) is bounded
on 𝐺 with |𝐹(𝑥)(𝑠)| ≤ 𝑢(𝑠) for 𝑥 ∈ 𝐺 or 𝐹(⋅)(𝑠) is exponential
on the whole 𝐺. Let

B := {𝑠 ∈ 𝑋 : |𝐹 (𝑥) (𝑠)| ≤ 𝑢 (𝑠) for 𝑥 ∈ 𝐺} ,

E :={𝑠∈𝑋 : 𝐹(⋅)(𝑠) is unbounded and exponential on 𝐺}.

(9)

Of course we have𝑋 =B ∪E andB ∩E = 0.
We will prove that E is an open subset of 𝑋. For the

indirect proof consider 𝑠 ∈ E and suppose that each neigh-
bourhood U of 𝑠 has a nonempty intersection with B. Let
𝑚
𝑘,𝑥
∈ 𝐶(𝑋) be given by

𝑚
𝑘,𝑥
(𝑡) := 𝐹 (𝑘𝑥) (𝑡) − 𝑢 (𝑡) for 𝑘 ∈ Z, 𝑥 ∈ 𝐺, 𝑡 ∈ 𝑋.

(10)

Since 𝑠 ∈ E, there exist 𝑥 ∈ 𝐺 \ {0} and 𝑘 ∈ Z such that
𝑚
𝑘,𝑥
(𝑠) > 0. On the other hand, according to the supposition,

in each neighbourhoodU of 𝑠 there exists 𝑡 with𝑚
𝑘,𝑥
(𝑡) ≤ 0,

which brings a contradiction with the continuity of𝑚
𝑘,𝑥
.

Step 2. For given 𝑥 ∈ 𝐺 we define 𝐸(𝑥) ∈ 𝐶(𝑋) by

𝐸 (𝑥) (𝑠) = {
𝐹 (𝑥) (𝑠) , if 𝑠 ∈ E

1, if 𝑠 ∈B
for 𝑠 ∈ 𝑋. (11)

We shall prove the continuity of 𝐸(𝑥). First consider the case
𝑠 ∈ E. Take an arbitrary neighbourhoodV of 𝐸(𝑥)(𝑠). Since
E is open, there exists a neighbourhood U

1
of 𝑠 with U

1
⊂

E. By the choice of 𝑠 we have 𝐸(𝑥)(𝑠) = 𝐹(𝑥)(𝑠) and by the
continuity of 𝐹(𝑥) at 𝑠 there exists a neighbourhood U

2
of

𝑠 such that 𝐹(𝑥)(U
2
) ⊂ V. Then U := U

1
∩ U
2
forms a

neighbourhood of 𝑠 with 𝐸(𝑥)(U) ⊂V.
Thus, it remains to consider 𝑠 ∈ B. For arbitrary 𝜀 > 0

let V := (1 − 𝜀, 1 + 𝜀) be a neighbourhood of 1 = 𝐸(𝑥)(𝑠).
We will prove that there exists a neighbourhoodU of 𝑠 such
that 𝐹(𝑥)(U ∩ E) ⊂ V. Contrary, suppose that in each
neighbourhoodU of 𝑠 there exists 𝑡 ∈ U ∩ E with 𝐹(𝑥)(𝑡) >
1+𝜀 or𝐹(𝑥)(𝑡) < 1−𝜀. Consider the case𝐹(𝑥)(𝑡) < 1−𝜀.Then,
taking into account the positivity of 𝐹(𝑥)(𝑡), which follows
from the fact that 𝐹(⋅)(𝑡) is exponential and unbounded on
𝐺, we have

𝐹 (−𝑥) (𝑡) =
1

𝐹 (𝑥) (𝑡)
>

1

1 − 𝜀
> 1 + 𝜀. (12)

Let 𝛿 > 0 be fixed. Then there exists 𝑘 = 𝑘(𝜀) ∈ N such that
𝑚
𝑘,𝑥
(𝑡) > 𝛿 or 𝑚

𝑘,−𝑥
(𝑡) > 𝛿 depending on the case where

𝐹(𝑥)(𝑡) > 1 + 𝜀 or 𝐹(𝑥)(𝑡) < 1 − 𝜀, respectively. On the other
hand, by the continuity of𝑚

𝑘,𝑥
and the fact that𝑚

𝑘,𝑥
(𝑠) ≤ 0 <

𝛿 there exists a neighbourhoodU
1
of 𝑠 such that𝑚

𝑘,𝑥
(𝑡) < 𝛿

for 𝑡 ∈ U
1
. By the same reasons, there exists a neighbourhood

U
2
of 𝑠 such that𝑚

𝑘,−𝑥
(𝑡) < 𝛿 for 𝑡 ∈ U

2
.ThenU

3
:= U
1
∩U
2

is a neighbourhoodof 𝑠 such that𝑚
𝑘,𝑥
(𝑡) < 𝛿 and𝑚

𝑘,−𝑥
(𝑡) < 𝛿

for all 𝑡 ∈ U
3
, which brings a contradiction.

Consequently 𝐸(𝑥)(U) ⊂V as 𝐸(𝑥)(U ∩E) = 𝐹(𝑥)(U ∩

E) ⊂ V and 𝐸(𝑥)(U ∩B) = {1} ⊂ V. This completes the
proof that 𝐸(𝑥) ∈ 𝐶(𝑋).

Therefore, byTheorem 8 onemay treat𝐸(𝑥) as an element
of 𝐿. Since 𝑥 ∈ 𝐺 has been chosen arbitrarily, in fact formula
(11) defines a function 𝐸 : 𝐺 → 𝐿.

Step 3. We will prove that function 𝐸 given by (11) is expo-
nential.

Let 𝑥, 𝑦 ∈ 𝐺. If 𝑠 ∈ E then we have 𝐸(𝑥 + 𝑦)(𝑠) = 𝐹(𝑥 +
𝑦)(𝑠) = 𝐹(𝑥)(𝑠)𝐹(𝑦)(𝑠) = 𝐸(𝑥)(𝑠)𝐸(𝑦)(𝑠). Else 𝑠 ∈ B and
then 𝐸(𝑥 + 𝑦)(𝑠) = 1 = 𝐸(𝑥)(𝑠)𝐸(𝑦)(𝑠). As a consequence we
have 𝐸(𝑥 + 𝑦) = 𝐸(𝑥)𝐸(𝑦).

Step 4. We will prove (7).
Let 𝑥 ∈ 𝐺. Then |𝐹(𝑥)(𝑠) − 𝐸(𝑥)(𝑠)| = 0 for 𝑠 ∈ E and

|𝐹(𝑥)(𝑠) − 𝐸(𝑥)(𝑠)| = |𝐹(𝑥)(𝑠) − 1| ≤ 𝑢(𝑠) + 1 for 𝑠 ∈ B. It
means that
|𝐹 (𝑥) (𝑠) − 𝐸 (𝑥) (𝑠)| ≤ 𝑢 (𝑠) + 1, for 𝑠 ∈ 𝑋, 𝑥 ∈ 𝐺 (13)

which yields
|𝐹 (𝑥) − 𝐸 (𝑥)| ≤ 𝑢 + 𝑒 for 𝑥 ∈ 𝐺. (14)

4. Final Remarks

Let us recall the following theorem, which provides us with
the condition under which a Riesz homomorphism (as a
homomorphism between Riesz spaces) is multiplicative.
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Theorem 11 (cf. [14, Proposition 353P]). Let 𝐿 be an Archi-
medean𝑓-algebra withmultiplicative identity 𝑒. If𝑉 is another
Archimedean 𝑓-algebra with multiplicative identity 𝑒, and 𝑇 :
𝐿 → 𝑉 is a positive linear operator such that 𝑇(𝑒) = 𝑒, then
𝑇 is a Riesz homomorphism if and only if 𝑇(𝑢 ⋅ V) = 𝑇(𝑢) ⋅𝑇(V)
for all 𝑢, V ∈ 𝐿.

By the above theorem and the Yosida Spectral Represen-
tationTheorem one can obtain the following corollary.

Corollary 12. Let (𝐺, +) be an Abelian 2-divisible group and
let 𝐿 be an Archimedean 𝑓-algebra with a multiplicative iden-
tity 𝑒 ∈ 𝐿

+
which is a strong order unit. We assume that 𝐿 is

𝑒-uniformly complete. If a function 𝐹 : 𝐺 → 𝐿 satisfies
𝐹 (𝑥 + 𝑦) − 𝐹 (𝑥) 𝐹 (𝑦)

 ≤ 𝑢
2

− 𝑢 𝑓𝑜𝑟 𝑥, 𝑦 ∈ 𝐺, (15)
with given 𝑢 ∈ 𝐿

+
, then there exist an exponential function

𝐸 : 𝐺 → 𝐿 such that
|𝐹 (𝑥) − 𝐸 (𝑥)| ≤ 𝑢 + 𝑒 𝑓𝑜𝑟 𝑥 ∈ 𝐺. (16)

Theorem 10 (Corollary 12) states that the exponential
functional equation (1) in Riesz algebras is stable in theUlam-
Hyers sense. Taking into account Theorem 1 it is natural to
ask if (1) is superstable in the sense of Baker. It appears that
the superstability phenomenon in Riesz algebras fails to hold.
In the next example we show that there exists a group 𝐺, an
𝑓-algebra 𝐿 satisfying all the assertions of Theorem 10 and
a function 𝐹 : 𝐺 → 𝐿 which fulfills (6) but is neither
exponential nor bounded.

Example 13. Let 𝐵[−1, 1] be an Archimedean 𝑓-algebra of all
bounded real functions on the interval [−1, 1] with a strong
unit 𝑒 ≡ 1 with the pointwise order, pointwise addition and
multiplication. Then 𝐵[−1, 1] is 𝑒-uniformly complete. Let
𝑢 ∈ 𝐵[−1, 1] be given by

𝑢 (𝑠) := {
1 − 𝑠, if 𝑠 ∈ [−1, 0)
0, if 𝑠 ∈ [0, 1] .

(17)

We define 𝐹 : R → 𝐵[−1, 1] by

𝐹 (𝑥) (𝑠) := {
𝑠, if 𝑠 ∈ [−1, 0)
exp (𝑠𝑥) , if 𝑠 ∈ [0, 1]

for 𝑥 ∈ R. (18)

Then such an 𝐹 is, clearly, neither bounded nor exponential.
To observe that 𝐹 satisfies (6) fix 𝑥, 𝑦 ∈ R. If 𝑠 < 0 then we
have |𝐹(𝑥 + 𝑦)(𝑠) − 𝐹(𝑥)(𝑠)𝐹(𝑦)(𝑠)| = |𝑠 − 𝑠2| = 𝑢2(𝑠) − 𝑢(𝑠).
If 𝑠 ≥ 0 then |𝐹(𝑥 + 𝑦)(𝑠) − 𝐹(𝑥)(𝑠)𝐹(𝑦)(𝑠)| = 0.

Remark 14. In general the exponential function satisfying
assertions of Theorem 10 is not unique. Indeed, consider
𝐵[−1, 1], 𝐹 : R → 𝐵[−1, 1], and 𝑢 ∈ 𝐵[−1, 1] as defined
in Example 13. Then the exponential functions 𝐸

1
, 𝐸
2
: R →

𝐵[−1, 1] given by

𝐸
1
(𝑥) (𝑠) := {

1, if 𝑠 ∈ [−1, 0)
exp (𝑠𝑥) , if 𝑠 ∈ [0, 1]

for 𝑥 ∈ R,

𝐸
2
(𝑥) (𝑠) := {

0, if 𝑠 ∈ [−1, 0)
exp (𝑠𝑥) , if 𝑠 ∈ [0, 1]

for 𝑥 ∈ R

(19)

approximate 𝐹 uniformly on R, that is, satisfy (7).
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