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We discuss a class of Volterra-Fredholm type difference inequalities with weakly singular. The upper bounds of the embedded
unknown functions are estimated explicitly by analysis techniques. An application of the obtained inequalities to the estimation of
Volterra-Fredholm type difference equations is given.

1. Introduction

Being an important tool in the study of existence, unique-
ness, boundedness, stability, invariant manifolds, and other
qualitative properties of solutions of differential equations
and integral equations, various generalizations of Gronwall
inequalities [1, 2] and their applications have attracted great
interests of many mathematicians [3–5]. Some recent works
can be found in [6–28].

In 1981, Henry [12] discussed the following linear singular
integral inequality:

𝑢 (𝑡) ≤ 𝑎 + 𝑏∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠. (1)

In 2007, Ye et al. [18] discussed linear singular integral ine-
quality

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠. (2)

In 2014, Cheng et al. [28] discussed the following inequalities:

𝑢
𝑚
(𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

𝑓 (𝑠) 𝑢
𝑛
(𝑠) 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) 𝑢
𝑟
(𝑠) 𝑑𝑠,

𝑢
𝑚
(𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

(𝑡
𝛼
1
− 𝑠
𝛼
1
)
𝛽
1
−1

𝑠
𝛾
1
−1
𝑓 (𝑠) 𝑢

𝑛
(𝑠) 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

(𝑇
𝛼
2
− 𝑠
𝛼
2
)
𝛽
2
−1

𝑠
𝛾
2
−1
𝑔 (𝑠) 𝑢

𝑟
(𝑠) 𝑑𝑠.

(3)

On the other hand, difference inequalities which give
explicit bounds on unknown functions provide a very useful
and important tool in the study of many qualitative as well
as quantitative properties of solutions of nonlinear difference
equations. More attentions are paid to some discrete versions
of Gronwall-Bellman type inequalities (such as [29–50]).

In 2002, Pachpatte [36] discussed the following difference
inequality:

𝑢 (𝑛) ≤ 𝑐 +

𝑛−1

∑

𝑠=𝛼

𝑓 (𝑛, 𝑠) 𝑢 (𝑠) 𝑑𝑠 +

𝛽

∑

𝑠=𝛼

𝑔 (𝑛, 𝑠) 𝑢 (𝑠) ,

𝑛 ∈ N ∩ [𝛼, 𝛽] .

(4)

In 2010,Ma [45] discussed the following difference inequality
with two variables:

𝑢
𝑖
(𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) +

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡) 𝑢
𝑗
(𝑠, 𝑡)

+

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢
𝑟
(𝑠, 𝑡) .

(5)
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In 2014,Huang at el. [50] discussed the following linear singu-
lar difference inequality:

𝑢 (𝑛) ≤ 𝑎 (𝑛) + 𝑏 (𝑛)

𝑛−1

∑

𝑠=0

(𝑡
𝑛
− 𝑡
𝑠
)
𝛽−1

𝜏
𝑠
𝑤
1
(𝑢 (𝑠))

× [𝑢 (𝑠) + ℎ (𝑠) +

𝑠−1

∑

𝜎=0

(𝑡
𝑠
− 𝑡
𝜎
)
𝛽−1

𝜏
𝜎
𝑤
2
(𝑢 (𝜎))] .

(6)

Motivated by the results given in [6, 11, 28, 36, 45, 49, 50],
in this paper, we discuss the following inequalities:

𝑢 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛)

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡)

+ 𝑐 (𝑚, 𝑛)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡) ,

(7)

𝑢
𝑖
(𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛)

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡) 𝑢
𝑗
(𝑠, 𝑡)

+ 𝑐 (𝑚, 𝑛)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢
𝑟
(𝑠, 𝑡) ,

(8)

𝑢
𝑖
(𝑛) ≤ 𝑎 (𝑛) + 𝑏 (𝑛)

𝑛−1

∑

𝑠=0

(𝑡
𝑛
− 𝑡
𝑠
)
𝛽−1

𝑡
𝛾−1

𝑠
𝜏
𝑠
𝑓 (𝑠) 𝑢

𝑗
(𝑠)

+ 𝑐 (𝑛)

𝑁−1

∑

𝑠=0

(𝑡
𝑁
− 𝑡
𝑠
)
𝛽−1

𝑡
𝛾−1

𝑠
𝜏
𝑠
𝑔 (𝑠) 𝑢

𝑟
(𝑠) .

(9)

2. Difference Inequalities with Two Variables

Throughout this paper, let N
0
:= {0, 1, 2, . . .}, N := {1, 2, . . .},

and Ω
𝑋,𝑌

= {(𝑚, 𝑛) : 𝑚
0
≤ 𝑚 ≤ 𝑋, 𝑛

0
≤ 𝑛 ≤ 𝑌,𝑚, 𝑛, 𝑋, 𝑌 ∈

N}. For a function 𝑧(𝑚, 𝑛), its first-order difference is defined
by Δ
1
𝑧(𝑚, 𝑛) = 𝑧(𝑚 + 1, 𝑛) − 𝑧(𝑚, 𝑛). Obviously, the linear

difference equation Δ𝑧(𝑛) = 𝑏(𝑛) with the initial condition
𝑧(𝑛
0
) = 0 has the solution 𝑧(𝑛) = ∑𝑛−1

𝑠=𝑛
0

𝑏(𝑠). For convenience,
in the sequel, we complementarily define that ∑𝑛0−1

𝑠=𝑛
0

𝑏(𝑠) = 0.

Lemma 1. Assume that 𝑢(𝑚, 𝑛), 𝑎(𝑚, 𝑛), 𝑐(𝑚, 𝑛), and 𝑔(𝑚, 𝑛)
are nonnegative functions on Ω

𝑀,𝑁
= {(𝑚, 𝑛) : 𝑚

0
≤ 𝑚 ≤

𝑀, 𝑛
0
≤ 𝑛 ≤ 𝑁,𝑚, 𝑛,𝑀,𝑁 ∈ N}. If∑𝑚−1

𝑠=𝑚
0

∑
𝑛−1

𝑡=𝑛
0

𝑔(𝑠, 𝑡)𝑐(𝑠, 𝑡) <

1 and 𝑢(𝑚, 𝑛) satisfies the following difference inequality:

𝑢 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑐 (𝑚, 𝑛)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡) ,

∀ (𝑚, 𝑛) ∈ Ω
𝑀,𝑁
,

(10)

then

𝑢 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) +

𝑐 (𝑚, 𝑛)∑
𝑀−1

𝑠=𝑚
0

∑
𝑁−1

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑎 (𝑠, 𝑡)

1 − ∑
𝑀−1

𝑠=𝑚
0

∑
𝑁−1

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑐 (𝑠, 𝑡)

,

∀ (𝑚, 𝑛) ∈ Ω
𝑀,𝑁
.

(11)

Proof. Since ∑
𝑀−1

𝑠=𝑚
0

∑
𝑁−1

𝑡=𝑛
0

𝑔(𝑠, 𝑡)𝑢(𝑠, 𝑡) is a constant. Let
∑
𝑀−1

𝑠=𝑚
0

∑
𝑁−1

𝑡=𝑛
0

𝑔(𝑠, 𝑡)𝑢(𝑠, 𝑡) = 𝐾. From (10), we have

𝑢 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑐 (𝑚, 𝑛)𝐾, ∀ (𝑚, 𝑛) ∈ Ω
𝑀,𝑁
. (12)

Since 𝑔(𝑚, 𝑛) is nonnegative, we have

𝑔 (𝑚, 𝑛) 𝑢 (𝑚, 𝑛) ≤ 𝑔 (𝑚, 𝑛) 𝑎 (𝑚, 𝑛) + 𝑐 (𝑚, 𝑛) 𝑔 (𝑚, 𝑛)𝐾.

(13)

Let 𝑠 = 𝑚 and 𝑡 = 𝑛 in (13) and substituting 𝑠 = 𝑚
0
, 𝑚
1
, 𝑚
2
,

. . . ,𝑀−1 and 𝑡 = 𝑛
0
, 𝑛
1
, 𝑛
2
, . . . , 𝑁−1, successively, we obtain

𝐾 =

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡)

≤

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑎 (𝑠, 𝑡)

+

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑐 (𝑠, 𝑡) 𝐾.

(14)

From (14), we have

𝐾 ≤

∑
𝑀−1

𝑠=𝑚
0

∑
𝑁−1

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑎 (𝑠, 𝑡)

1 − ∑
𝑀−1

𝑠=𝑚
0

∑
𝑁−1

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑐 (𝑠, 𝑡)

, (15)

where ∑𝑚−1
𝑠=𝑚
0

∑
𝑛−1

𝑡=𝑛
0

𝑔(𝑠, 𝑡)𝑐(𝑠, 𝑡) < 1. Substituting inequal-
ity (15) into (13), we get the explicit estimation (11) for
𝑢(𝑚, 𝑛).

Theorem 2. Assume that 𝑢(𝑚, 𝑛), 𝑎(𝑚, 𝑛), 𝑏(𝑚, 𝑛), 𝑐(𝑚, 𝑛),
𝑓(𝑚, 𝑛), and 𝑔(𝑚, 𝑛) are nonnegative functions on Ω

𝑀,𝑁
and

𝑎(𝑚, 𝑛), 𝑏(𝑚, 𝑛), and 𝑐(𝑚, 𝑛) are nondecreasing in both𝑚 and
𝑛. If

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑐 (𝑠, 𝑡)

× exp(𝑏 (𝑠, 𝑡)
𝑠−1

∑

𝜏=𝑚
0

𝑡−1

∑

𝜉=𝑛
0

𝑓 (𝜏, 𝜉)) < 1,

∀ (𝑚, 𝑛) ∈ Ω
𝑀,𝑁
,

(16)

and 𝑢(𝑚, 𝑛) satisfies the difference inequality (7), then

𝑢 (𝑚, 𝑛)

≤ exp(𝑏 (𝑚, 𝑛)
𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡))
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×
[

[

𝑎 (𝑚, 𝑛) + 𝑐 (𝑚, 𝑛)

× ((

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑎 (𝑠, 𝑡)

× exp(𝑏 (𝑠, 𝑡)
𝑠−1

∑

𝜏=𝑚
0

𝑡−1

∑

𝜉=𝑛
0

𝑓 (𝜏, 𝜉)))

×(1 −

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑐 (𝑠, 𝑡)

× exp(𝑏 (𝑠, 𝑡)

×

𝑠−1

∑

𝜏=𝑚
0

𝑡−1

∑

𝜉=𝑛
0

𝑓 (𝜏, 𝜉)))

−1

)
]

]

,

(17)

for all (𝑚, 𝑛) ∈ Ω
𝑀,𝑁

.

Proof. Fixing any arbitrary (𝑋, 𝑌) ∈ Ω
𝑀,𝑁

, from (7), we have

𝑢 (𝑚, 𝑛) ≤ 𝑎 (𝑋, 𝑌) + 𝑏 (𝑋, 𝑌)

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡)

+ 𝑐 (𝑋, 𝑌)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡) ,

(18)

for all (𝑚, 𝑛) ∈ Ω
𝑋,𝑌

, where 𝑎(𝑚, 𝑛), 𝑏(𝑚, 𝑛), and 𝑐(𝑚, 𝑛) are
nondecreasing in both𝑚 and 𝑛.

Define a function 𝑧(𝑚, 𝑛) by the right side of (18); that is,

𝑧 (𝑚, 𝑛) := 𝑎 (𝑋, 𝑌) + 𝑏 (𝑋, 𝑌)

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡)

+ 𝑐 (𝑋, 𝑌)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡) ,

(19)

for all (𝑚, 𝑛) ∈ Ω
𝑋,𝑌

. Obviously, we have

𝑢 (𝑚, 𝑛) ≤ 𝑧 (𝑚, 𝑛) , ∀ (𝑚, 𝑛) ∈ Ω
𝑋,𝑌
, (20)

𝑧 (𝑚
0
, 𝑛) = 𝑎 (𝑋, 𝑌) + 𝑐 (𝑋, 𝑌)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡) . (21)

Using the difference formulaΔ
1
𝑧(𝑚, 𝑛) = 𝑧(𝑚+1, 𝑛)−𝑧(𝑚, 𝑛)

and relation (20), from (21), we have

Δ
1
𝑧 (𝑚, 𝑛) = 𝑏 (𝑋, 𝑌)

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑚, 𝑡) 𝑢 (𝑚, 𝑡)

≤ 𝑏 (𝑋, 𝑌)

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑚, 𝑡) 𝑧 (𝑚, 𝑡)

≤ 𝑏 (𝑋, 𝑌) 𝑧 (𝑚, 𝑛)

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑚, 𝑡) ,

(22)

where we have used themonotonicity of 𝑧 in 𝑛. From (22), we
observe that

Δ
1
𝑧 (𝑚, 𝑛)

𝑧 (𝑚, 𝑛)

≤ 𝑏 (𝑋, 𝑌)

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑚, 𝑡) , ∀ (𝑚, 𝑛) ∈ Ω
𝑋,𝑌
. (23)

On the other hand, by the mean-value theorem for integrals,
for arbitrarily given integers 𝑚, 𝑛 with (𝑚 + 1, 𝑛), (𝑚, 𝑛) ∈
Ω
𝑋,𝑌

, there exists 𝜉 in the open interval (𝑧(𝑚, 𝑛), 𝑧(𝑚, 𝑛 + 1))
such that

ln 𝑧 (𝑚 + 1, 𝑛) − ln 𝑧 (𝑚, 𝑛) = ∫
𝑧(𝑚+1,𝑛)

𝑧(𝑚,𝑛)

𝑑𝑠

𝑠

=

Δ
1
𝑧 (𝑚, 𝑛)

𝜉

≤

Δ
1
𝑧 (𝑚, 𝑛)

𝑧 (𝑚, 𝑛)

.

(24)

From (23) and (24), we have

ln 𝑧 (𝑚 + 1, 𝑛) − ln 𝑧 (𝑚, 𝑛) ≤ 𝑏 (𝑋, 𝑌)
𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑚, 𝑡) ,

∀ (𝑚, 𝑛) ∈ Ω
𝑋,𝑌
.

(25)

Let 𝑠 = 𝑚 and 𝑡 = 𝑛 in (25), and substituting 𝑠 = 𝑚
0
, 𝑚
1
, 𝑚
2
,

. . . , 𝑚 − 1 and 𝑡 = 𝑛
0
, 𝑛
1
, 𝑛
2
, . . . , 𝑛 − 1, successively, we obtain

ln 𝑧 (𝑚, 𝑛) − ln 𝑧 (𝑚
0
, 𝑛) ≤ 𝑏 (𝑋, 𝑌)

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡) ,

∀ (𝑚, 𝑛) ∈ Ω
𝑋,𝑌
.

(26)

It implies that

𝑧 (𝑚, 𝑛) ≤ 𝑧 (𝑚
0
, 𝑛) exp(𝑏 (𝑋, 𝑌)

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡)) ,

∀ (𝑚, 𝑛) ∈ Ω
𝑋,𝑌
.

(27)
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Using (20) and (21), from (27), we have

𝑢 (𝑚, 𝑛)

≤ (𝑎 (𝑋, 𝑌) + 𝑐 (𝑋, 𝑌)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡))

× exp(𝑏 (𝑋, 𝑌)
𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡))

= 𝑎 (𝑋, 𝑌) exp(𝑏 (𝑋, 𝑌)
𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡))

+ 𝑐 (𝑋, 𝑌) exp(𝑏 (𝑋, 𝑌)
𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡))

×

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡) ,

(28)

for all (𝑚, 𝑛) ∈ Ω
𝑋,𝑌

. Taking 𝑚 = 𝑋 and 𝑛 = 𝑌 in (28), we
have

𝑢 (𝑋, 𝑌)

≤ 𝑎 (𝑋, 𝑌) exp(𝑏 (𝑋, 𝑌)
𝑋−1

∑

𝑠=𝑚
0

𝑌−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡))

+ 𝑐 (𝑋, 𝑌) exp(𝑏 (𝑋, 𝑌)
𝑋−1

∑

𝑠=𝑚
0

𝑌−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡))

×

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡) .

(29)

Since 𝑋, 𝑌 are chosen arbitrarily, we replace 𝑋 and 𝑌 in (29)
with𝑚 and 𝑛, respectively, and obtain that

𝑢 (𝑚, 𝑛)

≤ 𝑎 (𝑚, 𝑛) exp(𝑏 (𝑚, 𝑛)
𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡))

+ 𝑐 (𝑚, 𝑛) exp(𝑏 (𝑚, 𝑛)
𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡))

×

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢 (𝑠, 𝑡) ,

(30)

for all (𝑚, 𝑛) ∈ Ω
𝑀,𝑁

. Applying the result of Lemma 1 to
inequality (30), we obtain desired estimation (17).

Lemma 3 (see [39]). Let 𝑎 ≥ 0, 𝑖 ≥ 𝑗 ≥ 0, and 𝑖 ̸= 0. Then,

𝑎
𝑗/𝑖
≤

𝑗

𝑖

𝐾
(𝑖−𝑗)/𝑖

𝑎 +

𝑖 − 𝑗

𝑖

𝐾
𝑗/𝑖
, ∀𝐾 > 0. (31)

Theorem 4. Assume that 𝑢(𝑚, 𝑛), 𝑎(𝑚, 𝑛), 𝑏(𝑚, 𝑛), 𝑐(𝑚, 𝑛),
𝑓(𝑚, 𝑛), and 𝑔(𝑚, 𝑛) are defined as in Theorem 2 and that
𝑖 ≥ 𝑗 > 0 and 𝑖 ≥ 𝑟 > 0. If
𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝐺 (𝑠, 𝑡) 𝐶 (𝑠, 𝑡) exp(𝐵 (𝑠, 𝑡)
𝑠−1

∑

𝜏=𝑚
0

𝑡−1

∑

𝜉=𝑛
0

𝐹 (𝜏, 𝜉)) < 1,

∀ (𝑚, 𝑛) ∈ Ω
𝑀,𝑁
,

(32)

and 𝑢(𝑚, 𝑛) satisfies difference inequality (8), then

𝑢 (𝑚, 𝑛)

≤

{

{

{

𝑎 (𝑚, 𝑛) + exp(𝐵 (𝑚, 𝑛)
𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝐹 (𝑠, 𝑡))

×
[

[

𝐴 (𝑚, 𝑛) + 𝐶 (𝑚, 𝑛)

× ((

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝐺 (𝑠, 𝑡) 𝐴 (𝑠, 𝑡)

× exp(𝐵 (𝑠, 𝑡)
𝑠−1

∑

𝜏=𝑚
0

𝑡−1

∑

𝜉=𝑛
0

𝐹 (𝜏, 𝜉)))

× (1 −

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝐺 (𝑠, 𝑡) 𝐶 (𝑠, 𝑡)

× exp(𝐵 (𝑠, 𝑡)

×

𝑠−1

∑

𝜏=𝑚
0

𝑡−1

∑

𝜉=𝑛
0

𝐹 (𝜏, 𝜉)))

−1

)
]

]

}

}

}

1/𝑖

,

(33)

for all (𝑚, 𝑛) ∈ Ω
𝑀,𝑁

, where

𝐴 (𝑚, 𝑛)

:= 𝑏 (𝑚, 𝑛)

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡) (

𝑗

𝑖

𝐾
(𝑖−𝑗)/𝑖

1
𝑎 (𝑠, 𝑡) +

𝑖 − 𝑗

𝑖

𝐾
𝑗/𝑖

1
)

+ 𝑐 (𝑚, 𝑛)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) (

𝑟

𝑖

𝐾
(𝑖−𝑟)/𝑖

2
𝑎 (𝑠, 𝑡)

+

𝑖 − 𝑟

𝑖

𝐾
𝑟/𝑖

2
) ,

(34)

𝐵 (𝑚, 𝑛) :=

𝑗𝑏 (𝑚, 𝑛)

𝑖

, 𝐶 (𝑚, 𝑛) :=

𝑟𝑐 (𝑚, 𝑛)

𝑖

, (35)

𝐹 (𝑚, 𝑛) := 𝑓 (𝑠, 𝑡) 𝐾
(𝑖−𝑗)/𝑖

1
, 𝐺 (𝑚, 𝑛) := 𝑔 (𝑠, 𝑡) 𝐾

(𝑖−𝑟)/𝑖

2
,

(36)

and 𝐾
1
, 𝐾
2
are arbitrary constants.
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Proof. Define a function V(𝑚, 𝑛) by

V (𝑚, 𝑛) = 𝑏 (𝑚, 𝑛)
𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡) 𝑢
𝑗
(𝑠, 𝑡)

+ 𝑐 (𝑚, 𝑛)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝑢
𝑟
(𝑠, 𝑡) ,

(37)

for all (𝑚, 𝑛) ∈ Ω
𝑀,𝑁

. Then, from (8), we have

𝑢 (𝑚, 𝑛) ≤ (𝑎 (𝑚, 𝑛) + V (𝑚, 𝑛))1/𝑖, ∀ (𝑚, 𝑛) ∈ Ω
𝑀,𝑁
. (38)

Applying Lemma 3 to (38), we obtain

𝑢
𝑗
(𝑚, 𝑛) ≤ (𝑎 (𝑚, 𝑛) + V (𝑚, 𝑛))𝑗/𝑖

≤

𝑗

𝑖

𝐾
(𝑖−𝑗)/𝑖

1
(𝑎 (𝑚, 𝑛) + V (𝑚, 𝑛)) +

𝑖 − 𝑗

𝑖

𝐾
𝑗/𝑖

1
,

𝑢
𝑟
(𝑚, 𝑛) ≤ (𝑎 (𝑚, 𝑛) + V (𝑚, 𝑛))𝑟/𝑖

≤

𝑟

𝑖

𝐾
(𝑖−𝑟)/𝑖

2
(𝑎 (𝑚, 𝑛) + V (𝑚, 𝑛)) +

𝑖 − 𝑟

𝑖

𝐾
𝑟/𝑖

2
,

(39)

for all (𝑚, 𝑛) ∈ Ω
𝑀,𝑁

. Substituting (39) into (37), we obtain

V (𝑚, 𝑛)

≤ 𝑏 (𝑚, 𝑛)

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡)

× (

𝑗

𝑖

𝐾
(𝑖−𝑗)/𝑖

1
(𝑎 (𝑠, 𝑡) + V (𝑠, 𝑡))

+

𝑖 − 𝑗

𝑖

𝐾
𝑗/𝑖

1
)

+ 𝑐 (𝑚, 𝑛)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡)

× (

𝑟

𝑖

𝐾
(𝑖−𝑟)/𝑖

2
(𝑎 (𝑠, 𝑡) + V (𝑠, 𝑡))

+

𝑖 − 𝑟

𝑖

𝐾
𝑟/𝑖

2
)

= 𝑏 (𝑚, 𝑛)

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡) (

𝑗

𝑖

𝐾
(𝑖−𝑗)/𝑖

1
𝑎 (𝑠, 𝑡)

+

𝑖 − 𝑗

𝑖

𝐾
𝑗/𝑖

1
)

+ 𝑐 (𝑚, 𝑛)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡)

× (

𝑟

𝑖

𝐾
(𝑖−𝑟)/𝑖

2
𝑎 (𝑠, 𝑡) +

𝑖 − 𝑟

𝑖

𝐾
𝑟/𝑖

2
)

+

𝑗𝑏 (𝑚, 𝑛)

𝑖

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑓 (𝑠, 𝑡) 𝐾
(𝑖−𝑗)/𝑖

1
V (𝑠, 𝑡)

+

𝑟𝑐 (𝑚, 𝑛)

𝑖

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝑔 (𝑠, 𝑡) 𝐾
(𝑖−𝑟)/𝑖

2
V (𝑠, 𝑡)

= 𝐴 (𝑚, 𝑛) + 𝐵 (𝑚, 𝑛)

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝐹 (𝑠, 𝑡) V (𝑠, 𝑡)

+ 𝐶 (𝑚, 𝑛)

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝐺 (𝑠, 𝑡) V (𝑠, 𝑡) ,

(40)

for all (𝑚, 𝑛) ∈ Ω
𝑀,𝑁

, where 𝐴, 𝐵, 𝐶 and 𝐹, 𝐺 are defined by
(34), (35), and (36), respectively. Since 𝑎(𝑚, 𝑛), 𝑏(𝑚, 𝑛), and
𝑐(𝑚, 𝑛) are nonnegative and nondecreasing in both 𝑚 and 𝑛
and by (34), (35), and (36), 𝐴(𝑚, 𝑛), 𝐵(𝑚, 𝑛), and 𝐶(𝑚, 𝑛) are
also nonnegative and nondecreasing in both 𝑚 and 𝑛. Using
Theorem 2, from (40), we obtain

V (𝑚, 𝑛)

≤ exp(𝐵 (𝑚, 𝑛)
𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝐹 (𝑠, 𝑡))

×
[

[

𝐴 (𝑚, 𝑛) + 𝐶 (𝑚, 𝑛)

× ((

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝐺 (𝑠, 𝑡) 𝐴 (𝑠, 𝑡)

× exp(𝐵 (𝑠, 𝑡)
𝑠−1

∑

𝜏=𝑚
0

𝑡−1

∑

𝜉=𝑛
0

𝐹 (𝜏, 𝜉)))

× (1 −

𝑀−1

∑

𝑠=𝑚
0

𝑁−1

∑

𝑡=𝑛
0

𝐺 (𝑠, 𝑡) 𝐶 (𝑠, 𝑡)

× exp(𝐵 (𝑠, 𝑡)
𝑠−1

∑

𝜏=𝑚
0

𝑡−1

∑

𝜉=𝑛
0

𝐹 (𝜏, 𝜉)))

−1

)
]

]

,

(41)

for all (𝑚, 𝑛) ∈ Ω
𝑀,𝑁

. Substituting (41) into (38), we get our
required estimation (33) of unknown function in (8).

3. Difference Inequality with Weakly Singular

For the reader’s convenience, we present some necessary
Lemmas.
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Lemma 5 (discrete Jensen inequality [47]). Let 𝐴
1
, 𝐴
2
, . . . ,

𝐴
𝑛
be nonnegative real numbers, 𝑘 > 1 a real number, and 𝑛 a

natural number. Then,
(𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
)
𝑘

≤ 𝑛
𝑘−1
(𝐴
𝑘

1
+ 𝐴
𝑘

2
+ ⋅ ⋅ ⋅ + 𝐴

𝑘

𝑛
) . (42)

Lemma 6 (discrete Hölder inequality [48]). Let 𝑎
𝑖
, 𝑏
𝑖
(𝑖 =

1, 2, . . . , 𝑛) be nonnegative real numbers and 𝑝, 𝑞 positive
numbers such that (1/𝑞) + (1/𝑝) = 1. Then,

𝑛−1

∑

𝑖=0

𝑎
𝑖
𝑏
𝑖
≤ (

𝑛−1

∑

𝑖=0

𝑎
𝑝

𝑖
)

1/𝑝

(

𝑛−1

∑

𝑖=0

𝑏
𝑞

𝑖
)

1/𝑞

. (43)

Lemma 7 (see [15, 49]). Let 𝑡
0
= 0, 𝜏

𝑠
= 𝑡
𝑠+1
− 𝑡
𝑠
> 0, and

sup
𝑠∈N,0≤𝑠≤𝑛−1{𝜏𝑠, 𝑠 ∈ N} = 𝜏. If 𝛽 ∈ (0.5, 1), 𝛾 > 1.5 − 𝛽, and

𝑝 = 1/𝛽, then
𝑛−1

∑

𝑠=0

(𝑡
𝑛
− 𝑡
𝑠
)
𝑝(𝛽−1)

𝑡
𝑝(𝛾−1)

𝑠
𝜏
𝑠

≤ 𝑡
𝜃

𝑛
B [𝑝 (𝛾 − 1) + 1, 𝑝 (𝛽 − 1) + 1] ,

(44)

where 𝜃 = 𝑝(𝛽+𝛾−2)+1 > 0 andB(𝜉, 𝜂) := ∫1
0
𝑠
𝜉−1
(1−𝑠)
𝜂−1
𝑑𝑠

is the well-knownB-function.

Now, we consider the weakly singular difference inequal-
ity (9).

Theorem8. Let 𝑡
0
= 0, 𝜏
𝑠
= 𝑡
𝑠+1
−𝑡
𝑠
> 0, sup

𝑠∈N,0≤𝑠≤𝑛−1{𝜏𝑠, 𝑠 ∈

N} = 𝜏, 𝛽 ∈ (0.5, 1), and 𝛾 > 1.5 − 𝛽. Assume that 𝑖 ≥ 𝑗 > 0,
𝑖 ≥ 𝑟 > 0, 𝑢(𝑛), 𝑎(𝑛), 𝑏(𝑛), 𝑐(𝑛),𝑓(𝑛), and𝑔(𝑛) are nonnegative
functions on N

0
and 𝑎(𝑛), 𝑏(𝑛), and 𝑐(𝑛) are nondecreasing. If

𝑁−1

∑

𝑠=0

𝐺 (𝑠) 𝐶 (𝑠) exp(𝐵 (𝑠)
𝑠−1

∑

𝜏=0

𝐹 (𝜏)) < 1, 𝑛 ∈ N
0
, 𝑛 < 𝑁,

(45)
and 𝑢(𝑛) satisfies (9), then
𝑢 (𝑛)

≤

{

{

{

𝑎 (𝑛) + exp(𝐵 (𝑛)
𝑛−1

∑

𝑠=0

𝐹 (𝑠))

×
[

[

𝐴 (𝑛) + 𝐶 (𝑛)

× ((

𝑁−1

∑

𝑠=0

𝐺 (𝑠) 𝐴 (𝑠)

× exp(𝐵 (𝑠)
𝑠−1

∑

𝜏=0

𝐹 (𝜏)))

× (1 −

𝑁−1

∑

𝑠=0

𝐺 (𝑠) 𝐶 (𝑠)

× exp(𝐵 (𝑠)
𝑠−1

∑

𝜏=0

𝐹 (𝜏)))

−1

)
]

]

}

}

}

1/𝑖

,

𝑛 ∈ N
0
, 𝑛 < 𝑁,

(46)

where

𝐴 (𝑛) :=
̃
𝑏 (𝑛)

𝑛−1

∑

𝑠=0

𝑓
𝑞
(𝑠) (

𝑗

𝑖

𝐾
(𝑖−𝑗)/𝑖

1
𝑎 (𝑠) +

𝑖 − 𝑗

𝑖

𝐾
𝑗/𝑖

1
)

+ 𝑐 (𝑛)

𝑁−1

∑

𝑠=𝑛
0

𝑔
𝑞
(𝑠) (

𝑟

𝑖

𝐾
(𝑖−𝑟)/𝑖

2
𝑎 (𝑠) +

𝑖 − 𝑟

𝑖

𝐾
𝑟/𝑖

2
) ,

𝐵 (𝑛) :=

𝑗
̃
𝑏 (𝑛)

𝑖

, 𝐶 (𝑛) :=

𝑟𝑐 (𝑛)

𝑖

,

𝐹 (𝑛) := 𝑓
𝑞
(𝑛)𝐾
(𝑖−𝑗)/𝑖

1
, 𝐺 (𝑛) := 𝑔

𝑞
(𝑛)𝐾
(𝑖−𝑟)/𝑖

2
,

𝑎 (𝑛) := 3
𝑞−1
𝑎
𝑞
(𝑛) ,

̃
𝑏 (𝑛) := 3

𝑞−1
𝑏
𝑞
(𝑛) 𝜏

× (𝑡
𝜃

𝑛
B [𝑝 (𝛾 − 1) + 1, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

,

𝑐 (𝑛) := 3
𝑞−1
𝑐
𝑞
(𝑛) 𝜏

× (𝑡
𝜃

𝑁
B [𝑝 (𝛾 − 1) + 1, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

,

𝜃 := 𝑝 (𝛽 + 𝛾 − 2) + 1,

(47)

and𝑝 = 1/𝛽, 𝑞 = 1/(1−𝛽), and𝐾
1
,𝐾
2
are arbitrary constants.

Proof. Applying Lemma 6 with 𝑝 = 1/𝛽, 𝑞 = 1/(1 − 𝛽) to (8),
we obtain that

𝑢
𝑖
(𝑛) ≤ 𝑎 (𝑛) + 𝑏 (𝑛) 𝜏

(𝑝−1)/𝑝

× (

𝑛−1

∑

𝑠=𝑛
0

(𝑡
𝑛
− 𝑡
𝑠
)
𝑝(𝛽−1)

𝑡
𝑝(𝛾−1)

𝑠
𝜏
𝑠
)

1/𝑝

× (

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑞
(𝑠) 𝑢
𝑞𝑗
(𝑠))

1/𝑞

+ 𝑐 (𝑛) 𝜏
(𝑝−1)/𝑝

× (

𝑁−1

∑

𝑠=𝑛
0

(𝑡
𝑁
− 𝑡
𝑠
)
𝑝(𝛽−1)

𝑡
𝑝(𝛾−1)

𝑠
𝜏
𝑠
)

1/𝑝

× (

𝑛−1

∑

𝑠=𝑛
0

𝑔
𝑞
(𝑠) 𝑢
𝑞𝑟
(𝑠))

1/𝑞

,

(48)

for all 𝑛 ∈ N
0
, 𝑛 < 𝑁, where 𝜏

𝑠
< 𝜏 is used. Applying Lemma 5

to (48), we have

𝑢
𝑖
(𝑛) ≤ 𝑎 (𝑛) + 𝑏 (𝑛) 𝜏

(𝑝−1)/𝑝

× (𝑡
𝜃

𝑛
B [𝑝 (𝛾 − 1) + 1, 𝑝 (𝛽 − 1) + 1])

1/𝑝

× (

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑞
(𝑠) 𝑢
𝑞𝑗
(𝑠))

1/𝑞

+ 𝑐 (𝑛) 𝜏
(𝑝−1)/𝑝

× (𝑡
𝜃

𝑁
B [𝑝 (𝛾 − 1) + 1, 𝑝 (𝛽 − 1) + 1])

1/𝑝

× (

𝑛−1

∑

𝑠=𝑛
0

𝑔
𝑞
(𝑠) 𝑢
𝑞𝑟
(𝑠))

1/𝑞

,

(49)
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for all 𝑛 ∈ N
0
, 𝑛 < 𝑁. By discrete Jensen inequality (42) with

𝑛 = 2, 𝑘 = 𝑞, from (49), we obtain that

𝑢
𝑞𝑖
(𝑛) ≤ 3

𝑞−1
𝑎
𝑞
(𝑛) + 3

𝑞−1
𝑏
𝑞
(𝑛) 𝜏
𝑞(𝑝−1)/𝑝

× (𝑡
𝜃

𝑛
B [𝑝 (𝛾 − 1) + 1, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

×

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑞
(𝑠) 𝑢
𝑞𝑗
(𝑠) + 3

𝑞−1
𝑐
𝑞
(𝑛) 𝜏
𝑞(𝑝−1)/𝑝

× (𝑡
𝜃

𝑁
B [𝑝 (𝛾 − 1) + 1, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

×

𝑛−1

∑

𝑠=𝑛
0

𝑔
𝑞
(𝑠) 𝑢
𝑞𝑟
(𝑠)

= 3
𝑞−1
𝑎
𝑞
(𝑛) + 3

𝑞−1
𝑏
𝑞
(𝑛) 𝜏

× (𝑡
𝜃

𝑛
B [𝑝 (𝛾 − 1) + 1, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

×

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑞
(𝑠) 𝑢
𝑞𝑗
(𝑠) + 3

𝑞−1
𝑐
𝑞
(𝑛) 𝜏

× (𝑡
𝜃

𝑁
B [𝑝 (𝛾 − 1) + 1, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

×

𝑛−1

∑

𝑠=𝑛
0

𝑔
𝑞
(𝑠) 𝑢
𝑞𝑟
(𝑠)

= 𝑎 (𝑛) +
̃
𝑏 (𝑛)

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑞
(𝑠) 𝑢
𝑞𝑗
(𝑠)

+ 𝑐 (𝑛)

𝑛−1

∑

𝑠=𝑛
0

𝑔
𝑞
(𝑠) 𝑢
𝑞𝑟
(𝑠) ,

𝑛 ∈ N
0
, 𝑛 < 𝑁.

(50)

ApplyingTheorem 4 to (50), we have
𝑢 (𝑛)

≤

{

{

{

𝑎 (𝑛) + exp(𝐵 (𝑛)
𝑛−1

∑

𝑠=0

𝐹 (𝑠))

×
[

[

𝐴 (𝑛) + 𝐶 (𝑛)

× ((

𝑁−1

∑

𝑠=0

𝐺 (𝑠) 𝐴 (𝑠)

× exp(𝐵 (𝑠)
𝑠−1

∑

𝜏=0

𝐹 (𝜏)))

× (1 −

𝑁−1

∑

𝑠=0

𝐺 (𝑠) 𝐶 (𝑠)

× exp(𝐵 (𝑠)
𝑠−1

∑

𝜏=0

𝐹 (𝜏)))

−1

)
]

]

}

}

}

1/𝑖

,

𝑛 ∈ N
0
, 𝑛 < 𝑁.

(51)

This is our required estimation (46) of unknown function in
(9).

4. Applications

In this section, we apply our results to discuss the bound-
edness of solutions of an iterative difference equation with a
weakly singular kernel.

Example 9. Suppose that𝑢(𝑛) satisfies the difference equation

𝑥
3
(𝑛) = 𝑎 (𝑛) + 𝑏 (𝑛)

𝑛−1

∑

𝑠=0

(𝑡
𝑛
− 𝑡
𝑠
)
−0.3

𝑡
−0.1

𝑠
𝜏
𝑠
𝑓 (𝑠) 𝑥

2
(𝑠)

+ 𝑐 (𝑛)

𝑁−1

∑

𝑠=0

(𝑡
𝑁
− 𝑡
𝑠
)
−0.3

𝑡
−0.1

𝑠
𝜏
𝑠
𝑔 (𝑠) 𝑥 (𝑠) ,

(52)

where 𝑡
0
= 0, 𝜏

𝑠
= 𝑡
𝑠+1
− 𝑡
𝑠
> 0, sup

𝑠∈N,0≤𝑠≤𝑛−1{𝜏𝑠, 𝑠 ∈

N} = 𝜏, 𝑢(𝑛), 𝑎(𝑛), 𝑏(𝑛), 𝑐(𝑛), 𝑓(𝑛), and 𝑔(𝑛) are nonnegative
functions on N

0
, and 𝑎(𝑛), 𝑏(𝑛), and 𝑐(𝑛) are nondecreasing.

From (52), we have

|𝑥 (𝑛)|
3
≤ 𝑎 (𝑛) + 𝑏 (𝑛)

𝑛−1

∑

𝑠=0

(𝑡
𝑛
− 𝑡
𝑠
)
−0.3

𝑡
−0.1

𝑠
𝜏
𝑠
𝑓 (𝑠) |𝑥 (𝑠)|

2

+ 𝑐 (𝑛)

𝑁−1

∑

𝑠=0

(𝑡
𝑁
− 𝑡
𝑠
)
−0.3

𝑡
−0.1

𝑠
𝜏
𝑠
𝑔 (𝑠) |𝑥 (𝑠)| .

(53)

Let 𝑝 = 10/7, 𝑞 = 10/3, and 𝐾
1
, 𝐾
2
are arbitrary constants,

and

𝜃 :=

3

7

, 𝑎 (𝑛) := 3
7/3
𝑎
10/3

(𝑛) ,

̃
𝑏 (𝑛) := 3

7/3
𝑏
10/3

(𝑛) 𝜏(𝑡
𝜃

𝑛
B [

6

7

,

4

7

])

7/3

,

𝑐 (𝑛) := 3
7/3
𝑐
10/3

(𝑛) 𝜏(𝑡
𝜃

𝑁
B [

6

7

,

4

7

])

7/3

,

𝐴 (𝑛) :=
̃
𝑏 (𝑛)

𝑛−1

∑

𝑠=0

𝑓
10/3

(𝑠) (

2

3

𝐾
1/3

1
𝑎 (𝑠) +

1

3

𝐾
2/3

1
)

+ 𝑐 (𝑛)

𝑁−1

∑

𝑠=𝑛
0

𝑔
10/3

(𝑠) (

1

3

𝐾
2/3

2
𝑎 (𝑠) +

2

3

𝐾
1/3

2
) ,

𝐵 (𝑛) :=

2
̃
𝑏 (𝑛)

3

, 𝐶 (𝑛) :=

𝑐 (𝑛)

3

,

𝐹 (𝑛) := 𝑓
10/3

(𝑛)𝐾
1/3

1
, 𝐺 (𝑛) := 𝑔

10/3
(𝑛)𝐾
2/3

2
.

(54)

If

𝑁−1

∑

𝑠=0

𝐺 (𝑠) 𝐶 (𝑠) exp(𝐵 (𝑠)
𝑠−1

∑

𝜏=0

𝐹 (𝜏)) < 1,

𝑛 ∈ N
0
, 𝑛 < 𝑁.

(55)
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Applying Theorem 8 to (53), we obtain the estimation of the
solutions of difference equation (52)

|𝑥 (𝑛)|

≤

{

{

{

𝑎 (𝑛) + exp(𝐵 (𝑛)
𝑛−1

∑

𝑠=0

𝐹 (𝑠))

×
[

[

𝐴 (𝑛) + 𝐶 (𝑛)

× ((

𝑁−1

∑

𝑠=0

𝐺 (𝑠) 𝐴 (𝑠)

× exp(𝐵 (𝑠)
𝑠−1

∑

𝜏=0

𝐹 (𝜏)))

× (1 −

𝑁−1

∑

𝑠=0

𝐺 (𝑠) 𝐶 (𝑠)

× exp(𝐵 (𝑠)
𝑠−1

∑

𝜏=0

𝐹 (𝜏)))

−1

)
]

]

}

}

}

1/𝑖

,

𝑛 ∈ N
0
, 𝑛 < 𝑁.

(56)
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