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This paper solves the dynamic traveling salesman problem (DTSP) using dynamic Gaussian Process Regression (DGPR) method.
The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate
a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN) method and the iterated local
search to track dynamic optima. Experimental results were obtained on DTSP instances. The comparisons were performed with
Genetic Algorithm and Simulated Annealing. The proposed approach demonstrates superiority in finding good traveling salesman

problem (TSP) tour and less computational time in nonstationary conditions.

1. Introduction

A bulk of research in optimization has carved a niche in
solving stationary optimization problems. As a corollary, a
flagrant gap has hitherto been created in finding solutions
to problems whose landscape is dynamic, to the core. In
many real-world optimization problems a wide range of
uncertainties have to be taken into account [1]. These uncer-
tainties have engendered a recent avalanche of research in
dynamic optimization. Optimization in stochastic dynamic
environments continues to crave for trailblazing solutions
to problems whose nature is intrinsically mutable. Several
concepts and techniques have been proposed for address-
ing dynamic optimization problems in literature. Branke
et al. [2] delineate them through different stratifications,
for example, those that ensure heterogeneity, sustenance of
heterogeneity in the course of iterations, techniques that
store solutions for later retrieval and those that use different
multiple populations. The ramp up in significance of DTSP
in stochastic dynamic landscapes has, up to the hilt, in the
past two decades attracted a raft of computational methods,
congenial to address the floating optima (Figure 1). An in-
depth exposition is available in [3, 4]. The traveling salesman

problem (TSP) [5], one of the most thoroughly studied NP-
hard theory in combinatorial optimization, arguably remains
a main research experiment that has hitherto been cast as
an academic guinea pig, most notably in computer science.
It is also a research factotum that intersects with a wide
expanse of research areas; for example, it is widely studied
and applied by mathematicians and operation researchers on
a grand scale. TSP’s prominence ascribe to its flexibility and
amenability to a copious range of problems. Gaussian process
regression is touted as a sterling model on account of its stellar
capacity to interpolate the observations, its probabilistic
nature, versatility, practical and theoretical simplicity. This
research lays bare a dynamic Gaussian process regression
(DGPR) with a nonstationary covariance function to give
foreknowledge of the best tour in a landscape that is subject
to change. The research is in concert with the argumentation
that optima are innately fluid, cognizant that size, nature, and
position are potentially volatile in the lifespan of the optima.
This skittish landscape, most notably in optimization, is a cue
for fine-grained research to track the moving and evolving
optima and provide a framework for solving a cartload of
pent-up problems that are intrinsically dynamic. We colligate
DGPR with nearest neighbor (NN) algorithm and the iterated
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FIGURE 1: Nonstationary optima [6].

local search, a medley whose purpose is to refine the solution.
We have arranged the paper in four sections. Sectionl is
limited to introduction, Section 2’s ambit includes review of
all methods that form the mainspring of this work, which
include Gaussian process, TSP, and DTSP. We elucidate
DGPR for solving the TSP in Section 3. Section 4 discusses
results obtained and draws conclusion.

2. The Traveling Salesman Problem (TSP)

The first researcher, in 1932, considered the traveling salesman
problem [7]. Menger gives interesting ways of solving TSP. He
lays bare the first approaches which were considered during
the evolution of TSP solutions. An exposition on TSP history
is available in [8-10].

Basic Definitions and Notations. It is imperative to note that
in the gamut of TSP, both symmetric and asymmetric aspects
are important threads in its fabric. We factor them into this
work through the following expressions.

Basically, a salesman traverses across an expanse of cities
culminating into a tour. The distance in terms of cost between
cities is computed by minimizing the path length:

n-1

f )= Zdn(i),n(Hl) + Aoy (1) @
i=1

We provide a momentary storage, D for cost distance. The dis-
tances between # cities are stored in a distance matrix D. For
brevity, the problem can also be situated as an optimization
problem. We minimize the tour length (Figure 5):

Zdi,n(i)' (2)

The distance matrix of TSP has got certain features which
come in handy in defining a set of classes for TSP [11]. If the
city point, (x;, ;) in a tour is accentuated; then drawing from
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Euclidean distance expression [11], we present the matrix C
between separate distances as

Gj = \/(xi - xj)2 + (Yi - J’j)2~ )

Affixed to TSP are important aspects that we bring to the fore
in this paper. We adumbrate a brief overview of symmetric
traveling salesman problem (STSP) and asymmetric traveling
salesman problem (ATSP) as follows.

STSP, akin to its name, ensures symmetry in length.
The distances between points are equal for all directions
while ATSP typifies different distance sizes of points in both
directions. Dissecting ATSP gives us a handle to hash out
solutions.

Let ATSP be expressed, subject to the distance matrix.
In combinatorial optimization, an optimal value is sought,
whereby in this case, we minimize using the following
expression:

n-1
We(m,n1) T an(i),n(Hl)' (4)
i

Reference [12] formulates ATSP in integer programming r* —

n zero-one variables x;; or else it is defined as

y= Zzwijxij (5)

such that
inj =1, jn],
i=1
n
inj 1, i[n],
j=1 (6)
Y¥x<ISI-1, VIS|<n,

ieSjes
x;j=0orl, i#je[n].

There are different rules affixed to ATSP, inter alia, to ensure
a tour does not overstay its one-off visit to each vertex. The
rules also ensure that standards are defined for subtours.

In the symmetry paradigm, the problem is postulated. For
brevity, we present subsequent work with tautness:

y= ) wyx %
I<i<j<n
such that
n
inj =2, je|[n],
i1
Y Y x;22, V3<|S|2 n
i€Sj+S 2 (8)
OSxijSI, i#je€[n],

x;; Vi#je[n].
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TSP is equally amenable to the Hamiltonian cycle [11] and so
we use graphs to ram home a different solution approach to
the problem of traveling salesman. In this approach, we define
G = (V,E) and (e; € E)w;. This is indicative of the graph
theory. The problem can be seen in the prism of a graph cycle
challenge. Vertices and edges represent V and E, respectively.

It is also plausible to optimize TSP by adopting both an
integer programming and linear programming approaches,
pieced together in [13]:

> > dijxij

i=1j=1

inj =1, 9

Zwixi =w'x. (10)

Astounding ideas have sprouted, providing profound
approaches in solving TSP. In this case, few parallel edges are
interchanged. We use the Hamilton graph cycle [11] equality
matrix

Vi, j dy; = dj,
(1)
D dij=a ) dj+p

i,jeH i,jeH

subject to « > 0, B € R. The common denominator of
these methods is to solve city instances in a shortest time
possible. A slew of approaches have been cobbled together
extensively in optimization and other areas of scientific study.
The last approach in this paper is to transpose asymmetric
to symmetric. The early work of [14] explicates the concept.
There is always a dummy city affixed to each city. The
distances are the same between dummies and bona fide cities
which makes distances symmetrical. The problem is then
solved symmetrically thereby assuaging the complexities of
NP-hard problems:

0 oo 00 -0 dy dy

0 d. d oo 0 oo dy, —-oo dy
d 62 d13 e | @ 0 0 ds dy -oo
d21 d 83 -00 dj, di; 0 00 o0
3L T2 dy -00 dyy 0 0

dy; d;; —00 00 o0 0
(12)

2.1. Dynamic TSP. Different classifications of dynamic prob-
lems have been conscientiously expatiated in [15]. A wide
array of dynamic stochastic optimization ontology ranges
from a moving morphology to drifting landscapes. The
dynamic optima exist owing to moving alleles in the natural

realm. Nature remains the fount of artificial intelligence.
Optimization mimics the whole enchilada including the
intrinsic floating nature of alleles, which provides fascinating
insights into solving dynamic problems. Dynamic encoding
problems were proposed by [16].

DTSP was initially introduced in 1988 by [17, 18]. In
the DTSP, a salesman starts his trip from a city and after a
complete trip, he comes back to his own city again and passes
each city for once. The salesman is behooved to reach every
city in the itinerary. In DTSP, cities can be deleted or added
[19] on account of varied conditions. The main purpose for
this trip is traveling the smallest distance. Our goal is finding
the shortest route for the round trip problem.

Consider a city population, n and e, as the problem at
hand where in this case we want to find the shortest path for n
with a single visit on each. The problem has been modeled in
a raft of prisms. A graph (N, E) with graph nodes and edges
denoting routes between cities. For purpose of elucidation,
the Euclidean distance between cities is 7 and j is calculated
as follows [19]:

Dy = \/(xi —x) + ()" )

2.1.1. Objective Function. The predictive function for solving
the dynamic TSP is defined as follows.

Given a set of different costs (P, Py,..., P,), the dis-
tance matrix is contingent upon time. Due to the changing
routes in the dynamic setting, time is pivotal. So, it is
expressed as a function of distance cost. The distance matrix
has also been lucidly defined in the antecedent sections. Let us
use the supposition that D = d;;(¢), and i, j = 1,2,...,n(f).
Our interest is bounded on finding the least distance from
P; and dij(t) =d ;i(0). In this example, as aforementioned,
time, ¢t and of course, cost, d, play significant roles in the
quality of the solution. DTSP is therefore minimized using
the following expression:

n(t)

d(T (1) = Ydpr, (). (14)

i=1

From Figures 2, 3, and 4, DTSP initial route is con-
structed upon visiting requests carried by the traveling
salesman {A, B,C, D, E} [20]. As the traveling salesman sets
forth, different requests (X, Y)) come about which compels the
traveling salesman to change the itinerary to factor in the new
trip layover demands, {A, B,C, D, X, E, Y}.

2.2. Gaussian Process Regression. In machine learning, the
primacy of Gaussian process regression cannot be overstated.
The methods of linear and locally weighted regression have
been outmoded by Gaussian process regression in solving
regression problems. Gold mining was the major motivation
for this method where Krige, whom Kriging is his brainchild
[21], postulated that using posteriori, the cooccurrence of
gold is encapsulated as a function of space. With Krige’s
interpolation mineral concentrations at different points can
be predicted.



FIGURE 2: Initial request, A, B, C, D, E.

FIGURE 3: New requests for consideration.

In Gaussian process, we find a set of random variables.
The specifications include covariance function n(x, x') and
mean function p(x) that parameterize the Gaussian process.
The covariance function determines the similarity of different
variables. In this paper, we expand the ambit of study to
nonstationary covariance:

p(fx)-f(x)=N(w2). (15)

U
In the equation, y = (:((;))) and X = ( If((xx{f) Ilf((xx{z,)) ) .

The matrices n X 1 for g and n x n for X are presented in
(15).

GPR (Figure 6) has been extensively studied across the
expanse of prediction. This has resulted into different expres-
sions to corroborate the method preference. In this study we
have a constellation of training set P = (x', yi)zl. The GPR
model [22] then becomes

yi =h (xi) +é (16)

subject i = 1 to m.

The probability density describes the likelihood for a
certain value to be assumed by a variable. Given a set of
observations bound by a number of parameters:

py1Xw)=[]p(lxw) ~N(X"w,0rl), (17)

i=1

In this case, bias is denoted by w.
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FIGURE 4: Previous route changed to meet new requests given to the
traveling salesman.
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FIGURE 5: Minimum path generated by DGPR.

Gaussian process is analogous to Bayesian with a frac-
tional difference [23]. In one of the computations by the
Bayes’ rule [23], is the Bayesian linear model parameterized
by covariance matrix and mean denoted by A and w,
respectively:

pwlX,y)~N(w=0,"A"'Xy,A™"), (18)
where
-1
A=oXX"+) . (19)
P

Using posterior probability, the Gaussian posterior is pre-
sented as

p(filx, X, y) ~ N(o;nzxsTAley, x;FAflxs) . (20

Also the predictive distribution, given the observed dataset,
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FIGURE 6: DGPR maintains superiority when juxtaposed with GPR
and local search.

helps to model a probability distribution of an interval not
estimating just a point:

p(filxo X y) ~ N (0,24 A 0y, gTAI8), (2D
where byq) = d(X), ¢S = (p(xs), and A = a;2q>q>T + Z;l If

-1 . . . .
A" of size n x nis needed when 7 is large. We rewrite as

N¢TYO(K +021) "y,
P

6Ty 6. - TS O(K +0°1) oY g,

The covariance matrix K is ® Y » P

(22)

2.2.1. Covariance Function. In simple terms, the covariance
defines the correlation of function variables at a given time. A
host of covariance functions for GPR have been studied [24].
In this example,

X;— X

o
: J) +v, + 1,0 (23)
p

K (xixj) =V, exp—(

the parameters are v, (signal variance), v, (variance of bias),
v, (noise variance), + (length scale), and § (roughness).
However in finding solutions to dynamic problems, there is a
mounting need for nonstationary covariance functions. The
problem landscapes have increasingly become protean. The
lodestar for this research is to use nonstationary covariance
to provide an approach to dynamic problems.

A raft of functions have been studied. A simple form is
described in [25]:

ij>

-1/2
exp (-Qy),
(24)

Zi+Z
2

j

cNs (xi, xj) = 02|Zi|1/4'2j|1/4

With quadratic form,

Zi+2j

-1
0= (5-5) (F52) (s-x). 09

>, denotes the matrix of the covariance function.

3. Materials and Methods

Gaussian process regression method was chosen in this
work, owing to its capacity to interpolate observations, its
probabilistic nature, and versatility [26]. Gaussian process
regression has considerably been applied in machine learning
and other fields [27-29]. It has pushed back the frontiers of
prediction and provided solutions to a mound of problems,
for instance, making it possible to forecast in arbitrary
paths and providing astounding results in a wide range of
prediction problems. GPR has also provided a foundation for
state of the art in advancing research in multivariate Gaussian
distributions.

A host of different notations for different concepts are
used throughout this paper:

(i) T typically denotes the vector transpose,
(ii) y denotes the estimation,
(iii) the roman letters typically denote what constitutes a

matrix.

Our extrapolation is dependent on the training and testing
datasets from the TSPLIB [30]. We adumbrate our approach
as follows:

(a) input distance matrix between cities,

(b) invoke Nearest Neighbor method for tour construc-
tion,

(¢c) tour encoding as binary for program interpretation,

(d) asadriftinglandscape, we set a threshold value 8 € T,

where T is the tour, and the error rate ¢ € T for the
predicatability is

V1< jen0 < severity Dy (Fij) <0,
(26)

v1gjgn0 < predict Dy, (Fij) <0,

(e) get a cost sum,

(f) determine the cost minimum and change to binary
form,

(g) present calculated total cost,
(h) unitialize the hyperparameters (¢, 012[, ai)

(i) we use the nonstationary covariance function K(X —
X') = o2 + xx'. Constraints y, = f(x; +¢,) realized in
the TSP dataset, D = (x;, ¥,)i_;, ¥; € R distances for
different cities, x; € R,

(j) calculate integrated likelihood in a dynamic regres-
sion,



TSP tour N

180 |
170 |
160 |-
150 |
140 |-
130 |
120

110

100
-30 -20 -10 0O

10 20 30 40 50 60 70
FIGURE 7: Generated tour in a drifting landscape for the best optimal
route.

(k) output the predicted optimal path X* and its length
v
() implement the local search method x*,

(m) estimate optimal tour X",

(n) let the calculated route set the stage for iterations until
no further need for refinement,

(0) let the optimal value be stored and define the start for
subsequent computations,

(p) output optimal X and cost (¥").

3.1. DTSP as a Nonlinear Regression Problem. DTSP is for-
mulated as a nonlinear regression problem. The nonlinear
regression is part of the nonstationary covariance functions
for floating landscapes [18]:

yi=f(x;+¢) (27)

and D = {(x;, y;)}i., where y; € R, x; € R? Our purpose is to
define p(y* | x*, D).

3.1.1. Gaussian Approximation. The Gaussian approximation
is premised on the kernel, an important element of GPR.

The supposition for this research is that once x is known,
y can be determined. By rule of thumb, the aspects of a priori
(when the truth is patent, without need for ascertainment)
and posteriori (when there is empirical justification for
the truth or the fact is buttressed by certain experiences)
play a critical role in shaping an accurate estimation. The
kernel determines the proximate between estimated and
nonestimated.

Nonstationarity, on the other hand, means that the mean
value of a dataset is not necessarily constant and/or the
covariance is anisotropicvaries with direction and spatially
variant, as seen in [31]. We have seen a host of nonstationary
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kernels in literature as discussed in previous chapters, for
example in [32],

c™ (xi, xj) = J K, (u)K, (u)du. (28)
R2 g J
For (x;, x;,u) € R,
F= | Ky du (29)

For %f, p = 1,2,..., we ensure a positive definite function
between cities for dynamic landscapes:

2.

i=1

M:

a,a,C™ (x; x;)
1

-
Il

ia,,aj J ) K, (u) Kxj (u)du

1j=1
ia,K (u) ZaJK (w)d

i=1 -

2
(ZaIK X, (u)) du > 0.

In mathematics, convolution knits two functions to form
another one. This cross relation approach has been success-
fully applied myriadly in probability, differential equations,
and statistics. In floating landscapes, we see convolution at
play which produces [31]

I
M:

i

P

N

(30)

P

N

-1/2
exp (_Ql]) .
(31

i+ 2
2

1/4 1/4 j

™ (xi,xj) =00’ |%| 'Zj|

In mathematics, a quadratic form reflects the homogeneous
polynomial expressed in

-1
Q= (xi - xj)T<zi ; 2j> (x,- - xj). (32)

A predictive distribution is then defined:

PO 1XD0) = [ [ p (31X Diexp (€7).ex0(0).6,)

xp(e,e]X",X,¢,X,0,)dede”.
(33)

From the dataset, the most probable estimates are used, with
the following equation:

p(y" 1 X"D,0)~p(y" .D,6,).

(34)

| X", exp (£7),exp (£)
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3.2. Hyperparameters in DGPR. Hyperparameters define the
parameters for the prior probability distribution [6]. We use
0 to denote the hyperparameters. From y, we get 6 that
optimizes the probability to the highest point:

p(y1X,6) = jp(y 1%,60,) p(€1 X,8.X,6,)de.
(35)

From the hyperparameters p(y | X, 0), we optimally define
the marginal likelihood and introduce an objective function
for floating matrix:

logp(y | X,exp (€),6,)

1

= _EyT(Kx,x + ‘721)_1)’ (36)

1 n
-5 log {Kx)x + 0,211} -5 log (2m),

and | M| is the factor of M.
In this equation the objective function is expressed as

L(O)=logp(€]y,X,0)=c +c
(37)
. [yTA_ly + log|A| + log |B|]

and Ais K, +0-I, Bis Kz + 0’
The nonstationary covariance K, , is defined as follows. £
represents the cost of X point:

1\ _
Koczap RURI () Tp 69

with
P=p- 13:,
P.=1,-p,
p=2¢e,
P,=P +P, (39)
E =exp [_SIEX)] s

N

—1—

—T r— )
€ =exp [Kx;[Ki; +0, I] €] .

After calculating the nonstationary covariance, we then make

predictions [33]:

X

Kz =0f"-exp [—%s (s, £7X,5, E‘Zi)] . (40)

4. Experimental Results

We use the Gaussian Processes for Machine Learning Matlab
Toolbox. Its copious set of applicability dovetails with the
purpose for this experiment. It was titivated to encompass
all the functionalities associated with our study. We used

7
120 +
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80 |
[=}
.S
E 60t
5
A
40 +
25
Cities
—— GPR —— SA
—ea— DGPR —— GA

FIGURE 8: DGPR is juxtaposed with all other comparing methods in
an instance of 22 cities for 200 iterations.

Matlab due to its robust platform for scientific experiments
and sterling environment for prediction [26]. 22-city data
instance were gleaned from the TSP library [34].

From the Dell computer, we set initial parameters: £ =
2,0% = l,aﬁ. The dynamic regression is lumped with the
local search method to banish the early global and local
convergence issues.

For global method (GA), the following parameters are
defined. Sample = 22, (p,) = 1, (p,,) = 1.2, and 100 compu-
tations while SA parameters include T;,,, = 100, T4 = 0.025,
and 200 computations.

The efficacy level is always observed by collating the
estimated tour with the nonestimated [35-37]:

—~% _ y*

*

deviation (%) = x 100. (41)

The percentage of difference between estimated solution
and optimal solution = 16.64%, which is indicative of a
comparable reduction with the existing methods (Table 1).
The computational time by GPR is 4.6402 and distance
summation of 253.000. The varied landscape dramatically
changes the length of travel for the traveling salesman. The
length drops a notch suggestive of a better method and an
open sesame for the traveling salesman to perform his duties.

The proposed DGPR (Figure 8) was fed with the sample
TSP tours. The local search method constructs the initial
route and 2-opt method used for interchanging edges. The
local method defines starting point and all ports of call to
painstakingly ensure that the loop goes to every vertex once
and returns to the starting point. The 2-opt vertex interchange
creates a new path through exchange of different vertices
[38]. Our study is corroborated by less computation time
and slumped distance when we subject TSP to predicting the
optimal path. The Gaussian process runs on the shifting sands
of landscape through dynamic instances. The nonstationary
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FIGURE 9: An example of best solution in stationarity. A sample of 22 cities generates a best route. As seen in the figure, there is a difference

in optimality and time with nonstationarity.

TABLE 1: The extracted data is collated to show forth variations in
different methods.

DTSP and DGPR collated data

Method#

Nodes# Optimal# T# D#
GPR 22 253.00 4.64 0.42
DGPR 22 231.00 3.82 0.24
GA 22 288.817 5.20 0.40
SA 22 244.00 5.50 2.30
2-opt 22 240.00 4.20 0.30

functions described before brings to bare the residual, the
similitude, between actual and estimate. In the computations,
path is interpreted as [log,n] and an ultimate route as
n[log,n].

There are myriad methods over and above Simulated
(Figure 10) Annealing and tabu search, set forth by the fecun-
dity of researchers in optimization. The cost information
determines the replacement of path in a floating turf. The
lowest cost finds primacy over the highest cost. This process
continues in pursuit of the best route (Figure 9) that reflects
the lowest cost. In the dynamic setting, as the ports of call
change, there is a new update on the cost of the path. The cost
is always subject to change. The traveling salesman is desirous
to travel the shortest distance which is the crux of this study
(Figure 11). In the weave of this work, the dynamic facet of
regression remains at the heartbeat of our contribution. The
local methods are meshed together to ensure quality of the
outcome. As a corollary our study has been improved with
the integration of the Nearest Neighbor algorithm and the
iterated 2-opt search method. We use the same number of
cities; each tour is improved by 2-opt heuristics and the best
result is selected.

In dynamic optimization, a complete solution of the
problem at each time step is usually infeasible due to the
floating optima. As a consequence, the search for exact global

70 F T " — " " L " T " P —

60

50

_19:

40 |

30 b ; . . . . C

=20 0

FIGURE 10: Optimal path is generated for Simulated Annealing in 22
cities.

optima must be replaced again by the search for acceptable
approximations. We generate a tour for the nonstationary
fitness landscape in Figure 7.

5. Conclusion

In this study, we use a nonstationary covariance function
in GPR for the dynamic traveling salesman problem. We
predict the optimal tour of 22 city dataset. In the dynamic
traveling salesman problem where the optima shift due
to environmental changes, a dynamic approach is imple-
mented to alleviate the intrinsic maladies of perturbation.
Dynamic traveling salesman problem (DTSP), as a case of
dynamic combinatorial optimization problem, extends the
classical traveling salesman problem and finds many practical
importance in real-world applications, inter alia, traffic jams,
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TSP tour generated in stationary algorithm

10 T

c/n

FIGURE 11: High amount of time and distance cost are needed to
complete the tour vis-a-vis when prediction is factored.

network load-balance routing, transportation, telecommu-
nications, and network designing. Our study produces a
good optimal solution with less computational time in a
dynamic environment. A slump in distance corroborates the
argumentation that prediction brings forth a leap in efficacy
in terms of overhead reduction, a robust solution born out of
comparisons, that strengthen the quality of the outcome. This
research foreshadows and gives interesting direction to solv-
ing problems whose optima are mutable. DTSP is calculated
by the dynamic Gaussian process regression, cost predicted,
local methods invoked, and comparisons made to refine and
fossilize the optimal solution. MATLAB was chosen as the
platform for the implementation, because development is
straightforward with this language and MATLAB has many
comfortable tools for data analysis. MATLAB also has an
extensive cross-linking architecture and can interface directly
with Java classes. The future of this research should be
directed to design new nonstationary covariance functions to
increase the ability to track dynamic optima. Also changes in
size and evolution of optima should be factored in, over, and
above changes in location.
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