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One type of bifurcation named oscillation emergence bifurcation (OEB) found in time-delayed linear time invariant (abbr. LTI)
systems is fully studied. The definition of OEB is initially put forward according to the eigenvalue variation. It is revealed that a
real eigenvalue splits into a pair of conjugated complex eigenvalues when an OEB occurs, which means the number of the system
eigenvalues will increase by one and a new oscillationmode will emerge. Next, a method to determine OEB bifurcation in the time-
delayed LTI system with single lag is developed based on Lambert W function. A one-dimensional (1-dim) time-delayed system is
firstly employed to explain the mechanism of OEB bifurcation. Then, methods to determine the OEB bifurcation in 1-dim, 2-dim,
and high-dimension time-delayed LTI systems are derived. Finally, simulation results validate the correctness and effectiveness of
the presented method. Since OEB bifurcation occurs with a new oscillation mode emerging, work of this paper is useful to explore
the complex phenomena and the stability of time-delayed dynamic systems.

1. Introduction

In the nature, system trend is not only dependent on the
current operating point but also subject to its previous
conditions. This phenomenon is called time delay [1, 2].
As a main cause to the control deterioration and system
instability, time delays exist widespread in the industry of
communication [3], biology [4], mechanism [5], chemistry
[6], society [7], and power utility [8–10]. Therefore, it is an
important issue and frequent topic to evaluate the impact of
time delays on the stability of dynamic systems.

Many methods to analyze the stability of time-delayed
dynamic system have been proposed in the past literatures.
For example, [10–13] applied Lyapunov theory to derive
various stability criteria for time-delayed systems. To seek
the suitable Lyapunov function (or Lyapunov functional)
and to construct the corresponding criteria were the two
key points of such methods. Linear matrix inequality (LMI)
technique, Lyapunov-Razumikhin theory, and Lyapunov-
Krasovskii theory were usually used in the derivation. Just
as we know, characteristic equation of time-delayed system
has transcendental element, which is very difficult to handle
in the analysis. In order to surmount this problem, [14, 15]

utilized Rekasius substitution method and [16] used Pade
approximation method to approximate the transcendental
elements and transfer the characteristic equation into a
polynomial, which was used to calculate the system critical
eigenvalues. Reference [9, 17] treated the stability region
method as a tool to determine the small signal stability region
of time-delayed dynamic system. All points in the stability
region were small signal stable, and the boundary of the sta-
bility region was composed by some bifurcation points, such
as saddle node bifurcation, Hopf bifurcation, and singularity
induced bifurcation. Reference [18–22] applied bifurcation
theory to analyze some complex phenomena existing in
the time-delayed systems, such as Hopf bifurcation, period
doubling bifurcation, and chaos.

Time-delayed system is a complex dynamic system, in
which many interesting and intricate dynamic behaviors
exist. For example, Figure 1 from [23] demonstrated that a real
eigenvalue split into a pair of conjugated complex eigenvalues
at point𝑃with increase of time delay in a time-delayed power
system. In this paper, this phenomenon is called oscillation
emergence bifurcation (OEB). And, we apply the theory of
bifurcation analysis and Lambert 𝑊 function to propose
a mechanism to the occurrence of this bifurcation. As
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Figure 1: A real eigenvalue splits into a pair of conjugated eigenval-
ues.

an available tool, Lambert 𝑊 function [24, 25] has been
utilized to analyze some complex behaviors in nonlinear
system including stability analysis of time-delayed system
[26–29]. It is applied to derive a general method to determine
OEB bifurcation in this paper.

The contents of this paper are organized into six sections.
Following this introduction, definition of OEB bifurcation is
put forward in Section 2 and some of its features are also
discussed in this section. In Section 3, Lambert𝑊 function
is introduced and a mechanism of the OEB’s occurrence is
proposed. Section 4 presents a method to determine OEB
bifurcation in time-delayed LTI system with single lag based
on the Lambert 𝑊 function. In Section 5, the presented
approach is demonstrated by numerical simulations. Finally,
Section 6 concludes and summarizes this paper.

2. Definition of OEB Bifurcation

In this paper, all studies are based on the following time-
delayed LTI system with single lag:

Σ:
{

{

{

ẋ = A
0
⋅ x + A

𝑖
⋅ x (𝑡 − 𝜏)

x (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,
(1)

where A
0
,A
𝑖
∈ 𝑅
𝑛×𝑛; x ∈ 𝑅𝑛 is the vector of the state

variables; 𝜏 ≥ 0 is the constant of time delay;𝜙(𝑡) is the system
trajectory in the range of [−𝜏, 0].

It is well known that the following equation is the
corresponding characteristic equation of system Σ:

det (𝑠 − A
0
− A
𝑖
⋅ 𝑒
−𝑠⋅𝜏
) = 0, (2)

where 𝑠 ∈ 𝐶 is the eigenvalue to be determined. The eigen-
value spectrum of system Σ is denoted by Γ:

Γ = [𝑠
1
, 𝑠
2
, 𝑠
3
, . . .] . (3)

Theoretically, it can be calculated from (2) directly when 𝜏 is
given. Further, denote the set of the real eigenvalue by Γ

𝑅
and

the set of the complex eigenvalue with nonzero imaginary by
Γ
𝐼
:

Γ
𝑅
= [𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛𝑅
] ,

Γ
𝐼
= [𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛𝐼
] ,

(4)

where 𝑛
𝑅
, 𝑛
𝐼
are the eigenvalue numbers of Γ

𝑅
and Γ

𝐼
,

respectively. Then the following (5) holds:

Γ = [Γ
𝑅
, Γ
𝐼
] ,

𝑛
𝜏
= 𝑛
𝑅
+ 𝑛
𝐼
,

(5)

where 𝑛
𝜏
is the eigenvalue number of Γ.

It can be found that when 𝜏 = 0, system Σ degenerates
into the following LTI differential equation:

ẋ = A ⋅ x, (6)

whereA = A
0
+A
𝑖
. And, the number of eigenvalues is 𝑛; that

is, 𝑛
𝜏=0
= 𝑛. When 𝜏 increases, the values of 𝑛

𝑅
, 𝑛
𝐼
, and 𝑛

𝜏

will change accordingly. Therefore, they can be considered as
functions of 𝜏 as follows:

𝑛
𝑅
= 𝑁
𝑅
(𝜏) ,

𝑛
𝐼
= 𝑁
𝐼
(𝜏) ,

𝑛
𝜏
= 𝑁 (𝜏) = 𝑁𝑅 (𝜏) + 𝑁𝐼 (𝜏) .

(7)

𝑁
𝑅
(𝜏), 𝑁

𝐼
(𝜏), and 𝑁(𝜏) are three functions of 𝜏 to yield the

numbers of real eigenvalues, complex eigenvalues, and whole
eigenvalues of system Σ.

Definition 1 (definition of oscillation emergence bifurcation).
Presume that there is a value of time delay 𝜏

𝑐
> 0 for system

Σ of (1). Its Γ
𝑅
has 𝑛𝑜
𝑅
real eigenvalues and Γ

𝐼
has 𝑛𝑜
𝐼
complex

eigenvalues with 𝜏 ≤ 𝜏
𝑐
. And, after 𝜏 > 𝜏

𝑐
, the numbers of Γ

𝑅

and Γ
𝐼
turn to 𝑛𝑛

𝑅
and 𝑛𝑛
𝐼
. If the following equations hold:

𝑛
𝑛

𝑅
= 𝑛
𝑜

𝑅
− 1,

𝑛
𝑛

𝐼
= 𝑛
𝑜

𝐼
+ 2,

𝑛
𝑛

𝜏
= 𝑛
𝑜

𝜏
+ 1,

𝑛
𝑛

𝜏
= 𝑛
𝑛

𝑅
+ 𝑛
𝑛

𝐼
,

𝑛
𝑜

𝜏
= 𝑛
𝑜

𝑅
+ 𝑛
𝑜

𝐼
,

(8)

there is an oscillation emergence bifurcation at 𝜏 = 𝜏
𝑐
.

According to Definition 1, suppose there is a real eigen-
value 𝑠 ∈ 𝑅 in Γ at 𝜏 ≤ 𝜏

𝑐
. It will split into a pair of conjugated

eigenvalues 𝑠
+
, 𝑠
−
as shown in Figure 2. It is manifested that

the number of Γ
𝑅
will decrease by one, the number of Γ

𝐼
will

increase by two, and number of Γwill increase by one after an
OEB bifurcation occurs. At the same time, a new oscillation
mode subject to 𝑠

+
, 𝑠
−
will emerge after OEB bifurcation.
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Figure 2: Illustration of OEB bifurcation.
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3. Lambert𝑊 Function and OEB Bifurcation

Our aim is to derive a general method based on Lambert𝑊
function to determine OEB bifurcation in system Σ defined
by (1). A brief introduction to Lambert𝑊 function is firstly
given.

The following function is called Lambert𝑊 function:

𝑤𝑒
𝑤
= 𝑧, (9)

where 𝑤, 𝑧 ∈ 𝐶. Its inverse function is expressed as

𝑤 = 𝑊(𝑧) , that is, 𝑊 (𝑧) 𝑒𝑊(𝑧) = 𝑧. (10)

Lambert𝑊 function is not injective and the relation𝑊
is multivalued (except at 0). It has many solution branches
in complex plane [25], which can be denoted by 𝑊

𝑘
, 𝑘 =

0, ±1, ±2, . . .. If the attention is restricted to real-valued 𝑊,
then the relation is defined only for 𝑧 ≥ −1/𝑒. For −1/𝑒 ≤
𝑧 < 0, there are two possible real values of 𝑊(𝑧) as shown
in Figure 3. We denote the branch satisfying −1 ≤ 𝑊(𝑧)
by 𝑊
0
(solid line in Figure 3), and the branch satisfying

𝑊(𝑧) ≤ −1 by𝑊
−1

(dashed line in Figure 3).𝑊
0
is referred

to the principal branch of Lambert𝑊 function. It increases
from𝑊

0
(−1/𝑒) = −1 to𝑊

0
(+∞) = +∞, while branch𝑊

−1

decreases from 𝑊
−1
(−1/𝑒) = −1 to 𝑊

−1
(0
−
) = −∞. They

u
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Figure 4: Curve of 𝑧 = 𝑓
𝑧
(𝑢).

encounter at point 𝑃 as shown in Figure 3, and the value of
point 𝑃 is given as follows:

𝑃 : (𝑧, 𝑤) = (−
1

𝑒
, −1) . (11)

Supposed that 𝑧 ∈ 𝑅 in (9) and (10) is a system parameter
and it varies with another parameter 𝑢 ∈ 𝑅:

𝑧 = 𝑓
𝑧
(𝑢) , 𝑧 ∈ 𝑅. (12)

Substitute (12) into (10). It can be found that 𝑤 is also a
function of 𝑢:

𝑤 = 𝑊(𝑧) = 𝑊(𝑓
𝑧
(𝑢)) = 𝑊

𝑧
(𝑢) . (13)

Then, the 𝑢-𝑧 curve can be plotted. An example is shown
in Figure 4, where 𝑢-𝑧 curve crosses the dotted line of 𝑧 =
−1/𝑒 at some points which can be divided into two categories:

𝑀
𝑠
= (𝑀
1
,𝑀
2
, . . . ,𝑀

𝑖
, . . .) ,

𝑁
𝑠
= (𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑖
, . . .) .

(14)

If 𝑢 is on the interval of (𝑀
𝑖
, 𝑁
𝑖
), that is, the intervals

above the line with 𝑧 > −1/𝑒, (13) has real solutions. While
if 𝑢 is on the interval of (𝑁

𝑖
,𝑀
𝑖+1
), that is, the grey intervals

with 𝑧 < −1/𝑒, (13) only has complex solutions with nonzero
imaginary.

Recalling the definition of OEB, we can find that𝑁
𝑠
is just

a set of OEB bifurcations of the system expressed by (13).That
is, at any point of𝑁

𝑠
, a real eigenvalue will turn into a pair of

conjugated complex eigenvalues with the increment of 𝑢.
Here the following typical transcendental item in one-

dimensional (1-dim) delayed-system is treated as an example
for further discussion to Figure 4:

𝑒
−𝜏𝑠
= 𝑎
0 (𝑠 − 𝑟) , (15)

where 𝑎
0
, 𝑟 ∈ 𝑅, and 𝜏 ≥ 0.The value of 𝑠 can be derived from

(15) based on Lambert𝑊 function as follows:

𝑠 = 𝑟 +
1

𝜏
𝑊(
𝜏𝑒
−𝜏𝑟

𝑎
0

) = 𝑟 +
1

𝜏
𝑊 (𝑧) , (16)

where

𝑧 = 𝑓
𝑧 (𝜏) =

𝜏𝑒
−𝜏𝑟

𝑎
0

. (17)
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𝑧
(𝜏).

Figure 5 depicts the curve of 𝜏-𝑧 with 𝑎
0
= −0.5, 𝑟 = 1.0.

It is evident that point𝑁 with 𝜏 = 0.23196 in the figure is an
OEB bifurcation of system (15) according to Definition 1 and
Figure 4.

From Figures 4 and 5, it is asserted that the following
formula holds at the OEB bifurcation points when 𝑓

𝑧
(⋅) ∈ 𝑅:

𝑧 = −
1

𝑒
,

𝑑𝑧

𝑑𝜏
=
𝑑𝑓
𝑧

𝑑𝜏
< 0.

(18)

And, if 𝑓
𝑧
(⋅) has complex values on one side of the OEB

bifurcation point, the above condition will be modified as
follows:

𝑧 = −
1

𝑒
,

𝑑Re (𝑧)
𝑑𝜏

=
𝑑Re (𝑓

𝑧
)

𝑑𝜏
< 0,

(19)

where Re(𝑧) is the real part of 𝑧. For a time-delayed system, if
its characteristic equation can be transformed into a suitable
form, conditions of (18) or (19) may be adopted as a criterion
to determine the OEB bifurcation.

4. An Approach to Determine OEB Bifurcation

In this section, we aim to derive a general method to
transform the characteristic equation of time-delayed system
into a form that can be handled by Lambert 𝑊 function so
as to determine the occurrence of OEB bifurcation. Methods
suitable for one-dimensional (1-dim) and two-dimensional
(2-dim) time-delayed LTI systems are first derived and then
they are expanded to the high-dimensional systems.

4.1. 1-Dim System. The following 1-dim system is considered
in this subsection:

𝑥̇ = 𝑎𝑥 + 𝑏𝑥 (𝑡 − 𝜏) , (20)

where 𝜏 ≥ 0, 𝑎, 𝑏, 𝑥 ∈ 𝑅, and 𝑏 ̸= 0.The characteristic equation
of (20) is

CE
1
(𝑠, 𝐷) = 𝑠 − 𝑎 − 𝑏 ⋅ 𝐷 = 0, (21)

where𝐷 = 𝑒−𝜏𝑠. It can be rewritten as

𝐷 = 𝑒
−𝜏𝑠
=
1

𝑏
(𝑠 − 𝑎) . (22)

According to (15), 𝑠 can be solved from (22) based on Lambert
𝑊 function:

𝑠 = 𝑎 +
𝑊 (𝑧)

𝜏
, (23)

where

𝑧 = 𝑓
𝑧
(𝜏) = 𝑏 ⋅ 𝜏 ⋅ 𝑒

−𝜏𝑎
. (24)

Similar to Figure 5, the OEB bifurcation can be deter-
mined from (24) via condition (18).

4.2. 2-Dim System. Let us consider the following 2-dim
system:

[
𝑥̇
1

𝑥̇
2

] = [
𝑎
11
𝑎
12

𝑎
21
𝑎
22

] [
𝑥
1

𝑥
2

] + [
𝑏
11
𝑏
12

𝑏
21
𝑏
22

] [
𝑥
1
(𝑡 − 𝜏)

𝑥
2
(𝑡 − 𝜏)

] , (25)

where 𝜏 ≥ 0, 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
∈ 𝑅, 𝑖, 𝑗 = 1, 2; x = [𝑥

1
, 𝑥
2
]
𝑇
∈ 𝑅
2.

Assume 𝑠
1
< 𝑠
2
< 0 are two eigenvalues of the following

matrix:

Ã = [𝑎11 + 𝑏11 𝑎12 + 𝑏12
𝑎
21
+ 𝑏
21
𝑎
22
+ 𝑏
22

] . (26)

It means that there are two negative and real eigenvalues
at 𝜏 = 0, so system given by (25) is stable without time delay.
Supposed that 𝑠 is an eigenvalue of (25) at 𝜏 > 0 and the
following equation holds:

det{[𝑠 − 𝑎11 −𝑎12
−𝑎
21
𝑠 − 𝑎
22

] − [
𝑏
11
𝑏
12

𝑏
21
𝑏
22

] 𝑒
−𝜏𝑠
} = 0. (27)

System characteristic equation can be derived as follows:

CE
2
(𝑠, 𝐷) = 𝑠

2
+ 𝑐
1
𝑠 + 𝑐
2
+ 𝑐
3
𝐷𝑠 + 𝑐

4
𝐷 + 𝑐
5
𝐷
2
= 0. (28)

With 𝑐
1
= −(𝑎

11
+ 𝑎
22
), 𝑐
2
= 𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
, 𝑐
3
= −(𝑏
11
+ 𝑏
22
),

𝑐
4
= 𝑎
11
𝑏
22
+𝑎
22
𝑏
11
− (𝑎
12
𝑏
21
+𝑎
21
𝑏
12
), 𝑐
5
= 𝑏
11
𝑏
22
− 𝑏
12
𝑏
21
, and

𝐷 = 𝑒
−𝜏𝑠.

In order to determine the OEB bifurcation in the system,
we reorganize (28) into the following form:

(𝑠 + 𝜁 + 𝑤 ⋅ 𝐷) (𝑠 + 𝑧 + 𝑦 ⋅ 𝐷) − V = 0, (29)

where 𝜁, 𝑦, 𝑤, V, 𝑧 ∈ 𝑅. And, it can be expanded as follows:

𝑠
2
+ (𝜁 + 𝑧) 𝑠 + (𝜁𝑧 − V)

+ (𝑤 + 𝑦)𝐷𝑠 + (𝑤𝑧 + 𝜁𝑦)𝐷 + 𝑤𝑦𝐷
2
= 0.

(30)
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Comparing (30) with (28), the following equations hold:

𝜁 + 𝑧 = 𝑐
1
,

𝜁𝑧 − V = 𝑐
2
,

𝑤 + 𝑦 = 𝑐
3
,

𝑤𝑧 + 𝜁𝑦 = 𝑐
4
,

𝑤𝑦 = 𝑐
5
.

(31)

And, the following result can be obtained:

𝑤 =

𝑐
3
± √𝑐
2

3
− 4𝑐
5

2
,

𝑦 = 𝑐
3
− 𝑤,

𝑧 =
𝑦𝑐
1
− 𝑐
4

𝑦 − 𝑤
,

𝜁 = 𝑐
1
− 𝑧,

V = 𝜁𝑧 − 𝑐
2

(32)

when 𝑐2
3
−4𝑐
5
< 0 and there is no real solution for (31).That is

(28) cannot be converted into the formof (29) in real domain.
In order to use the criterion given by (18) or (19), the following
two scenarios are considered, respectively.

(i) Consider 𝑐2
3
− 4𝑐
5
≥ 0. Equation (28) can be converted

into the form of (29) in real domain. Equation (29) can be
rewritten as follows in order to use the condition given by
(18) or (19):

(𝑠 + 𝜁 + 𝑤 ⋅ 𝐷) (𝑠 + 𝑧 + 𝑦 ⋅ 𝐷) = V, (33)

󳨐⇒
𝑠 + 𝜁 + 𝑤𝐷

V
=

1

𝑠 + 𝑧 + 𝑦𝐷
:= 𝐾, (34)

󳨐⇒

{{

{{

{

𝑠 + 𝜁 + 𝑤𝐷 = 𝐾V

𝑠 + 𝑧 + 𝑦𝐷 =
1

𝐾
,

(35)

where𝐾 ∈ 𝐶 is a temporary variable.
Via the first formula in (35), the following equation holds:

𝐷 = 𝑒
−𝜏𝑠
= −
1

𝑤
(𝑠 + 𝜁 − 𝐾V) . (36)

According to (15) and (16), with 𝑎
0,1
= −1/𝑤, 𝑟

1
= 𝐾V − 𝜁,

𝑐
1
= 𝜏, 𝑠 has the following form:

𝑠 = 𝑆
1 (𝑠) = 𝑟1 +

𝑊(𝑧
1
)

𝑐
1

, (37)

where

𝑧
1
= 𝑓
1 (𝜏) =

𝑐
1
𝑒
−𝑐1𝑟1

𝑎
0,1

. (38)

Via the second formula in (35), the following equation
holds:

𝐷 = 𝑒
−𝜏𝑠
= −
1

𝑦
(𝑠 + 𝑧 −

1

𝐾
) . (39)

Similarly, having defined 𝑎
0,2
= −1/𝑦, 𝑟

2
= 1/𝐾−𝑧, 𝑐

2
= 𝜏,

the following result can be obtained:

𝑠 = 𝑆
2
(𝑠) = 𝑟

2
+
𝑊(𝑧
2
)

𝑐
2

, (40)

where

𝑧
2
= 𝑓
2 (𝜏) =

𝑐
2
𝑒
−𝑐2𝑟2

𝑎
0,2

. (41)

Equations (37) and (40) can be utilized to solve the values
of 𝑠 and 𝐾 when 𝜏 is given. They can be further taken into
(38) and (41) to get the values of 𝑧

1
and 𝑧
2
. And if any one of

the following equations holds, there is an OEB bifurcation:

𝑧
1
= −
1

𝑒
,

𝑑Re (𝑧
1
)

𝑑𝜏
=
𝑑Re (𝑓

1
)

𝑑𝜏
< 0,

(42)

𝑧
2
= −
1

𝑒
,

𝑑Re (𝑧
2
)

𝑑𝜏
=
𝑑Re (𝑓

2
)

𝑑𝜏
< 0.

(43)

Obviously, if 𝑠 is a complex eigenvalue,𝐾 defined by (34) and
𝑧
1
, 𝑧
2
given by (38) and (41) are all complex values. They are

all real values if 𝑠 is a real eigenvalue. Hence, condition (19) is
suitable for this case.

(ii) Consider 𝑐2
3
−4𝑐
5
< 0. Since (28) cannot be converted into

the form of (29) in real domain at this condition, it is needed
to find a new method for converting (28) into the following
form:

(𝑠 + 𝜁 + 𝑤 ⋅ 𝐷) (𝑠 + 𝑧 + 𝑦 ⋅ 𝐷) − 𝑞 ⋅ 𝐷 ⋅ 𝑠 − V = 0, (44)

where 𝜁, 𝑦, 𝑤, V, 𝑧, 𝑞 ∈ 𝑅. Also, its expansion is given as
follows:

𝑠
2
+ (𝜁 + 𝑧) 𝑠 + (𝜁𝑧 − V)

+ (𝑤 + 𝑦 − 𝑞)𝐷𝑠 + (𝑤𝑧 + 𝜁𝑦)𝐷 + 𝑤𝑦𝐷
2
= 0.

(45)

Comparing it with (28), the following equations hold:

𝜁 + 𝑧 = 𝑐
1
,

𝜁𝑧 − V = 𝑐
2
,

𝑤 + 𝑦 = 𝑐
3
+ 𝑞,

𝑤𝑧 + 𝜁𝑦 = 𝑐
4
,

𝑤𝑦 = 𝑐
5
.

(46)
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Hence,

𝑤 =

𝑐
3
+ 𝑞 ± √(𝑐

3
+ 𝑞)
2
− 4𝑐
5

2
,

(47)

𝑦 = 𝑐
3
+ 𝑞 − 𝑤 =

𝑐
3
+ 𝑞 ∓ √(𝑐

3
+ 𝑞)
2
− 4𝑐
5

2
,

(48)

𝑧 =
𝑦𝑐
1
− 𝑐
4

𝑦 − 𝑤
, (49)

𝜁 = 𝑐
1
− 𝑧, (50)

V = 𝜁𝑧 − 𝑐
2
. (51)

To guarantee that 𝜁, 𝑦,𝑤, V, 𝑧 are real numbers, the following
relationship must hold:

(𝑐
3
+ 𝑞)
2
− 4𝑐
5
≥ 0. (52)

Since 𝑞 can be selected arbitrarily, it is set as follows:

𝑞 = −𝑐
3
+ √5𝑐

5
. (53)

Substituting (53) into (51) yields

𝑤 =

𝑐
3
+ 𝑞 ± √(𝑐

3
+ 𝑞)
2
− 4𝑐
5

2
=

(√5 ± 1)√𝑐5

2
,

𝑦 = 𝑐
3
+ 𝑞 − 𝑤 =

(√5 ∓ 1)√𝑐5

2
.

(54)

Since 𝑐2
3
− 4𝑐
5
< 0, it must be true that 𝑐

5
> 0. So 𝑤 and

𝑦 are two real numbers. According to (49)–(51), 𝜁, V, 𝑧 are all
real numbers. In order to use condition (19), (44) is written
as

(𝑠 + 𝜁 + 𝑤𝐷) (𝑠 + 𝑧 + 𝑦𝐷) = V + 𝑞𝐷𝑠, (55)

󳨐⇒
𝑠 + 𝜁 + 𝑤𝐷

𝑞𝐷𝑠 + V
=

1

𝑠 + 𝑧 + 𝑦𝐷
:= 𝐾, (56)

󳨐⇒

{

{

{

𝑠 + 𝜁 + 𝑤𝐷 = 𝐾 (V + 𝑞𝐷𝑠)

𝑠 + 𝑧 + 𝑦𝐷 =
1

𝐾
.

(57)

It can be indicated that the second formula in (57) is
equivalent to the one in (35). Thus, it can generate the same
results given by (40), (41), and condition (43). The new
conditions will be derived from the first formula in (57) as
follows:

𝑠 + 𝜁 + 𝑤𝐷 = 𝐾 (V + 𝑞𝐷𝑠)

󳨐⇒ 𝐷(𝐾𝑞𝑠 − 𝑤) = 𝑠 + 𝜁 − 𝐾V
(58)

󳨐⇒ 𝐷 = 𝑒
−𝜏𝑠
=
𝑠 + 𝜁 − 𝐾V
𝐾𝑞𝑠 − 𝑤

:=
𝑃
𝑛
(𝑠)

𝑃
𝑑 (𝑠)
. (59)

Suppose that there exists a real variable 𝑄 ∈ 𝑅 such that

𝑒
−𝑄𝜏𝑠
= sign (𝑃

𝑛
(𝑠)) ⋅ (𝑠 + 𝜁 − 𝐾V) . (60)

Inserting it into (59) yields

𝑒
−(1−𝑄)𝜏𝑠

=
sign (𝑃

𝑑
(𝑠))

𝐾𝑞𝑠 − 𝑤
. (61)

Defining 𝑎
0,3
= sign(𝑃

𝑛
(𝑠)), 𝑟

3
= 𝐾V − 𝜁, 𝑐

3
= 𝑄𝜏,

eigenvalue 𝑠 is expressed as

𝑠 = 𝑆
3
(𝑠) = 𝑟

3
+
𝑊(𝑧
3
)

𝑐
3

, (62)

where

𝑧
3
= 𝑓
3
(𝜏) =

𝑐
3
𝑒
−𝑐3𝑟3

𝑎
0,3

. (63)

Defining 𝑎
0,4
= sign(𝑃

𝑑
(𝑠)) ⋅𝐾𝑞, 𝑟

4
= 𝑤/𝐾𝑞, 𝑐

4
= (𝑄−1)𝜏,

the similar result from (61) is obtained:

𝑠 = 𝑆
4
(𝑠) = 𝑟

4
+
𝑊(𝑧
4
)

𝑐
4

, (64)

where

𝑧
4
= 𝑓
4 (𝜏) =

𝑐
4
𝑒
−𝑐4𝑟4

𝑎
0,4

. (65)

Equations (40), (62), and (64) can be used to solve the
values of 𝑠, 𝐾, and 𝑄 when 𝜏 is given. They can be further
taken into (41), (63), and (65) to get the values of 𝑧

2
, 𝑧
3
, and

𝑧
4
. As a conclusion, any of the following conditions hold, and

there is an OEB bifurcation in the system:

𝑧
2
= −
1

𝑒
,

𝑑Re (𝑧
2
)

𝑑𝜏
=
𝑑Re (𝑓

2
)

𝑑𝜏
< 0,

𝑧
3
= −
1

𝑒
,

𝑑Re (𝑧
3
)

𝑑𝜏
=
𝑑Re (𝑓

3
)

𝑑𝜏
< 0,

𝑧
4
= −
1

𝑒
,

𝑑Re (𝑧
4
)

𝑑𝜏
=
𝑑Re (𝑓

4
)

𝑑𝜏
< 0.

(66)

4.3. High-Dimensional Systems. Consider system Σ given by
(1) with 𝑛 ≥ 3. Its characteristic equation has the following
general form:

CE (𝑠, 𝐷) =
𝑛

∑

𝑖=0

[𝑝
𝑛−𝑖
(𝑠)𝐷
𝑖
] = 0, (67)

where𝐷 = 𝑒−𝜏𝑠 and 𝑝
𝑛−𝑖
(𝑠) is a polynomial of 𝑠:

𝑝
𝑛−𝑖
(𝑠) =

𝑛−𝑖

∑

𝑗=0

𝑎
𝑗
𝑠
𝑗
. (68)
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Table 1: General forms of the characteristic equation for time-delayed system.

Dim General forms of the characteristic equation 𝑁
𝑐

1 𝑠 + 𝑎
1
+ 𝑎
2
𝐷 = 0 2

2 𝑠
2
+ 𝑎
1
𝑠 + 𝑎
2
+ (𝑎
3
𝑠 + 𝑎
4
)𝐷 + 𝑎

5
𝐷
2
= 0 5

3 𝑠
3
+ 𝑎
1
𝑠
2
+ 𝑎
2
𝑠 + 𝑎
3
+ (𝑎
4
𝑠
2
+ 𝑎
5
𝑠 + 𝑎
6
)𝐷 + (𝑎

7
𝑠 + 𝑎
8
)𝐷
2
+ 𝑎
9
𝐷
3
= 0 9

4 𝑠
4
+ 𝑎
1
𝑠
3
+ 𝑎
2
𝑠
2
+ 𝑎
3
𝑠 + 𝑎
4
+ (𝑎
5
𝑠
3
+ 𝑎
6
𝑠
2
+ 𝑎
7
𝑠 + 𝑎
8
)𝐷 + (𝑎

9
𝑠
2
+ 𝑎
10
𝑠 + 𝑎
11
)𝐷
2
+ (𝑎
12
𝑠 + 𝑎
13
)𝐷
3
+ 𝑎
14
𝐷
3
= 0 14

5 𝑠
5
+ 𝑎
1
𝑠
4
+ 𝑎
2
𝑠
3
+ 𝑎
3
𝑠
2
+ 𝑎
4
𝑠 + 𝑎
5
+ (𝑎
6
𝑠
4
+ 𝑎
7
𝑠
3
+ 𝑎
8
𝑠
2
+ 𝑎
9
𝑠 + 𝑎
10
)𝐷 + (𝑎

11
𝑠
3
+ 𝑎
12
𝑠
2
+ 𝑎
13
𝑠 + 𝑎
14
)𝐷
2
+ (𝑎
15
𝑠
2
+ 𝑐
16
𝑠 + 𝑎
17
)𝐷
3

+(𝑎
18
𝑠 + 𝑎
19
)𝐷
4
+ 𝑎
20
𝐷
5
= 0

20

Some general forms of the characteristic equation for system
Σ are listed in Table 1.𝑁

𝑐
is the number of coefficients in the

general form. For example, there are five coefficients which
are 𝑎
1
∼ 𝑎
5
in the characteristic equation for 𝑛 = 2, and there

are nine coefficients 𝑎
1
∼ 𝑎
9
in the characteristic equation

with 𝑛 = 3.

(i) 3-Dim Case (𝑛 = 3). Take 3-dim system as an example to
explain the principle of proposed method. General form of
the characteristic equation for 𝑛 = 3 is given as below:

CE
3
(𝑠, 𝐷) = 𝑠

3
+ 𝑎
1
𝑠
2
+ 𝑎
2
𝑠 + 𝑎
3
+ (𝑎
4
𝑠
2
+ 𝑎
5
𝑠 + 𝑎
6
)𝐷

+ (𝑎
7
𝑠 + 𝑎
8
)𝐷
2
+ 𝑎
9
𝐷
3
= 0.

(69)

It can be converted into the following form so as to utilize
the previous results:

CE
3
(𝑠, 𝐷) = CE

2
(𝑠, 𝐷) ⋅ (𝑠 + 𝑐

6
+ 𝑐
7
𝐷) − (𝑐

8
𝑠 + 𝑐
9
) = 0,

(70)

where CE
2
(𝑠, 𝐷) is described by (28). And, 𝑐

𝑖
∈ 𝑅, 𝑖 =

1, 2, . . . , 9, are variables to be determined. Setting CE
2
(𝑠, 𝐷) =

𝐾, (70) can be written as

CE
2 (𝑠, 𝐷) − 𝐾 = 0,

𝐾 ⋅ (𝑠 + 𝑐
6
+ 𝑐
7
𝐷) − (𝑐

8
𝑠 + 𝑐
9
) = 0.

(71)

Via the first formula in (71),

CE󸀠
2
(𝑠, 𝐷) := CE

2 (𝑠, 𝐷) − 𝐾 = 𝑠
2
+ 𝑐
1
𝑠 + (𝑐
2
− 𝐾)

+ 𝑐
3
𝐷𝑠 + 𝑐

4
𝐷 + 𝑐
5
𝐷
2
= 0.

(72)

It is obvious that CE󸀠
2
(𝑠, 𝐷) is a typical 2-dim case discussed

above. Hence, the result of Section 4.2 can be directly applied
to (72).

Further, via the second formula of (71),

𝐾 ⋅ (𝑠 + 𝑐
6
+ 𝑐
7
𝐷) − (𝑐

8
𝑠 + 𝑐
9
) = 0 󳨐⇒ 𝑠 − 𝑎 − 𝑏̃ ⋅ 𝐷 = 0,

(73)

where 𝑎 = (𝑐
9
− 𝐾𝑐
6
)/(𝐾 − 𝑐

8
), 𝑏̃ = −𝐾𝑐

7
/(𝐾 − 𝑐

8
). The result

of 1-dim system in Section 4.1 can be applied to (73). And the
following result can also be derived:

𝑧
5
= 𝑓
5
(𝜏) = 𝑏̃ ⋅ 𝜏 ⋅ 𝑒

−𝜏𝑎
. (74)

From the above discussion, it can be asserted that a 3-dim
systemcanbe transformed to a combination of a 1-dim system
and a 2-dim system. Therefore, conclusions in Sections 4.1
and 4.2 can be applied. For simplification, it is denoted as

CE
3
(𝑠, 𝐷) = CE

2
(𝑠, 𝐷) ⊕ CE

1
(𝑠, 𝐷) . (75)

As a conclusion, any of the following conditions hold, and
there is an OEB bifurcation in the system:

𝑧
1
= −
1

𝑒
,

𝑑Re (𝑧
1
)

𝑑𝜏
=
𝑑Re (𝑓

1
)

𝑑𝜏
< 0,

(76)

𝑧
2
= −
1

𝑒
,

𝑑Re (𝑧
2
)

𝑑𝜏
=
𝑑Re (𝑓

2
)

𝑑𝜏
< 0,

(77)

𝑧
5
= −
1

𝑒
,

𝑑Re (𝑧
5
)

𝑑𝜏
=
𝑑Re (𝑓

5
)

𝑑𝜏
< 0,

(78)

where (76) and (77) are concluded from (72) with conditions
expressed by (42)-(43) when 𝑐2

3
− 4𝑐
5
≥ 0 (or conditions

expressed by (66) when 𝑐2
3
− 4𝑐
5
< 0).

(ii) Case of High Dimension with 𝑛 > 3. Similar to 3-dim case,
the characteristic equation of high-dimensional system can
also be converted into lower ones so as to apply the previous
derived results. For example, for 𝑛 = 4,

CE
4
(𝑠, 𝐷) = CE

3
(𝑠, 𝐷) ⋅ (𝑠 + 𝑐

10
+ 𝑐
11
𝐷)

− (𝑐
12
𝑠
2
+ 𝑐
13
𝑠 + 𝑐
14
) = 0.

(79)

Setting CE
3
(𝑠, 𝐷) = 𝐾, (79) can be rewritten as

CE
3
(𝑠, 𝐷) − 𝐾 = 0,

CE
4
(𝑠, 𝐷)

= 𝐾 ⋅ (𝑠 + 𝑐
10
+ 𝑐
11
𝐷) − (𝑐

12
𝑠
2
+ 𝑐
13
𝑠 + 𝑐
14
) = 0.

(80)
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Table 2: 𝑧
1
, 𝑧
2
values near point 𝑄 in Figure 10.

𝜏 Re(𝑧
1
) Re(𝑧

1
) + 1/𝑒 Re(𝑧

2
) Re(𝑧

2
) + 1/𝑒

0.04758 −0.3675333 0.0003462 −0.0858096 0.2820698
0.04759 −0.3676635 0.0002159 −0.0865306 0.2813488
0.04760 −0.3678304 0.0000491 −0.0879570 0.2799224
0.04761 −0.3679437 −0.0000643 −0.0883511 0.2795284
0.04762 −0.3680362 −0.0001567 −0.0883415 0.2795379

z

0.0173 0.10940.1 0.2 0.3 0.4 0.5
0

N
M

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

−1/e

𝜏 (s)

Figure 6: Curve of 𝜏-𝑧.

Thefirst formula is a 3-dim case, and the second is a 2-dim
case. Hence,

CE
4
(𝑠, 𝐷) = CE

3
(𝑠, 𝐷) ⊕ CE

2
(𝑠, 𝐷)

= [CE
2
(𝑠, 𝐷) ⊕ CE

1
(𝑠, 𝐷)] ⊕ CE

2
(𝑠, 𝐷) .

(81)

And, the cases discussed for 2-dim and 1-dim cases can be
applied to determine OEB bifurcation in 4-dim system.

Further, the following recursion formula for high-
dimensional systems with 𝑛 ≥ 3 can be obtained:

CE
𝑖
(𝑠, 𝐷) = CE

𝑖−1
(𝑠, 𝐷) ⊕ CE

𝑖−2
(𝑠, 𝐷) , 𝑖 = 3, 4, . . . .

(82)

Then, a higher dimension system can be converted
into two lower dimension systems so as to determine the
occurrence of OEB bifurcation accordingly.

5. Case Studies

5.1. 1-Dim System. Consider the following 1-dim system:

𝑥̇ = 20𝑥 − 30𝑥 (𝑡 − 𝜏) . (83)

According to (24), the 𝜏-𝑧 curve can be depicted in
Figure 6 and the corresponding eigenvalue locus is depicted
in Figure 7. For a pair of conjugated eigenvalues, only the one
above the real axis is showed in the figures in this paper.

Similar to Figure 5, point𝑁 with (𝜏, 𝑧) = (0.0173𝑠, −1/𝑒)
in Figure 6 is an OEB bifurcation of system described by (83).
The variation of the system eigenvalue in Figure 7 verifies the
analysis above. That is, the real eigenvalue splits into a pair of
conjugated complex eigenvalues at the OEB bifurcation with
𝜏 = 0.0173𝑠.

In order to demonstrate the impact of OEB bifurcation
to the system defined by (83), its unit step responses with

0 10 20

25

20

15

10

5

𝜏 = 0.02 s
𝜏 = 0.03 s

𝜏 = 0.0379 s

𝜏 = 0.045 s

𝜏 = 0.0173 s 𝜏 = 0.01 s 𝜏 = 0.1095 s 𝜏 = 0.15 s Re (𝜆)
−40 −30 −20 −10

Im (𝜆)

N M

Figure 7: Curve of an eigenvalue.

different 𝜏 values are shown in Figure 8. It can be found that
the system trajectory converges monotonously in the range
of 𝜏 < 0.0173𝑠 and converges oscillatedly in the range of
𝜏 > 0.0173𝑠. It is manifested that there is OEB bifurcation
at 𝜏 = 0.0173𝑠, which leads to a new oscillation mode and
increases the number of system eigenvalues by one.

5.2. 2-Dim System. The following two cases are employed to
validate the proposed method.

(i) Case A. Consider

A
0
= [
𝑎
11
𝑎
12

𝑎
21
𝑎
22

] = [
1 −3

5 −6
] ,

A
𝑖
= [
𝑏
11
𝑏
12

𝑏
21
𝑏
22

] = [
−4 4

2 −3
] ,

eig (A) = [−2.0, −10.0] ,

𝑐
2

3
− 4𝑐
5
= 33.0 > 0,

(84)

where A is defined by (26).
It is obvious that the conditions described by (42)-(43) are

suitable for this case.
Via the tracing method proposed by [23], we can obtain

the system eigenvalue locus. Figure 9 depicts the curve of the
second eigenvalue with 𝜏 increasing (the first one is always
on the real axis, so it is not shown in the figure). There is an
OEB bifurcation at point 𝑄 with 𝜏 = 0.0476𝑠. According to
(38) and (41), the curves of 𝜏-𝑧

1
and 𝜏-𝑧

2
can be depicted

in Figure 10. Solid line represents that the corresponding
𝑧
𝑖
, 𝑖 = 1, 2, is real, while dotted line represents that it is

complex. Some results nearby point 𝑄 are listed in Table 2.
It can be found that condition (42) holds at point 𝑄 with
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(a) Simulation results with 𝜏 = 0.01𝑠 and 𝜏 = 0.0173𝑠
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Figure 8: Simulation results with various 𝜏 values.
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Figure 9: Locus of the second eigenvalue with 𝜏 increasing.

(𝜏, 𝑧
1
)
𝑅
= (0.0476𝑠, −1/𝑒) and it indicates the occurrence of

OEB bifurcation precisely.

(ii) Case B. Consider

A
0
= [
𝑎
11
𝑎
12

𝑎
21
𝑎
22

] = [
1 2

5 −6
] ,

A
𝑖
= [
𝑏
11
𝑏
12

𝑏
21
𝑏
22

] = [
−4 −1

2 −3
] ,

eig (A) = [−2.0, −10.0] ,

𝑐
2

3
− 4𝑐
5
= −7.0 < 0,

(85)

where A is defined by (26).
It can be asserted that the conditions described by (66) are

appropriate for this case. Similar to Case A, the eigenvalue
locus with 𝜏 increasing can be obtained via the tracing
method expressed by [23]. The eigenvalue locus is shown in
Figure 11, while real and imaginary parts of the eigenvalues
are shown in Figure 12. Note that two real eigenvalues at
the beginning move close to each other on the real axis.
They encounter at point 𝐴 and then turn to a pair of
conjugated complex eigenvalues. According to Definition 1,
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z2−0.2
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Figure 10: Curves of 𝜏-𝑧
1
and 𝜏-𝑧

2
.
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Im

1.0

2.0

3.0

4.0

A

0−2−6 −4−8−10−12

Figure 11: Eigenvalue locus of Case B.

there is no OEB bifurcation in the system since the number
of eigenvalues does not increase here.

Figure 13 plots the curves of 𝜏-𝑧
2
, 𝜏-𝑧
3
, and 𝜏-𝑧

4
. Similarly,

solid and dotted lines are used to represent the real and
complex values of 𝑧

𝑖
, 𝑖 = 2, 3, 4. It is obvious that any

condition identified by (66) does not hold here, so there is
no OEB bifurcation in the system.

Case studies above demonstrate that conditions expressed
by (42)-(43) or (66) are correct. And, the method proposed
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can correctly indicate the occurrence of OEB bifurcation in
the 2-dim time-delayed system.

5.3. 3-Dim System. Consider a 3-dim system defined by (1)
with A

0
, A
𝑖
as follows:

A
0
= [

[

−5 1 −1

1 −4 2

0 0 −2

]

]

, A
𝑖
= [

[

2 1 0

1 −1 −1

1 3 −8

]

]

. (86)

It can be found that the system have three real eigenvalues
with 𝜏 = 0:

eig (A) = [−1.8692, −5.5749, −10.5559] , (87)

where A = A
0
+ A
𝑖
.

Similar to Section 5.2, we can get the eigenvalue locus
shown in Figure 14, where the first and second eigenvalues
always move on the real axis, while the third eigenvalue splits
into a pair of conjugated complex eigenvalues at point 𝐵 with
𝜏 = 0.0431𝑠 so as to yield an OEB bifurcation.

Table 3 gives the coefficients in (69) and (70). According
to the definition of 𝑧

1
, 𝑧
2
, 𝑧
5
by (76)–(78), we can depict the

curves of 𝜏-𝑧
1
, 𝜏-𝑧
2
, and 𝜏-𝑧

5
in Figure 15. The 𝜏-𝑧

5
curve

(red line) hits the horizontal line of −1/𝑒 at 𝜏 = 0.0431𝑠
and condition (78) holds which indicate the occurrence of the
OEB bifurcation.

It should bementioned that the transformation from (69)
to (70) is not unique. Table 4 shows two sets of coefficients
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Figure 14: Eigenvalue locus with time delay increasing.
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1
, 𝜏-𝑧
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in (70). The corresponding 𝜏-𝑧
1
, 𝜏-𝑧
2
, and 𝜏-𝑧

5
curves are

illustrated, respectively, by Figures 16 and 17. It is notable that
in Figure 16 or Figure 17, the 𝜏-𝑧

1
curve (black line) collides

with the horizontal line of −1/𝑒 at 𝜏 = 0.0431𝑠. The condition
of (76) holds at this point so as to indicate occurrence of the
OEB bifurcation.

From the case study above, it is verified that conditions
expressed by (76)–(78) can indicate the occurrence of OEB
bifurcation in the 3-dim time-delayed LTI system.
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Table 3: Coefficients of CE
3
(𝑠, 𝐷) given by (69) and (70).

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

𝑎
6

𝑎
7

𝑎
8

𝑎
9

11 37 38 7 60 117 −8 −16 −29
𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑐
5

𝑐
6

𝑐
7

𝑐
8

𝑐
9

8.2422 15.7565 −0.5508 −0.7162 −3.8406 2.7578 7.5508 1.4870 5.4538

Table 4: Two sets of coefficients in (70).

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑐
5

𝑐
6

𝑐
7

𝑐
8

𝑐
9

Set I 6.4863 13.8753 9.2544 32.8516 12.8635 4.5137 −2.2544 6.1525 24.6287
Set II 7.2715 7.6935 5.2964 27.8647 −17.0229 3.7285 1.7036 −2.1947 −9.3149
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Figure 16: Curves of 𝜏-𝑧
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with set I of Table 4.
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with set II of Table 4.

6. Conclusions

In this paper, a method based on Lambert 𝑊 function
theory is presented to determine the oscillation emergence
bifurcation (OEB) in time-delayed LTI system with single
lag. Conditions of OEB’s occurrence in 1-dim, 2-dim, 3-
dim, and higher dimension systems are derived, respectively.
And, case studies confirm the correctness and preciseness
of the proposed method. Work of this paper is beneficial
to explore the complex dynamic phenomena existing in the
time-delayed system. However, the proposed method is only
valid for the time-delayed system with single lag. How to
expand it to the multiple time-delayed dynamic systems will
be further discussed in the future.
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