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We extend an iterative approximation method to nonlinear, distributed parameter systems given by partial differential and
functional equations. The nonlinear system is approached by a sequence of linear time-varying systems, which globally converges
in the limit to the original nonlinear systems considered. This allows many linear control techniques to be applied to nonlinear
systems. Here we design a sliding mode controller for a nonlinear wave equation to demonstrate the effectiveness of this method.

1. Introduction

The control of finite-dimensional nonlinear system of the
form

�̇� (𝑡) = 𝐴 (𝑥,𝑁 (𝑥, 𝜃)) 𝑥 (𝑡) + 𝐵𝑢 (1)

has recently been studied via a sequence of linear time-
varying (LTV) approximation of the form

�̇�

[𝑖]
(𝑡) = 𝐴 (𝑥

[𝑖−1]
, 𝑁 (𝑥

[𝑖−1]
, 𝜃)) 𝑥

[𝑖]
(𝑡) + 𝐵 (𝑥

[𝑖−1]
(𝑡)) 𝑢,

𝑖 = 1, 2, 3, 4, . . . ,

(2)

where 𝑁(𝑥, 𝜃) is some nonlinear function defined over the
interval [𝑡 − 𝜃, 𝑡].

This iterative linear approximation method makes it
convenient to control nonlinear systems via linear feedback
control technique. It has been shown to be effective in sliding
control [1] and optimal control [2]. The basic theory and
convergence is presented in [3, 4].

However, many real systems are distributed parameter
systems described by partial differential and functional equa-
tions. Comparing with the lumped parameter systems, it is
more difficult to control these systems, especially for non-
linear distributed parameter systems. Different methods are
applied to different kinds of nonlinear distributed parameter

equations (PDE). The Galerkin’s method is used to transfer
nonlinear parabolic equations into nonlinear ordinary differ-
ential equations (ODE), which allows many control methods
to be applied to nonlinear parabolic equations. In [5] El-
Farra et al. develop feedback linearization method based
on Lyapunov techniques. In [6] Wu and Li design a fuzzy
observer-based controller based on T-S model of the ODE,
while in [7, 8] Wu and Li design linear model feedback
controllers based on neural network approximation of the
ODE. In [9] Deng et al. develop a spectral approximation
method to distributed thermal processing, and a hybrid
general regression NN is trained to be a nonlinear model of
the original PDE, which also allowsmany control methods to
be applied to this kind of nonlinear PDEs.

In this paper we will extend the above-mentioned iter-
ative linear approximation theory to the nonlinear wave
equation, which is a typical infinite-dimensional nonlinear
PDE of the form

𝜕

2
𝜙

𝜕𝑡

2
= 𝜔 (1 + 𝑟𝜙

2
)

𝜕

2
𝜙

𝜕𝑥

2
+ 𝑢,

𝑥 ∈ Ω, 𝑡 ∈ (0, 𝜏) ,

(3)

where 𝑟 and 𝜔 are constant and the wave frequency is a
nonlinear function of 𝜙. And we design a sliding mode
controller based on the approximation method.
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The nonlinear wave equation is transformed into a
sequence of LTV approximations, each of which has an
infinite-dimensional sliding surface which is time-varying.
The limit of these surfaces gives an effective nonlinear sliding
surface for the original system. And the limit of these sliding
mode controllers will exponentially stabilizes the nonlinear
wave equation.

Section 2 recalls the principles of the slidingmode control
for finite-dimensional nonlinear systems based on LTV
approximation method. Section 3 designs a sequence of LTV
approximations for nonlinear wave equation and proves their
convergence. Section 4 develops a sliding controller for the
nonlinear wave equation based on LTV approximations.
Sections 5 and 6 present the simulation result and the
conclusion.

2. Sliding Control for Finite-Dimensional
Nonlinear Systems

2.1. LTV Approximation of Finite-Dimensional Nonlinear Sys-
tems. For a nonlinear finite-dimensional system given by a
functional differential equation

�̇� (𝑡) = 𝐴 (𝑥,𝑁 (𝑥, 𝜃)) 𝑥 (𝑡) , (4)

where 𝑁(𝑥, 𝜃) is some nonlinear function defined over the
interval [𝑡 − 𝜃, 𝑡], we can define a series LTV approximations
as follows:

�̇�

[0]
(𝑡) = 𝐴 (𝑥0, 𝑁 (𝑥0, 𝜃)) 𝑥

[0]
(𝑡) ,

�̇�

[𝑖]
(𝑡) = 𝐴 (𝑥

[𝑖−1]
(𝑡) ,𝑁 (𝑥

[𝑖−1]
(𝑡) , 𝜃)) 𝑥

[𝑖]
(𝑡) ,

𝑥

[0]
(0) = 𝑥

[𝑖]
(0) = 𝑥0 ∈ 𝑅.

(5)

The approximations of the form (5) are proved to be global
convergent under a mild Lipschitz condition [4].

Theorem 1. Suppose that the nonlinear functional differential
equation (4) has a unique solution on the interval [𝑡−𝜃, 𝑡] and
assume that the following condition holds:









𝐴 (𝑥1, 𝑁 (𝑥1, 𝑞)) − 𝐴 (𝑥2, 𝑁 (𝑥2, 𝑞))








≤ 𝛼 (𝐾)









𝑥1 − 𝑥2








,

𝑓𝑜𝑟 𝑥1, 𝑥2 ∈ 𝐵 (𝐾; 𝑥0) ,

(6)

where 𝐵(𝐾; 𝑥0) ∈ 𝑅𝑁 is a ball of radius𝐾 centered at 𝑥0 and 𝑅
is a constant related to 𝐾. Then the sequence of 𝑥[𝑖](𝑡) defined
in (5) converges uniformly on [𝑡 − 𝜃, 𝑡].

This method makes it possible to control nonlinear
system in form of (1) using linear feedback control technique,
such as sliding control and optimal control.

2.2. Sliding Control for Nonlinear Systems Based on LTV
Approximation. Apply the approximation technique for sys-
tem (1); the following sequence of LTV can be obtained:

�̇�

[0]
(𝑡) = 𝐴 (𝑥0, 𝑁 (𝑥0, 𝜃)) 𝑥

[0]
(𝑡) + 𝐵𝑢

[0]
(𝑡) ,

�̇�

[𝑖]
(𝑡) = 𝐴 (𝑥

[𝑖−1]
(𝑡) ,𝑁 (𝑥

[𝑖−1]
(𝑡) , 𝜃)) 𝑥

[𝑖]
(𝑡) + 𝐵𝑢

[𝑖]
(𝑡) ,

𝑥

[0]
(0) = 𝑥

[𝑖]
(0) = 𝑥0 ∈ 𝑅.

(7)

For each of these LTV equations a slidingmode controller can
be designed as follows:

𝜎

[𝑖]
(𝑡) = 0,

�̇�

[𝑖]
(𝑡) = − sign (𝜎[𝑖] (𝑡)) ,

(8)

where 𝜎[𝑖](𝑡) = 0 is a time-varying sliding surface. Once the
system hits the surface, the reduced order system will remain
stable. The system is driven into the sliding surface by setting
derivative of 𝜎[𝑖] equal to minus sign of 𝜎[𝑖]. Details on how to
choose the sliding surface and get the control input for LTV
systems can be found in [10].

Thus we can get a series of sliding mode controller 𝑢[𝑖](𝑡)
for the LTV systems (7). It is proved that under a mild
condition, 𝑢[𝑖](𝑡) converge as 𝑖 → ∞. The limit of the sliding
surfaces gives an effective nonlinear sliding surface for the
system, and the limit of 𝑢[𝑖](𝑡) will exponentially stabilize the
original nonlinear equation (1) [3].

3. Linear Approximation of
Nonlinear Wave Equation

In this section, we extend the iterative approximationmethod
to nonlinear, distributed parameter systems given by partial
differential and functional equations. As an example, we
design a sequence of iterative LTV distributed parameter
systems to approximate the nonlinear wave equation and
prove their convergence.

First, we transfer (3) to a standard style. Define a variable
as follows:

𝜓 (𝑥, 𝑡) =

𝜕𝜙

𝜕𝑡

.
(9)

Thus (3) could be written as

𝜕𝜙

𝜕𝑡

= 𝜓,

𝜕𝜓

𝜕𝑡

= 𝜔 (1 + 𝑟𝜙

2
)

𝜕

2
𝜙

𝜕𝑥

2
.

(10)
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From (5), we can get a sequence of LTV approximation
system of (10) as follows:

𝜕𝜙

[𝑖]

𝜕𝑡

= 𝜓

[𝑖]
,

𝜕𝜓

[𝑖]

𝜕𝑡

= 𝜔 [1 + 𝑟(𝜙

[𝑖−1]
)

2
]

𝜕

2
𝜙

[𝑖]

𝜕𝑥

2
,

𝑖 = 1, 2, . . . , 𝑁,

(11)

where the initial values of each system are defined by the
initial value function 𝑓(𝑥) of (3) as

𝜙

[𝑖]
(𝑥, 0) = 𝑓 (𝑥) , 𝑥 ∈ (0, 𝑙) ;

𝜓

[𝑖]
(𝑥, 0) = 0, 𝑥 ∈ (0, 𝑙) ;

𝜙

[0]
(𝑥, 𝑡) = 𝑓 (𝑥) , 𝑡 ∈ (0, 𝜏) ;

𝜓

[0]
(𝑥, 𝑡) = 0, 𝑡 ∈ (0, 𝜏)

(12)

and the first LTV approximation system (when 𝑖 = 1) is
defined as

𝜕𝜙

[1]

𝜕𝑡

= 𝜓

[1]
,

𝜕𝜓

[1]

𝜕𝑡

= 𝜔 [1 + 𝑟(𝜙

[0]
)

2
]

𝜕

2
𝜙

[1]

𝜕𝑥

2
.

(13)

Obviously, each LTV system of (11) is a distributed parameter
system and has a unique solution. Here we will prove that this
sequence of systems will converge to the original nonlinear
system (10).

Proof. Firstly, we use a sequence of finite-dimensional differ-
ence equations to approximate equation (11).

For 𝜙[𝑖](𝑥, 𝑡) and 𝜓[𝑖](𝑥, 𝑡) (𝑥 ∈ [0, 𝑙]), define

𝜙

[𝑖]

𝑗 (𝑡) = 𝜙
[𝑖]
(

𝑗𝑙

𝑀

, 𝑡) ,

𝜓

[𝑖]

𝑗 (𝑡) = 𝜓
[𝑖]
(

𝑗𝑙

𝑀

, 𝑡) ,

𝑗 = 1, 2, . . . ,𝑀

(14)

with initial value
(𝜙

[𝑖]

1 (0) , 𝜙
[𝑖]

2 (0) , . . . , 𝜙
[𝑖]

𝑀 (0))

= (𝑓(

𝑙

𝑀

) , 𝑓(

2𝑙

𝑀

) , . . . , 𝑓 (𝑙)) ,

(𝜓

[𝑖]

1 (0) , 𝜓
[𝑖]

2 (0) , . . . , 𝜓
[𝑖]

𝑀 (0)) = (0, 0, . . . , 0) .

(15)

Suppose that when𝑀 → ∞, (11) could be approximated by
the following finite-dimensional system [11]:

[

̇Φ
[𝑖]
(𝑡)

̇Ψ
[𝑖]
(𝑡)

] = 𝐴

[𝑖−1]
[

Φ
[𝑖]
(𝑡)

Ψ
[𝑖]
(𝑡)

] , (16)

where

Φ
[𝑖]
(𝑡) = [𝜙

[𝑖]

1 (𝑡) , 𝜙
[𝑖]

2 (𝑡) , . . . , 𝜙
[𝑖]

𝑀 (𝑡)]
𝑇
,

Ψ
[𝑖]
(𝑡) = [𝜓

[𝑖]

1 (𝑡) , 𝜓
[𝑖]

2 (𝑡) , . . . , 𝜓
[𝑖]

𝑀 (𝑡)]
𝑇
,

(17)

and 𝐴[𝑖−1] is defined as follows:

𝐴

[𝑖−1]
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 1

−2𝜔(1 + 𝜙

[𝑖−1]

1 )
2

(𝑙/𝑀)

2

𝜔(1 + 𝜙

[𝑖−1]

1 )
2

(𝑙/𝑀)

2
⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

𝜔(1 + 𝜙

[𝑖−1]

2 )
2

(𝑙/𝑀)

2

−2𝜔(1 + 𝜙

[𝑖−1]

2 )
2

(𝑙/𝑀)

2
⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅

−2𝜔(1 + 𝜙

[𝑖−1]

𝑀
)

2

(𝑙/𝑀)

2
0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (18)

Secondly, we use a sequence of finite-dimensional differ-
ence equations to approximate equation (10); define

𝜙𝑗 (𝑡) = 𝜙(
𝑗𝑙

𝑀

, 𝑡) ,

𝜓𝑗 (𝑡) = 𝜓(
𝑗𝑙

𝑀

, 𝑡) ,

𝑗 = 1, 2, . . . ,𝑀

(19)

with initial value

(𝜙1 (0) , 𝜙2 (0) , . . . , 𝜙𝑀 (0))=(𝑓(
𝑙

𝑀

) , 𝑓(

2𝑙

𝑀

) , . . . , 𝑓 (𝑙)),

(𝜓1 (0) , 𝜓2 (0) , . . . , 𝜓𝑀 (0)) = (0, 0, . . . , 0) .

(20)
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Suppose that when𝑀 → ∞, (10) could be approximated by
the following finite-dimensional system:

[

̇Φ (𝑡)

̇Ψ (𝑡)
] = 𝐴[

Φ (𝑡)

Ψ (𝑡)
] , (21)

where

Φ (𝑡) = [𝜙1 (𝑡) , 𝜙2 (𝑡) , . . . , 𝜙𝑀 (𝑡)]
𝑇
,

Ψ (𝑡) = [𝜓1 (𝑡) , 𝜓2 (𝑡) , . . . , 𝜓𝑀 (𝑡)]
𝑇
,

(22)

and 𝐴 is defined as follows:

𝐴 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 1

−2𝜔(1 + 𝜙1)
2

(𝑙/𝑀)

2

𝜔(1 + 𝜙1)
2

(𝑙/𝑀)

2
⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

𝜔(1 + 𝜙2)
2

(𝑙/𝑀)

2

−2𝜔(1 + 𝜙2)
2

(𝑙/𝑀)

2
⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅

−2𝜔(1 + 𝜙𝑀)
2

(𝑙/𝑀)

2
0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (23)

Obviously, matrix 𝐴 satisfies local Lipschitz condition. From
Theorem 1 we could deduce that when 𝑖 → ∞, the liner
time-varying systems (16) will converge uniformly to the
nonlinear system (21).

Suppose, at the same time, that when 𝑀 → ∞, the
distributed parameter system (11) and (10) will be approxi-
mated by difference approximation equations (16) and (21),
separately. Thus we could know that (11) will eventually
converge to (10).

Conclusion. When 𝑖 → ∞, the linear time-varying dis-
tributed parameter systems (11) will converge uniformly to
the nonlinear distributed parameter system (10).

Remark. This approximation method could be extended to
other nonlinear distributed parameter systems, as far as the
systems could be approximated by difference equations and
satisfy local Lipschitz condition.

4. Sliding Control of Nonlinear Wave Equation

In this section, we design a sliding mode controller for
the nonlinear wave equation based on the approximation
method.

Consider the control problem

𝜕

2
𝜙

𝜕𝑡

2
= 𝜔 (1 + 𝑟𝜙

2
)

𝜕

2
𝜙

𝜕𝑥

2
+ 𝑢 (𝑥, 𝑡) ,

𝑥 ∈ [0, 𝑙] , 𝑡 ∈ (0, 𝜏) .

(24)

Here we will design a controller to stabilize this system.

As in Section 3, system (24) could be approximated by
LTV distributed parameter equation

𝜕𝜙

[𝑖]

𝜕𝑡

= 𝜓

[𝑖]
,

𝜕𝜓

[𝑖]

𝜕𝑡

= 𝜔 [1 + 𝑟(𝜙

[𝑖−1]
)

2
]

𝜕

2
𝜙

[𝑖]

𝜕𝑥

2
+ 𝑢

[𝑖]
(𝑥, 𝑡) .

(25)

Thus we could design a series of sliding mode surfaces and
controllers for the above linear problem. Under the local
Lipschitz condition, when 𝑖 → ∞, the sliding mode surfaces
and controllers are convergent. The limit of the surfaces is
an effective sliding mode surface of the original nonlinear
system, and the limit of the sliding mode controllers could
eventually stabilize the nonlinear system. Here we notice
that both of the sliding mode surface and the controller are
distributed parameter system.

We choose an infinite-dimensional time-varying sliding
surface for each system as

𝜎

[𝑖]
(𝑥, 𝑡) = 𝜓

[𝑖]
− 𝜔 [1 + 𝑟(𝜙

[𝑖−1]
)

2
]

𝜕

2
𝜙

[𝑖]

𝜕𝑥

2
.

(26)

When the system is on the surface, that is 𝜎 = 0, we can get
the reduced order system

𝜓

[𝑖]
= 𝜔 [1 + 𝑟(𝜙

[𝑖−1]
)

2
]

𝜕

2
𝜙

[𝑖]

𝜕𝑥

2
.

(27)

Notice that system (27) is a time-varying heating equation,
which is always stable [12]. That means once the system hits
the sliding surface, it will remain stable.

To drive the system to this surface, set derivative of 𝜎[𝑖]

equal to minus sign of 𝜎[𝑖] as follows:

�̇�

[𝑖]
(𝑥, 𝑡) = − sign (𝜎[𝑖] (𝑥, 𝑡)) . (28)
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By substituting (28) into (26), we get

𝑢

[𝑖]
= − sign (𝜎[𝑖]) + 2𝑟𝑤 ̇𝜙[𝑖−1]

𝜕

2
𝜙

[𝑖]

𝜕𝑥

2
.

(29)

5. Simulation Result

Weapproximate each systemof (11) by a definite-dimensional
approximation. For

𝜙

[𝑖]
(𝑥, 𝑡) , 𝑥 ∈ [0, 𝑙] ,

(30)

we could write

𝜙

[𝑖]

𝑗 (𝑥, 𝑡) = 𝜙
[𝑖]
(

𝑗𝑙

𝑁

, 𝑡) , 𝑗 = 1, 2, 3, . . . , 𝑁. (31)

Then the LTV approximation of nonlinear wave equation (11)
can be written as

𝜙

[𝑖]

𝑗 (𝑡) = 𝜙
[𝑖]
(

𝑗𝑙

𝑀

, 𝑡) ,

𝜓

[𝑖]

𝑗 (𝑡) = 𝜓
[𝑖]
(

𝑗𝑙

𝑀

, 𝑡) , 𝑗 = 1, 2, . . . ,𝑀.

(32)

And the systems (26) can be written as
̇

𝜙

[𝑖]

𝑗 = 𝜓𝑗
[𝑖]
,

̇
𝜓

[𝑖]

𝑗 =

𝜔 [1 + (𝑟𝜙

[𝑖−1]

𝑗
)

2
] (−2𝜙

[𝑖]

𝑗
+ 𝜙

[𝑖]

𝑗−1
+ 𝜙

[𝑖]

𝑗+1
)

(𝑙/𝑀)

2
+ 𝑢

[𝑖]

𝑗

(33)

with control input

𝑢

[𝑖]

𝑗 = − sign (𝜎
[𝑖]

𝑗 ) +

2𝑟𝜔

̇

𝜙

[𝑖−1]

𝑗
(−2𝜙

[𝑖]

𝑗
+ 𝜙

[𝑖]

𝑗−1
+ 𝜙

[𝑖]

𝑗+1
)

(𝑙/𝑀)

2
,

(34)

where the initial values

𝜙

[𝑖]

𝑗 (0) = 𝜙𝑗0
, 𝜓

[𝑖]

𝑗 (0) = 𝜓𝑗0
(35)

and the boundary condition

𝜙

[𝑖]

0 (0) = 0, 𝜙

[𝑖]

𝑀 (0) = 0.
(36)

The simulation is performed in MATLAB by using Euler
numerical integration technique. The parameters are

𝑤 = 0.4, 𝑟 = 0.5, 𝑙 = 1,

𝑁 = 100, 𝑡 ∈ [0, 1] 𝑠,

𝜙𝑗0
=

{

{

{

{

{

𝑗

50

, if 1 ≤ 𝑗 ≤ 50,

1 −

(𝑗 − 50)

50

, if 50 < 𝑗 ≤ 100,

𝜓𝑗0
= 0.

(37)

Figure 1 gives the approximation error of (11), where the
red part denotes the error when 𝑖 = 2, and the blue part
denotes the error when 𝑖 = 4. As is shown in the figure, the
approximation error decreases as iteration time increases.

Figure 2 gives the control result when applying 𝑢[4] to the
original nonlinear wave system. As is shown in the figure, the
system is stabilized.
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Figure 1: Approximation error.
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Figure 2: Control result.

6. Conclusion

In this paper, we extend a recently introduced approxima-
tion method to nonlinear distributed parameter system and
design a sliding mode controller for a nonlinear wave equa-
tion. The nonlinear wave equation is replaced by a sequence
of LTV systems, which are proved to be globally convergent
under certain conditions. An infinite-dimensional LTV slid-
ing surface is designed for each of the LTV approximation.
The limit of these surfaces gives an effective nonlinear sliding
surface for the original system. And the limit of these sliding
mode controllers exponentially stabilizes the nonlinear wave
equation. The control result shows the effectiveness of this
method.
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