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A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output
nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and
a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and
the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the
signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood
of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed
approach.

1. Introduction

In the past decade, control design and stability analysis on
stochastic systems have received considerable attention, since
stochastic modeling has come to play an important role
in many real systems, including nuclear processes, thermal
processes, chemical processes, biology, socioeconomics, and
immunology [1–4]. Especially, the investigations on the
control design methods of nonlinear stochastic systems have
received more attention in recent years based on back-
stepping technique. For example, the adaptive backstepping
control problem has been investigated in [5] for a class of
SISO strict-feedback stochastic systems by a risk-sensitive
cost criterion. An output-feedback stabilization method has
been proposed for a class of strict-feedback stochastic non-
linear systems by using the quartic Lyapunov function in
[6]. Two backstepping control design approaches have been
developed for nonlinear stochastic systems with the Marko-
vian switching in [7, 8]. By using a linear reduced-order
state observer, several different output-feedback controllers
have been developed for strict-feedback nonlinear stochastic
systems with unmeasured states, such as tracking control [9],
decentralized control [10], and time-delay systems [11]. How-
ever, these proposed control methods are only suitable for

those nonlinear stochastic systems with nonlinear dynamic
models known exactly or with the unknown parameters
appearing linearly with respect to known nonlinear func-
tions. To cope with the problems that the nonlinear dynamic
models are unknown or the system uncertainties are not
linearly parameterized, the adaptive output-feedback control
approaches have been proposed for a class of uncertain
nonlinear stochastic systems by using neural networks in
[12, 13]. The decentralized adaptive neural networks control
methods have been developed in [14, 15] for a class of uncer-
tain large-scale nonlinear stochastic systems on the basis
of [12, 13].

Although the adaptive neural networks backstepping
control approaches in [12–15] can solve the problem of the
unmeasured states by designing a linear state observer, there
is a limit; that is, uncertain terms are only the functions
of the output of the controlled systems, not related to the
other states variables. To solve this limit, some adaptive fuzzy
output feedback control methods have been proposed for a
class of nonlinear stochastic systems by designing nonlinear
fuzzy state observers in [16–18].

It should be mentioned that the control methods [12–
18] can only solve output-feedback stabilization problem and
cannot solve the output feedback tracking control problem.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 836378, 9 pages
http://dx.doi.org/10.1155/2014/836378

http://dx.doi.org/10.1155/2014/836378


2 Abstract and Applied Analysis

In addition, the tracking performance in the above con-
trol methods confined to converge to a small residual set,
whose size depends on the design parameters and some
unknown bounded terms; they cannot offer the guaranteed
transient performance at time instants. As we know, the
practical engineering often requires the proposed control
scheme to satisfy certain quality of the performance indices,
such as overshoot, convergence rate, and steady-state error.
Prescribed performance issues are extremely challenging and
difficult to be achieved, even in the case of the nonlin-
ear behavior of the system in the presence of unknown
uncertainties and external disturbances. More recently, a
design solution called prescribed performance control for the
problem has been proposed in [19] for a class of feedback
linearization nonlinear systems and was extended to the class
of nonlinear systems in [20]. Its main idea is to introduce
predefined performance bounds of the tracking errors and is
able to adjust control performance indices. However, to the
author’s best knowledge, by far, the prescribed performance
designmethodology has not been applied to nonlinear strict-
feedback systems with unknown functions and immeasur-
able states, which is important andmore practical; thus, it has
motivated us for this study.

In this paper, an adaptive fuzzy output-feedback control
design with prescribed performance is developed for a
class of uncertain SISO nonlinear stochastic systems with
unmeasured states. With the help of fuzzy logic systems
identifying the unknown nonlinear systems, a fuzzy adaptive
observer is developed to estimate the immeasurable states.
The backstepping control design technique based on prede-
fined performance bounds is presented to design adaptive
fuzzy output-feedback controller. It is shown that all the
signals of the resulting closed-loop system are bounded in
probability. Moreover, the tracking error converges to an
adjustable neighborhood of the origin and remainswithin the
prescribed performance bounds. Compared with the existing
results, the main advantages of the proposed control scheme
are as follows: (i) the restrictive assumption that all the
states of the system be measured directly can be removed by
designing a state observer; and (ii) by introducing predefined
performance, the proposed adaptive control method can
ensure that the tracking error converges to a predefined
arbitrarily small residual set.

2. System Descriptions and Preliminaries

2.1. Nonlinear System Descriptions. Consider the following
SISO strict-feedback nonlinear stochastic system:

𝑑𝑥
1

= (𝑥
2
+ 𝑓
1
(𝑥
1
) + 𝑑
1
(𝑡)) 𝑑𝑡 + 𝑔

1
(𝑥) 𝑑𝑤,

𝑑𝑥
2

= (𝑥
3
+ 𝑓
2
(𝑥
2
) + 𝑑
2
(𝑡)) 𝑑𝑡 + 𝑔

2
(𝑥) 𝑑𝑤,

...

𝑑𝑥
𝑛−1

= (𝑥
𝑛
+ 𝑓
𝑛−1

(𝑥
𝑛−1

) + 𝑑
𝑛−1

(𝑡)) 𝑑𝑡

+ 𝑔
𝑛−1

(𝑥) 𝑑𝑤,

𝑑𝑥
𝑛

= (𝑢 + 𝑓
𝑛
(𝑥
𝑛
) + 𝑑
𝑛
(𝑡)) 𝑑𝑡 + 𝑔

𝑛
(𝑥) 𝑑𝑤,

𝑦 = 𝑥
1
,

(1)

where 𝑥
𝑖

= [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
]
𝑇

∈ 𝑅
𝑖, 𝑖 = 1, 2, . . . , 𝑛 (𝑥 =

𝑥
𝑛
) is the state vector; 𝑢 ∈ 𝑅 and 𝑦 ∈ 𝑅 are the control

input and system output, respectively. 𝑓
𝑖
(𝑥
𝑖
) and 𝑔

𝑖
(𝑥) 𝑖 =

1, 2, . . . , 𝑛 are unknown continuous nonlinear functions, and
𝑑
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛 is the external disturbance. 𝑤 ∈ 𝑅

is an independent standard Wiener process defined on a
complete probability space with the incremental covariance
𝐸{𝑑𝑤 ⋅ 𝑑𝑤

𝑇

𝑗
} = 𝜎(𝑡)𝜎(𝑡)

𝑇
𝑑𝑡.

In this paper, the states 𝑥
𝑖
(𝑖 ≥ 2) are assumed not to be

available for measurement.
Our control objective is to design a stable output feedback

control scheme for system (1) to ensure that all the signals
are bounded in probability and that the system output 𝑦(𝑡)
can track the given reference signal 𝑦

𝑑
(𝑡) with the given

prescribed performance bounds.

Assumption 1. The external disturbances 𝑑
𝑖
(𝑡) are bounded;

that is, |𝑑
𝑖
(𝑡)| ≤ 𝑑

∗

𝑖
with 𝑑

∗

𝑖
being an unknown constant.

Assumption 2 (see [17]). Assume that functions 𝑓
𝑖
(⋅) satisfy

the global Lipschitz condition; that is, there exist known
constants 𝑚

𝑖
, 𝑖 = 1, 2, . . . , 𝑛 such that for all 𝑋

1
, 𝑋
2

∈ 𝑅
𝑖,

the following inequalities hold:
󵄨󵄨󵄨󵄨𝑓𝑖 (𝑋1) − 𝑓

𝑖
(𝑋
2
)
󵄨󵄨󵄨󵄨 ≤ 𝑚
𝑖

󵄩󵄩󵄩󵄩𝑋1 − 𝑋
2

󵄩󵄩󵄩󵄩 , (2)

where ‖𝑋‖ denotes the 2-norm of a vector𝑋.

Assumption 3 (see [9]). The disturbance covariance
𝑔
𝑇
𝜎𝜎
𝑇
𝑔 = 𝜎𝜎

𝑇 is bounded, where 𝑔 = [𝑔
1
, . . . , 𝑔

𝑛
]
𝑇.

2.2. Prescribed Performance. This section introduces prelim-
inary knowledge on the prescribed performance concept
reported in [20]. According to [20], the prescribed perfor-
mance is achieved by ensuring that each error 𝑧

𝑖
(𝑡) evolves

strictly within predefined decaying bounds as follows:

−𝛿
𝑖min𝜇𝑖 (𝑡) < 𝑧

𝑖
(𝑡) < 𝛿

𝑖max𝜇𝑖 (𝑡) , ∀𝑡 ≥ 0, (3)

where 1 ≤ 𝑖 ≤ 𝑛, 𝛿
𝑖min and 𝛿

𝑖max are design con-
stants, and the performance functions 𝜇

𝑖
(𝑡) are bounded

and strictly positive decreasing smooth functions with the
property lim

𝑡→∞
𝜇
𝑖
(𝑡) = 𝜇

𝑖,∞
; 𝜇
𝑖,∞

> 0 are a constant.
In this paper, the performance functions are chosen as the
exponential form 𝜇

𝑖
(𝑡) = (𝜇

𝑖,0
− 𝜇
𝑖,∞

)𝑒
−𝑛𝑖𝑡 + 𝜇

𝑖,∞
, where

𝑛
𝑖
, 𝜇
𝑖,0
, and 𝜇

𝑖,∞
are strictly positive constants, 𝜇

𝑖,0
> 𝜇
𝑖,∞

,
and 𝜇

𝑖,0
= 𝜇
𝑖
(0) is selected such that −𝛿

𝑖min𝜇𝑖(0) <

𝑧
𝑖
(0) < 𝛿

𝑖max𝜇𝑖(0) is satisfied. The constant 𝜇
𝑖,∞

denotes
the maximum allowable size of 𝑧

𝑖
(𝑡) at steady state that is

adjustable to an arbitrary small value reflecting the resolution
of the measurement device. The decreasing rate 𝑛

𝑖
represents

a lower bound on the required speed of convergence of 𝑧
𝑖
(𝑡).

Furthermore, the maximum overshoot of 𝑧
𝑖
(𝑡) is prescribed

less thanmax{𝛿
𝑖min𝜇𝑖(0), 𝛿𝑖max𝜇𝑖(0)}.Therefore, choosing the

performance function 𝜇
𝑖
(𝑡) and the constants 𝛿

𝑖min, 𝛿𝑖max
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appropriately determines the performance bounds of the
error 𝑧

𝑖
(𝑡).

To represent (3) by an equality form, we employ an error
transformation as

𝑧
𝑖
= 𝜇
𝑖
(𝑡) Φ
𝑖
(𝜁
𝑖
(𝑡)) , ∀𝑡 ≥ 0, (4)

where Φ
𝑖
(𝜁
𝑖
) = (𝛿

𝑖max𝑒
𝜁𝑖 − 𝛿
𝑖min𝑒
−𝜁𝑖)/(𝑒

𝜁𝑖 + 𝑒
−𝜁𝑖).

Since the functionΦ
𝑖
(𝜁
𝑖
) is strictly monotonic increasing,

its inverse function can be expressed as

𝜁
𝑖
(𝑡) = Φ

−1
(
𝑧
𝑖
(𝑡)

𝜇
𝑖
(𝑡)

) =
1

2
ln

Φ
𝑖
− 𝛿
𝑖min

𝛿
𝑖max − Φ

𝑖

,

̇𝜁
𝑖
(𝑡) = 𝑝

𝑖
(𝑧̇
𝑖
−

𝜇̇
𝑖
𝑧
𝑖

𝜇
𝑖

)

(5)

with 𝑝
𝑖
= (1/2𝜇

𝑖
)[(1/(Φ

𝑖
+ 𝛿
𝑖min)) − (1/(Φ

𝑖
− 𝛿
𝑖max))].

For the output-feedback control design of the nonlinear
system, we design the following state transformation:

𝑧
𝑖
(𝑡) = 𝜁

𝑖
(𝑡) −

1

2
ln

𝛿
𝑖min

𝛿
𝑖max

. (6)

And the transformation state dynamics is

𝑧̇
𝑖
(𝑡) = 𝑝

𝑖
(𝑧̇
𝑖
−

𝜇̇
𝑖
𝑧
𝑖

𝜇
𝑖

) . (7)

2.3. Fuzzy Logic Systems. A fuzzy logic system (FLS) consists
of four parts: the knowledge base, the fuzzifier, the fuzzy
inference engine working on fuzzy rules, and the defuzzifier.
The knowledge base for FLS comprises a collection of fuzzy
IF-THEN rules of the following form:

𝑅
𝑙
: If 𝑥
1
is 𝐹
𝑙

1
, 𝑥
2
is 𝐹
𝑙

2
, . . . , 𝑥

𝑛
is 𝐹
𝑙

𝑛
,

Then 𝑦 𝑖𝑠 𝐺
𝑙
, 𝑙 = 1, 2, . . . , 𝑁,

(8)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇 and 𝑦 are the FLS input and output,

respectively. Fuzzy sets 𝐹
𝑙

𝑖
and 𝐺

𝑙 are associated with the
fuzzy functions 𝜇

𝐹
𝑙

𝑖

(𝑥
𝑖
) and 𝜇

𝐺
𝑙(𝑦), respectively.𝑁 is the rule

number of IF-THEN.
Through singleton function, center average defuzzifica-

tion, and product inference [21], the FLS can be expressed as

𝑦 (𝑥) =

∑
𝑁

𝑙=1
𝑦
𝑙
∏
𝑛

𝑖=1
𝜇
𝐹
𝑙

𝑖

(𝑥
𝑖
)

∑
𝑁

𝑙=1
[∏
𝑛

𝑖=1
𝜇
𝐹
𝑙

𝑖

(𝑥
𝑖
)]

, (9)

where 𝑦
𝑙
= max

𝑦∈𝑅
𝜇
𝐺
𝑙(𝑦).

Define the fuzzy basis functions as

𝜑
𝑙
=

∏
𝑛

𝑖=1
𝜇
𝐹
𝑙

𝑖

(𝑥
𝑖
)

∑
𝑁

𝑙=1
(∏
𝑛

𝑖=1
𝜇
𝐹
𝑙

𝑖

(𝑥
𝑖
))

. (10)

Denoting 𝜃
𝑇
= [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
] = [𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑁
] and 𝜑(𝑥) =

[𝜑
1
(𝑥), . . . , 𝜑

𝑁
(𝑥)]
𝑇, then FLS (9) can be rewritten as

𝑦 (𝑥) = 𝜃
𝑇
𝜑 (𝑥) . (11)

Lemma4 (see [21]). Let𝑓(𝑥) be a continuous function defined
on a compact set Ω. Then for any constant 𝜀 > 0, there exists a
FLS (11) such as

sup
𝑥∈Ω

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥) − 𝜃

𝑇
𝜑 (𝑥)

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀. (12)

3. Fuzzy State Observer Design

Since the states 𝑥
2
, . . . , 𝑥

𝑛
in system (1) are not available for

measurement, a state observer is to be established to estimate
them in this section.

Rewrite (1) in the following form:

𝑑𝑥
𝑛

= (𝐴𝑥
𝑛
+ 𝐾𝑦 +

𝑛

∑

𝑖=1

𝐵
𝑖
[𝑓
𝑖
(𝑥
𝑖
) + 𝑑
𝑖
(𝑡)] + 𝐵𝑢)𝑑𝑡

+ 𝑔 (𝑥) 𝑑𝑤

= (𝐴𝑥
𝑛
+ 𝐾𝑦 +

𝑛

∑

𝑖=1

𝐵
𝑖
[𝑓
𝑖
(𝑥̂
𝑖
) + Δ𝑓

𝑖
+ 𝑑
𝑖
(𝑡)] + 𝐵𝑢)𝑑𝑡

+ 𝑔 (𝑥) 𝑑𝑤,

(13)

where 𝑥̂
𝑖

= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
)
𝑇 is the estimate of 𝑥

𝑖
=

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
)
𝑇, 𝐴 = [

−𝑘1... I
−𝑘𝑛 0 ⋅⋅⋅ 0

], 𝐾 = [𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
]
𝑇,

𝐵
𝑖
= [0 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 0]

𝑇, 𝐵 = [0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 1]
𝑇, Δ𝑓
𝑖
= 𝑓
𝑖
(𝑥
𝑖
) − 𝑓
𝑖
(𝑥̂
𝑖
),

𝑔(𝑥) = [𝑔
1
(𝑥), . . . , 𝑔

𝑛
(𝑥)]
𝑇.

The vector 𝐾 is chosen such that 𝐴 is a Hurwitz matrix.
Thus, given a positive definitematrix𝑄 = 𝑄

𝑇
> 0, there exists

a positive definite matrix 𝑃 = 𝑃
𝑇
> 0 satisfying

𝐴
𝑇
𝑃 + 𝑃𝐴 = −2𝑄. (14)

By Lemma 4, we can assume that nonlinear terms 𝑓
𝑖
(𝑥̂
𝑖
), 𝑖 =

1, 2, . . . , 𝑛 in (13) can be approximated by the following FLSs:

𝑓
𝑖
(𝑥̂
𝑖
𝜃
𝑖
) = 𝜃
𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
) . (15)

Define the optimal parameter vectors 𝜃∗
𝑖
as

𝜃
∗

𝑖
= argmin
𝜃𝑖∈Ω𝑖

[

[

sup
𝑥̂𝑖∈𝑈𝑖

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑖
(𝑥̂
𝑖
| 𝜃
𝑖
) − 𝑓
𝑖
(𝑥̂
𝑖
)
󵄨󵄨󵄨󵄨󵄨
]

]

, (16)

where Ω
𝑖
and 𝑈

𝑖
are bounded compact sets for 𝜃

𝑖
and 𝑥̂

𝑖
,

respectively. Also, the fuzzy minimum approximation error
𝜀
𝑖
is defined as

𝜀
𝑖
= 𝑓
𝑖
(𝑥̂
𝑖
) − 𝑓
𝑖
(𝑥̂
𝑖
| 𝜃
∗

𝑖
) , (17)

where 𝜀
𝑖
satisfies |𝜀

𝑖
| ≤ 𝜀
∗

𝑖
, with 𝜀

∗

𝑖
being a positive constant.

The state observer for (13) is designed as

̇̂
𝑥
𝑛
= 𝐴𝑥̂
𝑛
+ 𝐾𝑦 +

𝑛

∑

𝑖=1

𝐵
𝑖
[𝑓
𝑖
(𝑥̂
𝑖
| 𝜃
𝑖
)] + 𝐵𝑢,

𝑦 = 𝐶𝑥̂
𝑛
,

(18)

where 𝐶 = [1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0].



4 Abstract and Applied Analysis

4. Adaptive Controller Design

In this section, an adaptive fuzzy output-feedback control
scheme will be developed by using the above fuzzy state
observer and the backstepping technique, and the stability of
the closed-loop system will be given.

The controller design consists of step 𝑛; each step is based
on the following change of coordinates:

𝑧
1
= 𝑦 − 𝑦

𝑑
, 𝑧

𝑖
= 𝑥
𝑖
− 𝛼
𝑖−1

, (𝑖 = 2, . . . , 𝑛) , (19)

where 𝛼
𝑖−1

is referred to as the intermediate control function,
which will be designed later.

Step 1. From (1), (7), and (19), according to Itô’s differentia-
tion rule, we can obtain

𝑑𝑧
1
= 𝑝
1
(𝑥
2
+ 𝑓
1
(𝑥
1
) + 𝑑
1
− ̇𝑦
𝑑
−

𝜇̇
1
𝑧
1

𝜇
1

)𝑑𝑡

+ 𝑝
1
𝑔
1
(𝑥) 𝑑𝑤

= 𝑝
1
(𝑧
2
+ 𝛼
1
+ 𝑒
2
+ 𝜃
𝑇

1
𝜑
1
(𝑥
1
)

+ 𝜃
𝑇

1
𝜑
1
(𝑥
1
) + 𝜀
1
+ 𝑑
1
− ̇𝑦
𝑑

+Δ𝑓
1
−

𝜇̇
1
𝑧
1

𝜇
1

)𝑑𝑡 + 𝑝
1
𝑔
1
(𝑥) 𝑑𝑤.

(20)

Choose the intermediate control function 𝛼
1
and the adapta-

tion law for 𝜃
1
as follows:

𝛼
1
= −𝑐
1
𝑧
1
𝑝
1
−

9

4
𝑧
1
𝑝
1/3

1
−

3

4
𝑧
1
𝑝
3

1
− 𝑧
3

1
𝑝
1

− 𝜃
𝑇

1
𝜑
1
(𝑥
1
) + ̇𝑦
𝑑
+

𝜇̇
1
𝑧
1

𝜇
1

,

(21)

̇𝜃
1
= 𝜂
1
𝑧
3

1
𝑝
1
𝜑
1
(𝑥
1
) − 𝜎
1
𝜃
1
, (22)

where 𝑐
1
> 0, 𝜎

1
> 0 and 𝜂

1
> 0 are design parameters and 𝜃

1

is the estimate of 𝜃∗
1
.

Step 𝑖 (2 ≤ 𝑖 ≤ 𝑛 − 1). Similar to Step 1, we have

𝑑𝑧
𝑖
= [𝑝
𝑖
(𝑧
𝑖+1

+ 𝛼
𝑖
+ 𝑘
𝑖
𝑒
1
+ 𝜃
𝑇

𝑖
𝜑 (𝑥̂
𝑖
)

−

𝑖−1

∑

𝑙=1

𝜕𝛼
𝑙−1

𝜕𝑥
𝑙

̇̂𝑥
𝑙
−

𝑖−1

∑

𝑙=1

𝜕𝛼
𝑙−1

𝜕𝜃
𝑙

̇𝜃
𝑙

−

𝑖−1

∑

𝑙=1

𝜕𝛼
𝑙−1

𝜕𝑦
(𝑙−1)

𝑑

𝑦
𝑙

𝑑
−

𝜕𝛼
1

𝜕𝑦
̇𝑦 −

𝜇̇
𝑖
𝑧
𝑖

𝜇
𝑖

)]𝑑𝑡

− 𝑝
𝑖

𝜕𝛼
𝑖−1

𝜕𝑦
𝑔
1
(𝑥) 𝑑𝑤

= [𝑝
𝑖
(𝑧
𝑖+1

+ 𝛼
𝑖
+ 𝑘
𝑖
𝑒
1
+ 𝜃
𝑇

𝑖
𝜑 (𝑥̂
𝑖
)

+ 𝜃
𝑇

𝑖
𝜑 (𝑥̂
𝑖
) − 𝜃
𝑇

𝑖
𝜑 (𝑥̂
𝑖
) −

𝜕𝛼
1

𝜕𝑦

× [𝜃
𝑇

1
𝜑
1
(𝑥
1
) + 𝑒
2
+ 𝜀
1
+ Δ𝑓
1
+ 𝑑
1
]

−𝐻
𝑖
−

𝜇̇
𝑖
𝑧
𝑖

𝜇
𝑖

)]𝑑𝑡

− 𝑝
𝑖

𝜕𝛼
𝑖−1

𝜕𝑦
𝑔
1
(𝑥) 𝑑𝑤,

(23)

where

𝐻
𝑖
= −

𝑖−1

∑

𝑙=1

𝜕𝛼
𝑙−1

𝜕𝑥
𝑙

[𝑥
𝑙+1

+ 𝜃
𝑇

𝑙
𝜑
𝑙
(𝑥̂
𝑙
) + 𝑘
𝑙
𝑒
1
]

−
𝜕𝛼
1

𝜕𝜃
1

̇𝜃
1
−

𝜕𝛼
1

𝜕𝑦
(𝑙−1)

𝑑

̇𝑦
𝑑
−

𝜕𝛼
1

𝜕𝑦
[𝑥
2
+ 𝜃
𝑇

1
𝜑
1
(𝑥
1
)] .

(24)

Choose intermediate control function 𝛼
𝑖
and adaptation law

𝜃
𝑖
as

𝛼
𝑖
= −𝑐
𝑖
𝑧
𝑖
𝑝
𝑖
− 𝑘
𝑖
𝑒
1
− 𝐻
𝑖
− 𝜃
𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
)

−
3

4
𝑧
𝑖
𝑝
1/3

𝑖
−

1

4
𝑧
𝑖
+

𝜇̇
𝑖
𝑧
𝑖

𝜇
𝑖

,

(25)

̇𝜃
𝑖
= 𝜂
𝑖
𝑧
3

𝑖
𝑝
𝑖
𝜑
𝑖
(𝑥̂
𝑖
) − 𝜎
𝑖
𝜃
𝑖
, (26)

where 𝑐
𝑖
> 0, 𝜎

𝑖
> 0 and 𝜂

𝑖
> 0 are design parameters and 𝜃

𝑖

is the estimate of 𝜃∗
𝑖
, and

𝐻
𝑖
= 𝐻
𝑖
+ (

𝜕𝛼
𝑖−1

𝜕𝑥
1

)

2

𝑧
3

𝑖
𝑝
𝑖
+

3

4
𝑧
𝑖
𝑝
3

𝑖
(
𝜕𝛼
𝑖−1

𝜕𝑦
)

4

+
1

2
𝑧
3

𝑖
𝑝
𝑖
+

1

4
𝑧
3

𝑖
𝑝
𝑖
(
𝜕
2
𝛼
𝑖−1

𝜕𝑦2
)

2

.

(27)

Step 𝑛. In the final design step, the actual control input 𝑢 will
be designed. Similar to Step 𝑖 we have

𝑑𝑧
𝑛
= 𝑝
𝑛
(𝑢 + 𝑘

𝑛
𝑒
1
+ 𝜃
𝑇

𝑛
𝜑
𝑛
(𝑥̂
𝑛
) − 𝛼̇
𝑛−1

−
𝜇̇
𝑛
𝑧
𝑛
(𝑡)

𝜇
𝑛

)𝑑𝑡

− 𝑝
𝑛

𝜕𝛼
𝑛−1

𝜕𝑦
𝑔
1
(𝑥) 𝑑𝑤.

(28)

The controller 𝑢 and adaptation law 𝜃
𝑛
are chosen as

𝑢 = −𝑐
𝑛
𝑧
𝑛
𝑝
𝑛
− 𝑘
𝑛
𝑒
1
− 𝜃
𝑇

𝑛
𝜑
𝑛
(𝑥̂
𝑛
) − 𝐻

𝑛
−

1

4
𝑧
𝑛
+

𝜇̇
𝑛
𝑧
𝑛

𝜇
𝑛

, (29)

̇𝜃
𝑛
= 𝜂
𝑛
𝑧
3

𝑛
𝑝
𝑛
𝜑
𝑛
(𝑥̂
𝑛
) − 𝜎
𝑛
𝜃
𝑛
, (30)

where 𝑐
𝑛
> 0, 𝜎

𝑛
> 0 and 𝜂

𝑖
> 0 are design parameters and 𝜃

𝑛

is the estimate of 𝜃∗
𝑛
.
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5. Stability Analysis

Consider the total Lyapunov candidate functions 𝑉 as the
sum of local Lyapunov candidate functions𝑉

0
and𝑉
𝑖
, namely,

𝑉 = 𝑉
0
+ 𝑉
𝑖
, with 𝑉

0
= (1/2)𝑒

𝑇
𝑃𝑒, and 𝑉

𝑖
= ∑
𝑛

𝑖=1
((1/4)𝑧

4

𝑖
+

(1/2𝜂
𝑖
)𝜃
𝑇

𝑖
𝜃
𝑖
), where 𝑒 = 𝑥 − 𝑥̂ is the observer error vector, 𝜂

𝑖

is positive design constant, and 𝜃
𝑖
= 𝜃
∗

𝑖
− 𝜃
𝑖
.

Theorem5. For the stochastic nonlinear system (1), if Assump-
tions 1–3 are satisfied, the controller (29)with the state observer
(18), together with the intermediate control functions (21) and
(25), and adaptation laws (22), (26), and (30) can guarantee
that all signals in the closed-loop system are semiglobally
uniformly ultimately bounded in probability, and the tracking
error remains in a neighborhood of the origin within the
prescribed performance bounds for all 𝑡 ≥ 0.

Proof. The infinitesimal generator of 𝑉 is

ℓ𝑉 = ℓ𝑉
0
+ ℓ𝑉
𝑖
. (31)

From (13) and (18), we have the observer error equation

𝑑𝑒 = (𝐴𝑒 +

𝑛

∑

𝑖=1

𝐵
𝑖
[𝑓
𝑖
(𝑥̂
𝑖
) − 𝑓
𝑖
(𝑥̂
𝑖
| 𝜃
𝑖
)

+ Δ𝑓
𝑖
+ 𝑑
𝑖
])𝑑𝑡 + 𝑔 (𝑥) 𝑑𝑤

= (𝐴𝑒 +

𝑛

∑

𝑖=1

𝐵
𝑖
[𝜀
𝑖
+ 𝜃
𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
)

+Δ𝑓
𝑖
+ 𝑑
𝑖
])𝑑𝑡 + 𝑔 (𝑥) 𝑑𝑤

= (𝐴𝑒 + 𝜀 + 𝑑 + Δ𝑓

+

𝑛

∑

𝑖=1

𝐵
𝑖
𝜃
𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
))𝑑𝑡 + 𝑔 (𝑥) 𝑑𝑤,

(32)

where Δ𝑓 = [Δ𝑓
1
, . . . , Δ𝑓

𝑛
]
𝑇, 𝜀 = [𝜀

1
, . . . , 𝜀

𝑛
]
𝑇, 𝑑 =

[𝑑
1
, . . . , 𝑑

𝑛
]
𝑇, 𝜃
𝑖
= 𝜃
∗

𝑖
− 𝜃
𝑖
.

The infinitesimal generator of 𝑉
0
along with (32) is

ℓ𝑉
0
≤ −𝜆min (𝑄) ‖𝑒‖

2
+ 𝑒
𝑇
𝑃 (𝜀 + 𝑑 + Δ𝑓)

+

𝑛

∑

𝑖=1

𝑒
𝑇
𝑃𝐵
𝑖
𝜃
𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
) + 𝑇𝑟 [𝜎𝑔

𝑇
𝑃𝑔𝜎
𝑇
] .

(33)

By Young’s inequality, Assumptions 1–3, we have

𝑒
𝑇
𝑃 (𝑑 + 𝜀 + Δ𝑓) ≤

3

2
‖𝑒‖
2
+

1

2
‖𝑃‖
2󵄩󵄩󵄩󵄩𝜀
∗󵄩󵄩󵄩󵄩
2

+
1

2
‖𝑃‖
2󵄩󵄩󵄩󵄩𝑑
∗󵄩󵄩󵄩󵄩
2

+
1

2
‖𝑃‖
2󵄩󵄩󵄩󵄩Δ𝑓

󵄩󵄩󵄩󵄩
2

≤ (
3

2
+

1

2
‖𝑃‖
2

𝑛

∑

𝑖=1

𝑚
2

𝑖
)‖𝑒‖
2

+
1

2
‖𝑃‖
2󵄩󵄩󵄩󵄩𝜀
∗󵄩󵄩󵄩󵄩
2

+
1

2
‖𝑃‖
2󵄩󵄩󵄩󵄩𝑑
∗󵄩󵄩󵄩󵄩
2

,

𝑇𝑟 [𝜎𝑔
𝑇
𝑃𝑔𝜎
𝑇
] ≤

1

2
‖𝑃‖
2
+

1

2

󵄨󵄨󵄨󵄨󵄨
𝜎 𝜎
𝑇󵄨󵄨󵄨󵄨󵄨

2

,

(34)

where 𝜀∗ = [𝜀
∗

1
, . . . , 𝜀

∗

𝑛
]
𝑇, 𝑑∗ = [𝑑

∗

1
, . . . , 𝑑

∗

𝑛
]
𝑇.

Note that 𝜑𝑇
𝑖
(𝑥̂
𝑖
)𝜑
𝑖
(𝑥̂
𝑖
) ≤ 1; by Young’s inequality, we have

𝑒
𝑇
𝑃

𝑛

∑

𝑖=1

𝐵
𝑖
𝜃
𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
) ≤

1

4
𝑒
𝑇
𝑃𝑃
𝑇
𝑒 +

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
) 𝜑
𝑇

𝑖
(𝑥̂
𝑖
) 𝜃
𝑖

≤
1

4
𝜆
2

max (𝑃) ‖𝑒‖
2
+

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜃
𝑖
,

(35)

where 𝜆max(𝑃) is the largest eigenvalue of 𝑃.
Substituting (34)-(35) into (33) gives

𝑉̇
0
≤ −𝑞
0‖𝑒‖
2
+

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜃
𝑖
+ 𝜆
0
, (36)

where 𝑞
0

= 𝜆min(𝑄) − ((3/2) + (1/2)‖𝑃‖
2
∑
𝑛

𝑖=1
𝑚
2

𝑖
+

(1/4)𝜆
2

max(𝑃)), 𝜆0 = (1/2)‖𝑃‖
2
‖𝜀
∗
‖
2
+ (1/2)‖𝑃‖

2
‖𝑑
∗
‖
2
+

(1/2)‖𝑃‖
2
+ (1/2)|𝜎 𝜎

𝑇
|
2

, and 𝜆min(𝑄) is the minimal eigen-
value of 𝑄.

From (19), (20), (23), and (28) we have

𝑧
3

1
𝑧̇
1
= 𝑧
3

1
𝑝
1
(𝑥
2
+ 𝑓
1
(𝑥
1
) + 𝑑
1
− ̇𝑦
𝑑
−

𝜇̇
1
𝑧
1

𝜇
1

)

+
3

2
𝑧
2

1
𝑝
2

1
𝑔
𝑇

1
𝜎𝜎
𝑇
𝑔
1

= 𝑧
3

1
𝑝
1
(𝑧
2
+ 𝛼
1
+ 𝑒
2
+ 𝜃
𝑇

1
𝜑
1
(𝑥
1
) + 𝜃
𝑇

1
𝜑
1
(𝑥
1
)

+𝜀
1
+ 𝑑
1
− ̇𝑦
𝑑
+ Δ𝑓
1
−

𝜇̇
1
𝑧
1

𝜇
1

)

+
3

2
𝑧
2

1
𝑝
2

1
𝑔
𝑇

1
𝜎𝜎
𝑇
𝑔
1
,

𝑧
3

𝑖
𝑧̇
𝑖
= 𝑧
3

𝑖
𝑝
𝑖
(𝑧
𝑖+1

+ 𝛼
𝑖
+ 𝑘
𝑖
𝑒
1
−

𝜕𝛼
1

𝜕𝑦

× [𝜃
𝑇

1
𝜑
1
(𝑥
1
) + 𝑒
2
+ Δ𝑓
1
+ 𝑑
1
+ 𝜀
1
]

+ 𝜃
𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
) + 𝜃
𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
) − 𝜃
𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
) − 𝐻

𝑖

−
1

2

𝜕
2
𝛼
𝑖−1

𝜕𝑦2
𝑔
𝑇

1
𝜎𝜎
𝑇
𝑔
1
−

𝜇̇
𝑖
𝑧
𝑖

𝜇
𝑖

)

+
3

2
𝑝
2

𝑖
𝑧
2

𝑖
(
𝜕𝛼
𝑖−1

𝜕𝑦
)

2

𝑔
𝑇

1
𝜎𝜎
𝑇
𝑔
1
,
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𝑧
3

𝑛
𝑧̇
𝑛
= 𝑧
3

𝑛
𝑝
𝑛
(𝜃
𝑇

𝑛
𝜑
𝑛
(𝑥̂
𝑛
)+𝑢 +

1

4
𝑧
𝑛
+ 𝑘
𝑛
𝑒
1
− 𝐻
𝑛
−

𝜇̇
𝑛
𝑧
𝑛
(𝑡)

𝜇
𝑛

)

+ 𝜃
𝑇

𝑛
𝜑
𝑛
(𝑥̂
𝑛
)−𝜃
𝑇

𝑛
𝜑
𝑛
(𝑥̂
𝑛
)+

3

2
𝑝
2

𝑛
𝑧
2

𝑛
(
𝜕𝛼
𝑛−1

𝜕𝑦
)

2

𝑔
𝑇

1
𝜎𝜎
𝑇
𝑔
1
.

(37)

By Young’s inequality and Assumptions 1–3, we have

𝑧
3

1
𝑝
1
𝑧
2
+ 𝑧
3

1
𝑝
1
𝑒
2
+ 𝑧
3

1
𝑝
1
𝜀
1
+ 𝑧
3

1
𝑝
1
𝑑
1
+ 𝑧
3

1
𝑝
1
Δ𝑓
1

≤
3

4
𝑧
4

1
𝑝
4/3

1
+

1

4
𝑧
4

2
+

1

2
𝑧
6

1
𝑝
2

1
+

1

2
‖𝑒‖
2
+

3

4
𝑧
4

1
𝑝
4/3

1

+
1

4
𝜀
∗4

1
+

3

4
𝑧
4

1
𝑝
4/3

1
+

1

4
𝑑
∗4

1
+

1

2
𝑧
6

1
𝑝
2

1
+

1

2
Δ𝑓
2

1

≤
9

4
𝑧
4

1
𝑝
4/3

1
+ 𝑧
6

1
𝑝
2

1
+

1

4
𝑧
4

2
+

1

4
𝜀
∗4

1
+

1

4
𝑑
∗4

1

+
1

2
‖𝑒‖
2
+

1

2
‖𝑒‖
2
𝑚
2

1
,

(38)

3

2
𝑧
2

1
𝑝
2

1
𝑔
𝑇

1
𝜎𝜎
𝑇
𝑔
1
≤

3

4
𝑧
4

1
𝑝
4

1
+

3

4

󵄨󵄨󵄨󵄨󵄨
𝜎 𝜎
𝑇󵄨󵄨󵄨󵄨󵄨

2

, (39)

𝑧
3

𝑖
𝑝
𝑖
𝑧
𝑖+1

− 𝑧
3

𝑖
𝑝
𝑖
𝜃
𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
)

≤
3

4
𝑧
4

𝑖
𝑝
4/3

𝑖
+

1

4
𝑧
4

𝑖+1
+

1

2
𝑧
6

𝑖
𝑝
2

𝑖
+

1

2
𝜃
𝑇

𝑖
𝜃
𝑖
,

(40)

−𝑧
3

𝑖
𝑝
𝑖

𝜕𝛼
𝑖−1

𝜕𝑥
1

𝑒
2
≤

1

2
‖𝑒‖
2
+

1

2
(
𝜕𝛼
𝑖−1

𝜕𝑥
1

)

2

𝑧
6

𝑖
𝑝
2

𝑖
, (41)

−𝑧
3

𝑖
𝑝
𝑖

𝜕𝛼
𝑖−1

𝜕𝑥
1

𝜃
𝑇

1
𝜑
1
(𝑥
1
) ≤

1

2
𝜃
𝑇

1
𝜃
1
+

1

2
(
𝜕𝛼
𝑖−1

𝜕𝑥
1

)

2

𝑧
6

𝑖
𝑝
2

𝑖
, (42)

− 𝑧
3

𝑖
𝑝
𝑖

𝜕𝛼
𝑖−1

𝜕𝑥
1

[𝜀
1
+ Δ𝑓
1
+ 𝑑
1
]

≤
3

2
(
𝜕𝛼
𝑖−1

𝜕𝑥
1

)

2

𝑧
6

𝑖
𝑝
2

𝑖
+

1

2
𝜀
∗2

1
+

1

2
𝑑
∗2

1
+

𝑚
2

1

2
‖𝑒‖
2
,

(43)

−
1

2
𝑧
3

𝑖
𝑝
𝑖

𝜕
2
𝛼
𝑖−1

𝜕𝑦2
𝑔
𝑇

1
𝜎𝜎
𝑇
𝑔
1
+

3

2
𝑝
2

𝑖
𝑧
2

𝑖
(
𝜕𝛼
𝑖−1

𝜕𝑦
)

2

𝑔
𝑇

1
𝜎𝜎
𝑇
𝑔
1

≤
1

4
𝑧
6

𝑖
𝑝
2

𝑖
(
𝜕
2
𝛼
𝑖−1

𝜕𝑦2
)

2

+
1

4
|𝜎 𝜎|
2
+

3

4
𝑝
4

𝑖
𝑧
4

𝑖
(
𝜕𝛼
𝑖−1

𝜕𝑦
)

4

+
3

4

󵄨󵄨󵄨󵄨󵄨
𝜎 𝜎
𝑇󵄨󵄨󵄨󵄨󵄨

2

.

(44)

From (21)-(22), (25)-(26), (29)-(30), and (41)–(44), we have

ℓ𝑉 ≤ −𝑞
𝑛‖𝑒‖
2
−

𝑛

∑

𝑖=1

𝑐
𝑖
𝑧
4

𝑖
𝑝
2

𝑖
+

𝑛

∑

𝑖=1

𝜎
𝑖

𝜂
𝑖

𝜃
𝑇

𝑖
𝜃
𝑖

+ 2

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜃
𝑖
+

𝑛 − 1

2
𝜃
𝑇

1
𝜃
1
+ 𝜆
𝑛
,

(45)

where 𝑞
𝑛
= 𝑞
0
−(𝑛/2)−(𝑛𝑚

2

1
/2), 𝜆
𝑛
= 𝜆
0
+(𝑛/2)𝜀

2

1
+(𝑛/2)𝑑

∗2

1
+

𝑛|𝜎 𝜎|
2.

Note that
𝑛

∑

𝑖=1

𝜎
𝑖

𝜂
𝑖

𝜃
𝑇

𝑖
𝜃
𝑖
≤ −

1

2

𝑛

∑

𝑖=1

𝜎
𝑖

𝜂
𝑖

𝜃
𝑇

𝑖
𝜃
𝑖
+

1

2

𝑛

∑

𝑖=1

𝜎
𝑖

𝜂
𝑖

𝜃
∗𝑇

𝑖
𝜃
∗

𝑖
. (46)

Substituting the above inequality into (52) gives

ℓ𝑉 ≤ −𝑞
𝑛‖𝑒‖
2
−

𝑛

∑

𝑖=1

𝑐
𝑖
𝑧
4

𝑖
𝑝
2

𝑖
−

𝑛

∑

𝑖=2

(
𝜎
𝑖

2𝜂
𝑖

− 2) 𝜃
𝑇

𝑖
𝜃
𝑖

− (
𝜎
1

2𝜂
1

−
𝑛 + 3

2
) 𝜃
𝑇

1
𝜃
1
+ 𝜆,

(47)

where 𝐷 = ∑
𝑛

𝑖=1
(𝜎
𝑖
/2𝜂
𝑖
)𝜃
∗𝑇

𝑖
𝜃
∗

𝑖
+ 𝜆
𝑛
. Let 𝑞

𝑛
> 0, 𝑐

𝑖
> 0,

(𝜎
𝑖
/2𝜂
𝑖
) > 1, and define

𝐶 = min{
2𝑞
𝑛

𝜆min (𝑃)
, 4𝑐
𝑖
𝑝
2

𝑖
, (𝑖 = 1, . . . , 𝑛) ,

𝜎
1
− (𝑛 + 3) 𝜂

1
, 2 (𝜎
𝑖
− 4𝜂
𝑖
) , (𝑖 = 2, . . . , 𝑛) } .

(48)

Then (47) can be written as

ℓ𝑉 ≤ −𝐶𝑉 + 𝐷. (49)

Multiplying 𝑉 by 𝑒𝐶𝑡 and by Itô formula leads to

𝑑 (𝑒
𝐶𝑡
𝑉) = 𝑒

𝐶𝑡
(𝐶𝑉 + ℓ𝑉) 𝑑𝑡 + 𝑒

𝐶𝑡
Ω
1
𝑑𝑤, (50)

whereΩ
1
= (𝜕𝑉/𝜕𝑧

1
)𝑔
1
(𝑥) −∑

𝑛

𝑖=2
(𝜕𝑉/𝜕𝑧

𝑖
)(𝜕𝛼
𝑖−1

/𝜕𝑦)𝑔
1
(𝑥) +

(𝜕𝑉/𝜕𝑒)𝑔(𝑥).
From (49) and (50), we have

𝑑 (𝑒
𝐶𝑡
𝑉) ≤ 𝑒

𝐶𝑡
𝐷𝑑𝑡 + 𝑒

𝐶𝑡
Ω
1
𝑑𝑤. (51)

Integrating (51) over [0, 𝑇], we get

𝑉 (𝑇) ≤ 𝑒
𝐶𝑇

𝑉 (0) +
𝐷

𝐶
+ 𝑒
𝐶𝑇

∫

𝑇

0

𝑒
𝐶𝑠
Ω
1
𝑑𝑤 (𝑠) . (52)

Taking expectation on (52), it follows that

𝐸 [𝑉 (𝑇)] ≤ 𝐸𝑉 (0) 𝑒
−𝐶𝑇

+
𝐷

𝐶
, (53)

where 𝐸(⋅) is probability expectation.
The above inequality means that 𝐸[𝑉(𝑇)] is bounded

by 𝐷/𝐶 in mean square. Thus, according to [12–18], it is
concluded that all the signals of the closed-loop system are
SGUUB in the sense of the four-moment.Moreover, it follows
that the tracking errors and virtual tracking errors remain
within the prescribed performance bounds for all time 𝑡 ≥

0.

6. Simulation Study

In this section, a simulation example is provided to evaluate
the control performance of the proposed adaptive output-
feedback control method.
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Figure 1: The curves of 𝑦 (solid line) and 𝑦
𝑑
(dot line).

Consider a stochastic system governed by the following
form:

𝑑𝑥
1
= [𝑥
2
+ 𝑓
1
(𝑥
1
)] 𝑑𝑡 + 𝑔

1
(𝑥) 𝑑𝑤,

𝑑𝑥
2
= [𝑓
2
(𝑥
1
, 𝑥
2
)] 𝑑𝑡 + 𝑢 + 𝑔

2
(𝑥) 𝑑𝑤,

𝑦 = 𝑥
1
,

(54)

where 𝑓
1
(𝑥
1
) = sin(𝑥2

1
), 𝑓
2
(𝑥
1
, 𝑥
2
) = 𝑥

1
sin(𝑥2
2
) − 𝑥
1
𝑒
0.5𝑥1 ,

𝑔
1
(𝑥) = sin(𝑥

1
)/(1+0.5 cos(𝑥

2
)), 𝑔
2
(𝑥) = 𝑥

1
𝑥
2
/(1+(𝑥

1
𝑥
2
)
2
).

𝑤̇(𝑡) is assumed to be a Gaussian white noise with zero mean
and variance 1.0. The tracking reference signal is chosen as
𝑦
𝑑
(𝑡) = sin(𝑡).
Choose fuzzy membership functions as

𝜇
𝐹
𝑙

𝑖

(𝑥
𝑖
) = exp[−

(𝑥
𝑖
− 3 + 𝑙)

2

16
] , 𝑙 = 1, 2, 3, 4, 5. (55)

Construct the FLSs 𝑓
𝑖
(𝑥̂
𝑖
| 𝜃
𝑖
) = 𝜃

𝑇

𝑖
𝜑
𝑖
(𝑥̂
𝑖
) to appreciate the

unknown nonlinear functions 𝑓
𝑖
(⋅), 𝑖 = 1, 2.

Choose the design parameters and performance func-
tions as 𝑘

1
= 0.8, 𝑘

2
= 10, 𝑐

1
= 0.01, 𝑐

2
= 1, 𝜂

1
= 𝜂
2
= 0.01,

𝜇
1,0

= 2, 𝜇
1,∞

= 0.5, 𝑛
1
= 0.5, 𝜎

1
= 𝜎
2
= 0.01, 𝛿

1min = 0.01,
𝛿
1max = 0.02, and 𝜇

1
(𝑡) = 1.5𝑒

−0.5𝑡
+ 0.5.

The initial conditions are chosen as follows: 𝑥
1
(0) = 0,

𝑥
2
(0) = 0.1, 𝑥

1
(0) = 0, 𝑥

2
(0) = −0.1, 𝜃𝑇

1
(0) = [0, 0, −0.1, 0, 0],

and 𝜃
𝑇

2
(0) = [0, 0, 0, −0.1, 0].

Applying the control method in this paper to control
(54), the simulation results are shown by Figures 1–4, where
Figure 1 expresses the curves of the output 𝑦and tracking
signal 𝑦

𝑑
; Figure 2 expresses the curves of the observer error

𝑒
1
and 𝑒
2
; Figure 3 expresses the curve of the control input 𝑢.

Figure 4 express the curve the tracking error of the proposed
control method. Figure 4 reveals that the evolution of the
proposed adaptive controller remains within the prescribed
performance bounds for all 𝑡 ≥ 0; that is, the prescribed
performance is satisfied.

7. Conclusion

In this paper, fuzzy adaptive output feedback tracking control
problem has been investigated for a class of nonlinear
stochastic systems in strict-feedback form. The addressed
stochastic nonlinear systems contain unknown nonlinear
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Time (s)
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Figure 2: The curves of 𝑒
1
(solid line) and 𝑒

2
(dot line).
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Figure 3: The curve of 𝑢.

functions and without the measurements of the states. Fuzzy
logic systems are used to identify the unknown nonlin-
ear functions, and a fuzzy state filter observer has been
designed for estimating the unmeasured states. By applying
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Figure 4: The curves of 𝑧
1
and performance bounds.

the backstepping recursive design technique and the prede-
fined performance technique, a new robust fuzzy adaptive
output-feedback control approach has been developed, and
the stability of the closed-loop system has been proved.
The main advantages of the proposed control approach are
that it cannot only solve the state unmeasured problem of
nonlinear stochastic systems, but can also guarantee that the
tracking error converges to an adjustable neighborhood of
the origin and remains within the prescribed performance
bounds. Future research will be concentrated on an adaptive
fuzzy output-feedback tracking control for multiinput and
multioutput stochastic nonlinear systems with unmeasured
states based on the results of [22, 23] and this paper.

Conflict of Interests

None of the authors of the paper have declared any conflict of
interests.

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China (nos. 61374113, 61074014, and
61203008) and Liaoning Innovative Research Team in Uni-
versity (LT2012013).

References

[1] Y. G. Niu, W. C. H. Daniel, and J. Lam, “Robust integral
sliding mode control for uncertain stochastic systems with
time-varying delay,” Automatica, vol. 41, no. 5, pp. 873–880,
2005.

[2] P. Shi, Y. Q. Xia, G. P. Liu, andD. Rees, “On designing of sliding-
mode control for stochastic jump systems,” IEEE Transactions
on Automatic Control, vol. 51, no. 1, pp. 97–103, 2006.

[3] M. Liu, D. W. C. Ho, and Y. G. Niu, “Stabilization of Markovian
jump linear systemover networkswith randomcommunication
delay,” Automatica, vol. 45, no. 2, pp. 416–421, 2009.

[4] H. Y. Li, C. Wang, P. Shi, and H. Gao, “New passivity results for
uncertain discrete-time stochastic neural networks with mixed
time delays,” Neurocomputing, vol. 73, no. 16–18, pp. 3291–3299,
2010.
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