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We consider a general split variational inclusion problem (GSFVIP) and propose an algorithm for finding the solutions of GSFVIP
in Hilbert space. We establish the strong convergence of the proposed algorithm to a solution of GSFVIP. Our results extend and
improve the related results in the literature.

1. Introduction

Let 𝐻 be a real Hilbert space, and let 𝐵 be a set-valued
mapping with domain 𝐷(𝐵) := {𝑥 ∈ 𝐻 : 𝐵(𝑥) ̸= 0}.
Recall that 𝐵 is called monotone if ⟨𝑢 − V, 𝑥 − 𝑦⟩ ≥ 0 for
any 𝑢 ∈ 𝐵𝑥 and V ∈ 𝐵𝑦; 𝐵 is maximal monotone if its graph
{(𝑥, 𝑦) : 𝑥 ∈ 𝐷(𝐵), 𝑦 ∈ 𝐵𝑥} is not properly contained in
the graph of any other monotone mapping. An important
problem for set-valuedmonotonemappings is to find 𝑥∗ ∈ 𝐻
such that 0 ∈ 𝐵𝑥∗. Here, 𝑥∗ is called a zero point of 𝐵. A well-
known method for approximating a zero point of a maximal
monotone mapping defined in a real Hilbert space is the
proximal point algorithm first introduced by Martinet [1] and
generated by Rockafellar [2]. This is an iterative procedure,
which generates {𝑥

𝑛
} by 𝑥

1
= 𝑥 ∈ 𝐻 and

𝑥
𝑛+1

= 𝐽
𝐵

𝛽
𝑛

𝑥
𝑛
, 𝑛 ∈ 𝑁, (1)

where {𝛽
𝑛
} ⊂ (0,∞), 𝐵 is a maximal monotone mapping

in a real Hilbert space, and 𝐽𝐵
𝑟
is the resolvent mapping of 𝐵

defined by 𝐽𝐵
𝑟
= (𝐼 + 𝑟𝐵)

−1 for each 𝑟 > 0. In 1976, Rockafellar
[2] proved the following in the Hilbert space setting. If the
solution set 𝐵−1(0) is nonempty and lim inf

𝑛→∞
𝛽
𝑛
> 0, then

the sequence {𝑥
𝑛
} in (1) converges weakly to an element of

𝐵
−1

(0). Later, many researchers have studied the convergence
theorems of the proximal point algorithm in Hilbert spaces.
For example, one can refer to [3–8] and references therein.

Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces, 𝐵

1
: 𝐻
1
→

𝐻
1
and 𝐵

2
: 𝐻
2
→ 𝐻

2
two set-valued maximal monotone

mappings,𝐴 : 𝐻
1
→ 𝐻
2
a linear and bounded operator, and

𝐴
∗ the adjoint of 𝐴. Chuang [9] considers the following split

variational inclusion problem:

(SFVIP) Find 𝑥
∗

∈ 𝐻
1
such that 0 ∈ 𝐵

1
(𝑥
∗

) ,

0 ∈ 𝐵
2
(𝐴𝑥
∗

) ,

(2)

which was introduced by Moudafi [10]. In this paper, moti-
vated by the works in Chuang [9] and related literature,
we consider the following general split variational inclusion
problem.

Definition 1. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces,

{𝐵
𝑖
: 𝐻
1
→ 𝐻
1
}
𝑖∈𝑁

and {𝐾
𝑖
: 𝐻
2
→ 𝐻
2
}
𝑖∈𝑁

two families of
set-valued maximal monotone mappings, 𝐴 : 𝐻

1
→ 𝐻

2

a linear and bounded operator, and 𝐴
∗ the adjoint of 𝐴.

The general split variational inclusion problem (GSFVIP) is
formulated as the following problem:

(GSFVIP) Find 𝑥
∗

∈ 𝐻
1
such that 𝑥∗ ∈

∞

⋂

𝑖=1

𝐵
−1

𝑖
(0) ,

𝐴𝑥
∗

∈

∞

⋂

𝑖=1

𝐾
−1

𝑖
(0) .

(3)

In this paper, we propose an algorithm for finding the
solutions of GSFVIP in a Hilbert space and prove that
the sequence generated by the proposed method converges
strongly to a solution of GSFVIP. Our results extend and
improve the related results in the literature.
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2. Preliminaries

Throughout this paper, let𝑁be the set of positive integers. Let
𝐻 be a real Hilbert space with the inner product ⟨⋅, ⋅⟩ and the
norm ‖ ⋅ ‖, respectively. We also use “→ ” to stand for strong
convergence and “⇀” to stand for weak convergence.

Lemma 2 (see [11]). Let 𝐻 be a real Hilbert space, and let 𝑥,
𝑦 ∈ 𝐻. Then

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐻. (4)

Lemma 3 (see [12]). Let𝐻 be a Hilbert space, and let {𝑥
𝑛
} be

a sequence in𝐻. Then, for any given sequence {𝛼
𝑛
}
∞

𝑛=1
⊂ (0, 1)

with ∑∞
𝑛=1

𝛼
𝑛
= 1 and for any positive integer 𝑖, 𝑗 with 𝑖 < 𝑗,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑛=1

𝛼
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤

∞

∑

𝑛=1

𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

− 𝛼
𝑖
𝛼
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

. (5)

Let 𝐷 be a nonempty closed convex subset of a real
Hilbert space 𝐻, and let 𝑇 : 𝐷 → 𝐻 be a mapping. Then
𝑇 is said to be a nonexpansive mapping if ‖𝑇𝑥 − 𝑇𝑦‖ ≤

‖𝑥 − 𝑦‖ for every 𝑥, 𝑦 ∈ 𝐷. It is easy to see that Fix(𝑇) :=
{𝑥 ∈ 𝐷 : 𝑇𝑥 = 𝑥} is a closed convex subset of 𝐷 if 𝑇
is a nonexpansive mapping. Besides, 𝑇 is said to be a firmly
nonexpansive mapping if ‖𝑇𝑥 − 𝑇𝑦‖2 ≤ ⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ for
every 𝑥, 𝑦 ∈ 𝐷.

Lemma4 (see [13]). Let𝐷 be a nonempty closed convex subset
of a real Hilbert space 𝐻. Let 𝑇 : 𝐷 → 𝐻 be a nonexpansive
mapping, and let {𝑥

𝑛
} be a sequence in 𝐷. If 𝑥

𝑛
⇀ 𝑤 and

lim
𝑛→∞

‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0, then 𝑇𝑤 = 𝑤.

Let𝐷 be a nonempty closed convex subset of𝐻. For every
point 𝑥 ∈ 𝐻, there exists a unique nearest point in𝐷, denoted
by 𝑃
𝐷
𝑥, such that

󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐷𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝐷. (6)

𝑃
𝐷
is called themetric projection of𝐻 onto𝐷. It is known that

𝑃
𝐷
is a nonexpansive mapping of𝐻 onto𝐷.

Lemma 5 (see [14]). Let𝐷 be a nonempty closed convex subset
of a Hilbert space 𝐻. Let 𝑃

𝐷
be the metric projection from 𝐻

onto𝐷.Then, for each𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐷, we know that 𝑧 = 𝑃
𝐷
𝑥

if and only if ⟨𝑥 − 𝑧, 𝑧 − 𝑦⟩ ≥ 0 for all 𝑦 ∈ 𝐷.

The following result is an important tool in this paper. For
similar results, one can see [15].

Lemma 6. Let𝐻 be a real Hilbert space. Let 𝐵 : 𝐻 → 𝐻 be
a set-valued maximal monotone mapping, 𝛽 > 0, and let 𝐽𝐵

𝛽
be

a resolvent mapping of 𝐵.

(i) For each 𝛽 > 0, 𝐽𝐵
𝛽
is a single-valued and firmly

nonexpansive mapping.
(ii) 𝐷(𝐽𝐵

𝛽
) = 𝐻 and Fix(𝐽𝐵

𝛽
) = {𝑥 ∈ 𝐷(𝐵) : 0 ∈ 𝐵𝑥}.

(iii) ‖𝑥 − 𝐽𝐵
𝛽
𝑥‖ ≤ ‖𝑥 − 𝐽

𝐵

𝛼
𝑥‖ for all 0 < 𝛽 ≤ 𝛼 and for all

𝑥 ∈ 𝐻.

(iv) (𝐼 − 𝐽𝐵
𝛽
) is a firmly nonexpansive mapping for each 𝛽 >

0.
(v) Suppose that 𝐵

−1

(0) ̸= 0. Then ‖𝑥 − 𝐽
𝐵

𝛽
𝑥‖
2

+

‖𝐽
𝐵

𝛽
𝑥 − 𝑥
∗

‖
2

≤ ‖𝑥 − 𝑥
∗

‖
2 for each 𝑥 ∈ 𝐻, each 𝑥∗ ∈

𝐵
−1

(0), and each 𝛽 > 0.
(vi) Suppose that 𝐵−1(0) ̸= 0. Then ⟨𝑥 − 𝐽𝐵

𝛽
𝑥, 𝐽
𝐵

𝛽
𝑥 − 𝑤⟩ ≥ 0

for each 𝑥 ∈ 𝐻, each 𝑤 ∈ 𝐵
−1

(0), and each 𝛽 > 0.

Lemma 7 (see [9]). Let𝐻
1
and𝐻

2
be two real Hilbert spaces,

let 𝐴 : 𝐻
1
→ 𝐻
2
be a linear operator, let 𝐴∗ be the adjoint of

𝐴, let𝛽 > 0 be fixed, and let 𝛾 ∈ (0, 2/‖𝐴‖2). Let𝐾 : 𝐻
2
→ 𝐻
2

be a set-valued maximal monotone mapping and let 𝐽𝐾
𝛽
be a

resolvent mapping of 𝐾. Then
󵄩󵄩󵄩󵄩󵄩
[𝑥 − 𝛾𝐴

∗

(𝐼 − 𝐽
𝐾

𝛽
)𝐴𝑥] − [𝑦 − 𝛾𝐴

∗

(𝐼 − 𝐽
𝐾

𝛽
)𝐴𝑦]

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− (2𝛾 − 𝛾
2

‖𝐴‖
2

)

×
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝐽

𝐾

𝛽
)𝐴𝑥 − (𝐼 − 𝐽

𝐾

𝛽
)𝐴𝑦

󵄩󵄩󵄩󵄩󵄩

2

,

(7)

for all 𝑥, 𝑦 ∈ 𝐻. Furthermore, 𝐼 − 𝛾𝐴
∗

(𝐼 − 𝐽
𝐾

𝛽
)𝐴 is a

nonexpansive mapping.

The following is a very important result for various
strong convergence theorems. Recently, many researchers
have studied Halpern’s type strong convergence theorems by
using the following lemma and get many generalized results.
For example, one can see [9, 16, 17]. In this paper, we also use
this result to get our strong convergence theorems.

Lemma 8 (see [18]). Let {𝑎
𝑛
} be a sequence of real numbers

such that there exists a subsequence {𝑛
𝑖
} of {𝑛} such that 𝑎

𝑛
𝑖

<

𝑎
𝑛
𝑖
+1

for all 𝑖 ∈ 𝑁. Then there exists a nondecreasing sequence
{𝜏(𝑛)} ⊂ 𝑁 such that 𝜏(𝑛) → ∞, 𝑎

𝜏(𝑛)
≤ 𝑎
𝜏(𝑛)+1

, and 𝑎
𝑛
≤

𝑎
𝜏(𝑛)+1

are satisfied by all (sufficiently large) numbers 𝑛 ∈ 𝑁. In
fact, 𝜏(𝑛) = max{𝑘 ≤ 𝑛 : 𝑎

𝑘
< 𝑎
𝑘+1

}.

Lemma 9 (see [19]). Let {𝑎
𝑛
}
𝑛∈𝑁

be a sequence of nonnegative
real numbers, {𝛼

𝑛
} a sequence of real numbers in (0, 1) with

∑
∞

𝑛=1
𝛼
𝑛
= ∞, {𝜂

𝑛
} a sequence of nonnegative real numbers

with ∑∞
𝑛=1

𝜂
𝑛
< ∞, and {𝛿

𝑛
} a sequence of real numbers with

lim sup
𝑛→∞

𝛿
𝑛
≤ 0. Suppose that 𝑎

𝑛+1
≤ (1−𝛼

𝑛
)𝑎
𝑛
+𝛼
𝑛
𝛿
𝑛
+𝜂
𝑛

for each 𝑛 ∈ 𝑁. Then lim
𝑛→∞

𝑎
𝑛
= 0.

3. Main Results

In this section, we first give the following result.

Lemma 10. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces, let

𝐴 : 𝐻
1

→ 𝐻
2
be a linear and bounded operator, and

let 𝐴∗ denote the adjoint of 𝐴. Let {𝐵
𝑖
: 𝐻
1
→ 𝐻
1
}
𝑖∈𝑁

and
{𝐾
𝑖
: 𝐻
2
→ 𝐻
2
}
𝑖∈𝑁

be two families of set-valued maximal
monotone mappings, and let 𝛽

𝑖
> 0 and 𝛾

𝑖
> 0 for all 𝑖 ∈ 𝑁.

Given any 𝑥∗ ∈ 𝐻
1
, we have the following.

(i) If 𝑥∗ is a solution of GSFVIP, then 𝐽𝐵𝑖
𝛽
𝑖

(𝑥
∗

− 𝛾
𝑖
𝐴
∗

(𝐼 −

𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴𝑥
∗

) = 𝑥
∗, for all 𝑖 ∈ 𝑁.
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(ii) Suppose that 𝐽𝐵𝑖
𝛽
𝑖

(𝑥
∗

− 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴𝑥
∗

) = 𝑥
∗, for all

𝑖 ∈ 𝑁, and that the solution set of GSFVIP is nonempty;
then 𝑥∗ is a solution of GSFVIP.

Proof. (i) Suppose that 𝑥∗ ∈ 𝐻
1
is a solution of GSFVIP.Then

𝑥
∗

∈ ⋂
∞

𝑖=1
𝐵
−1

𝑖
(0) and 𝐴𝑥∗ ∈ ⋂∞

𝑖=1
𝐾
−1

𝑖
(0). By Lemma 6(ii), it

is easy to see that

𝐽
𝐵
𝑖

𝛽
𝑖

(𝑥
∗

− 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴𝑥
∗

)

= 𝐽
𝐵
𝑖

𝛽
𝑖

(𝑥
∗

− 𝛾
𝑖
𝐴
∗

(𝐴𝑥
∗

− 𝐽
𝐾
𝑖

𝛽
𝑖

𝐴𝑥
∗

))

= 𝐽
𝐵
𝑖

𝛽
𝑖

𝑥
∗

= 𝑥
∗

, ∀𝑖 ∈ 𝑁.

(8)

(ii) Suppose that 𝑤∗ is a solution of GSFVIP and 𝑥∗ =
𝐽
𝐵
𝑖

𝛽
𝑖

(𝑥
∗

− 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴𝑥
∗

), for all 𝑖 ∈ 𝑁. By Lemma 6(vi),

⟨(𝑥
∗

− 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴𝑥
∗

) − 𝑥
∗

, 𝑥
∗

− 𝑤⟩ ≥ 0,

∀𝑤 ∈ 𝐵
−1

𝑖
(0) , ∀𝑖 ∈ 𝑁.

(9)

That is,

⟨𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴𝑥
∗

, 𝑥
∗

− 𝑤⟩ ≤ 0, ∀𝑤 ∈ 𝐵
−1

𝑖
(0) , ∀𝑖 ∈ 𝑁.

(10)

By (10) and the fact that 𝐴∗ is the adjoint of 𝐴,

⟨𝐴𝑥
∗

− 𝐽
𝐾
𝑖

𝛽
𝑖

𝐴𝑥
∗

, 𝐴𝑥
∗

− 𝐴𝑤⟩ ≤ 0, ∀𝑤 ∈ 𝐵
−1

𝑖
(0) , ∀𝑖 ∈ 𝑁.

(11)

On the other hand, by Lemma 6(vi) again,

⟨𝐴𝑥
∗

− 𝐽
𝐾
𝑖

𝛽
𝑖

𝐴𝑥
∗

, V − 𝐽𝐾𝑖
𝛽
𝑖

𝐴𝑥
∗

⟩ ≤ 0, ∀V ∈ 𝐾−1
𝑖
(0) , ∀𝑖 ∈ 𝑁.

(12)

By (11) and (12),

⟨𝐴𝑥
∗

− 𝐽
𝐾
𝑖

𝛽
𝑖

𝐴𝑥
∗

, V − 𝐽𝐾𝑖
𝛽
𝑖

𝐴𝑥
∗

+ 𝐴𝑥
∗

− 𝐴𝑤⟩ ≤ 0, ∀𝑖 ∈ 𝑁

(13)

for each 𝑤 ∈ 𝐵
−1

𝑖
(0) and each V ∈ 𝐾−1

𝑖
(0), for all 𝑖 ∈ 𝑁. That

is,
󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
∗

− 𝐽
𝐾
𝑖

𝛽
𝑖

𝐴𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝐴𝑥
∗

− 𝐽
𝐾
𝑖

𝛽
𝑖

𝐴𝑥
∗

, 𝐴𝑤 − V⟩ , ∀𝑖 ∈ 𝑁

(14)

for each 𝑤 ∈ 𝐵
−1

𝑖
(0) and each V ∈ 𝐾−1

𝑖
(0), for all 𝑖 ∈ 𝑁. Since

𝑤
∗ is a solution of GSFVIP, 𝑤∗ ∈ ⋂

∞

𝑖=1
𝐵
−1

𝑖
(0) and 𝐴𝑤∗ ∈

⋂
∞

𝑖=1
𝐾
−1

𝑖
(0). So, it follows from (14) that 𝐴𝑥∗ = 𝐽

𝐾
𝑖

𝛽
𝑖

𝐴𝑥
∗, for

all 𝑖 ∈ 𝑁. Then, 𝐴𝑥∗ ∈ Fix(𝐽𝐾𝑖
𝛽
𝑖

) = 𝐾
−1

𝑖
(0), for all 𝑖 ∈ 𝑁.

Therefore 𝐴𝑥∗ ∈ ⋂∞
𝑖=1

𝐾
−1

𝑖
(0). Further,

𝑥
∗

= 𝐽
𝐵
𝑖

𝛽
𝑖

(𝑥
∗

− 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴𝑥
∗

) = 𝐽
𝐵
𝑖

𝛽
𝑖

𝑥
∗

, ∀𝑖 ∈ 𝑁.

(15)

Then 𝑥
∗

∈ Fix(𝐽𝐵𝑖
𝛽
𝑖

) = 𝐵
−1

𝑖
(0), for all 𝑖 ∈ 𝑁. So, 𝑥∗ ∈

⋂
∞

𝑖=1
𝐵
−1

𝑖
(0). Therefore, 𝑥∗ is a solution of GSFVIP.

Theorem 11. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces, let

𝐴 : 𝐻
1

→ 𝐻
2
be a linear and bounded operator, and

let 𝐴∗ denote the adjoint of 𝐴. Let {𝐵
𝑖
: 𝐻
1
→ 𝐻
1
}
𝑖∈𝑁

and
{𝐾
𝑖
: 𝐻
2
→ 𝐻
2
}
𝑖∈𝑁

be two families of set-valued maximal
monotone mappings. Let {𝑎

𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛,𝑖
} be sequences of real

numbers in (0, 1) with 𝑎
𝑛
+ 𝑏
𝑛
+ ∑
∞

𝑖=1
𝑐
𝑛,𝑖

= 1. Let {𝛽
𝑛,𝑖
} be a

sequence in (0,∞) and {𝛾
𝑛,𝑖
} ⊂ (0, 2/(‖𝐴‖

2

+1)) for each 𝑖 ∈ 𝑁.
Let Ω be the solution set of GSFVIP and suppose that Ω ̸= 0.
Let𝑓 be a self 𝑘-contraction mapping of𝐻

1
, 𝑘 ∈ (0, 1). Let {𝑥

𝑛
}

be defined by

𝑥
𝑛+1

= 𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑓 (𝑥
𝑛
)

+

∞

∑

𝑖=1

𝑐
𝑛,𝑖
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
, 𝑛 ≥ 0.

(16)

If the sequences {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛,𝑖
}, {𝛽
𝑛,𝑖
}, and {𝛾

𝑛,𝑖
} satisfy the

following conditions:

(i) lim
𝑛→∞

𝑏
𝑛
= 0, ∑∞

𝑛=0
𝑏
𝑛
= ∞,

(ii) for each 𝑖 ∈ 𝑁, lim inf
𝑛→∞

𝑎
𝑛
𝑐
𝑛,𝑖

> 0,
lim inf

𝑛→∞
𝑐
𝑛,𝑖
𝛾
𝑛,𝑖

> 0, lim inf
𝑛→∞

𝛽
𝑛,𝑖

> 0, and
lim sup

𝑛→∞
𝛾
𝑛,𝑖
< 2/(‖𝐴‖

2

+ 1),

then the sequence {𝑥
𝑛
} converges strongly to 𝑃

Ω
𝑓(𝑥
∗

).

Proof. First, we show that {𝑥
𝑛
} is bounded. In fact, let 𝑧 ∈ Ω; it

follows fromLemmas 6(i) and 7 that 𝐽𝐵𝑖
𝛽
𝑛,𝑖

(𝐼−𝛾
𝑛,𝑖
𝐴
∗

(𝐼−𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴),
for all 𝑖 ∈ 𝑁, are nonexpansive, and by Lemma 10 we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑓 (𝑥
𝑛
)

+

∞

∑

𝑖=1

𝑐
𝑛,𝑖
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩 + 𝑏𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧
󵄩󵄩󵄩󵄩

+

∞

∑

𝑖=1

𝑐
𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑧

󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩 + 𝑏𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧
󵄩󵄩󵄩󵄩 +

∞

∑

𝑖=1

𝑐
𝑛,𝑖

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩
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≤ (1 − 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 + 𝑏𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧

󵄩󵄩󵄩󵄩

≤ (1 − 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑧)
󵄩󵄩󵄩󵄩 + 𝑏𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧
󵄩󵄩󵄩󵄩

≤ (1 − 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 + 𝑏𝑛𝑘
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 + 𝑏𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧

󵄩󵄩󵄩󵄩

≤ (1 − (1 − 𝑘) 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

+ (1 − 𝑘) 𝑏
𝑛

1

1 − 𝑘

󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧
󵄩󵄩󵄩󵄩

≤ max {󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩 ,

1

1 − 𝑘

󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧
󵄩󵄩󵄩󵄩}

≤ ⋅ ⋅ ⋅ ≤ max {󵄩󵄩󵄩󵄩𝑥0 − 𝑧
󵄩󵄩󵄩󵄩 ,

1

1 − 𝑘

󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧
󵄩󵄩󵄩󵄩} ,

(17)

which implies that {𝑥
𝑛
} is bounded, and we also obtain that

{𝑓(𝑥
𝑛
)} is bounded.

Next, we show that there exists a unique 𝑥∗ ∈ Ω such that
𝑥
∗

= 𝑃
Ω
𝑓(𝑥
∗

).
Since, for all 𝑖 ∈ 𝑁, lim inf

𝑛→∞
𝛽
𝑛,𝑖
> 0, we may assume

that 𝛽
𝑛,𝑖
> 𝛽
𝑖
> 0 for each 𝑛 ∈ 𝑁. Since, for all 𝑖 ∈ 𝑁, {𝛾

𝑛,𝑖
} is

bounded, there exists a converge subsequence. Without loss
of generality, we can assume that 𝛾

𝑛,𝑖
→ 𝛾
𝑖
∈ (0, 2/(‖𝐴‖

2

+1))

for each 𝑖 ∈ 𝑁.
It follows from Lemma 10 that 𝑥∗ ∈ Ω solves the GSFVIP

if and only if 𝑥∗ solves the fixed point equation

𝑥
∗

= 𝐽
𝐵
𝑖

𝛽
𝑖

(𝐼 − 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴) 𝑥
∗

, 𝑖 ∈ 𝑁 (18)

that is, the solution sets of fixed point equation (18) and
GSFVIP are the same. By Lemmas 6(i) and 7, the operators
𝐽
𝐵
𝑖

𝛽
𝑖

(𝐼 − 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴), for all 𝑖 ∈ 𝑁, are nonexpansive. Since
the fixed point set of nonexpansive operators is closed and
convex, the projection onto the solution setΩ is well defined
wheneverΩ ̸= 0. We observe that 𝑃

Ω
𝑓 is a contraction of𝐻

1

into itself. Indeed, since 𝑃
Ω
is nonexpansive and 𝑓 is a self

𝑘-contraction mapping𝐻
1
,

󵄩󵄩󵄩󵄩𝑃Ω (𝑓) (𝑥) − 𝑃Ω (𝑓) (𝑦)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝑘

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 .

(19)

Hence, there exists a unique element 𝑥∗ ∈ Ω such that 𝑥∗ =
𝑃
Ω
𝑓(𝑥
∗

).
In order to prove that 𝑥

𝑛
→ 𝑥
∗ as 𝑛 → ∞, we consider

two possible cases.

Case 1. There exists a natural number 𝑛
0
such that ‖𝑥

𝑛+1
−

𝑥
∗

‖ ≤ ‖𝑥
𝑛
−𝑥
∗

‖ for each 𝑛 ≥ 𝑛
0
. Since {‖𝑥

𝑛
−𝑥
∗

‖} is bounded,
we have {‖𝑥

𝑛
− 𝑥
∗

‖} is convergent.
Next, we show that, for each 𝑖 ∈ 𝑁,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑖

(𝐼 − 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
= 0. (20)

By Lemmas 6(i) and 7, for every 𝑧 ∈ Ω and 𝑖 ∈ 𝑁, we have

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑧

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
(𝑥
𝑛
− 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴𝑥
𝑛
)

− (𝑧 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴𝑧)
󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

− (2𝛾
𝑛,𝑖
− 𝛾
2

𝑛,𝑖
‖𝐴‖
2

)

×
󵄩󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝐽

𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴𝑥
𝑛
− (𝐼 − 𝐽

𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴𝑧
󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

− (2𝛾
𝑛,𝑖
− 𝛾
2

𝑛,𝑖
‖𝐴‖
2

)

×
󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑛
− 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

2

.

(21)

By using Lemma 3 and (21), for every 𝑧 ∈ Ω and 𝑖 ∈ 𝑁, we
have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑓 (𝑥
𝑛
)

+

∞

∑

𝑗=1

𝑐
𝑛,𝑗
𝐽
𝐵
𝑗

𝛽
𝑛,𝑗

(𝐼 − 𝛾
𝑛,𝑗
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑗

𝛽
𝑛,𝑗

)𝐴) 𝑥
𝑛
− 𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑧
󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑗=1

𝑐
𝑛,𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑗

𝛽
𝑛,𝑗

(𝐼 − 𝛾
𝑛,𝑗
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑗

𝛽
𝑛,𝑗

)𝐴) 𝑥
𝑛
− 𝑧

󵄩󵄩󵄩󵄩󵄩󵄩

2

− 𝑎
𝑛
𝑐
𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧
󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑗=1

𝑐
𝑛,𝑗
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

− (2𝛾
𝑛,𝑗
− 𝛾
2

𝑛,𝑗
‖𝐴‖
2

)
󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑛
− 𝐽
𝐾
𝑗

𝛽
𝑛,𝑗

𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

2

)

− 𝑎
𝑛
𝑐
𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑧
󵄩󵄩󵄩󵄩

2

− 𝑐
𝑛,𝑖
(2𝛾
𝑛,𝑖
− 𝛾
2

𝑛,𝑖
‖𝐴‖
2

)
󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑛
− 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

2

− 𝑎
𝑛
𝑐
𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

2

.

(22)
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Hence, for each 𝑖 ∈ 𝑁, we have

𝑎
𝑛
𝑐
𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧
󵄩󵄩󵄩󵄩

2

,

𝑐
𝑛,𝑖
(2𝛾
𝑛,𝑖
− 𝛾
2

𝑛,𝑖
‖𝐴‖
2

)
󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑛
− 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧
󵄩󵄩󵄩󵄩

2

.

(23)

Since lim
𝑛→∞

𝑏
𝑛
= 0 and 𝑓(𝑥

𝑛
) is bounded, from (23) we

get that

lim
𝑛→∞

𝑎
𝑛
𝑐
𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

2

= 0,

∀𝑖 ∈ 𝑁,

(24)

lim
𝑛→∞

𝑐
𝑛,𝑖
(2𝛾
𝑛,𝑖
− 𝛾
2

𝑛,𝑖
‖𝐴‖
2

)
󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑛
− 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

2

= 0, ∀𝑖 ∈ 𝑁.

(25)

By assuming that, for all 𝑖 ∈ 𝑁, lim inf
𝑛→∞

𝑎
𝑛
𝑐
𝑛,𝑖

> 0, it
follows from (24) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
= 0, ∀𝑖 ∈ 𝑁.

(26)

Further, for all 𝑖 ∈ 𝑁, we have
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛

− 𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝛾

𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛

− (𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝛾𝑖 − 𝛾𝑛,𝑖

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
󳨀→ 0

(𝑛 󳨀→ ∞) .

(27)

Clearly, for all 𝑖 ∈ 𝑁, 𝑐
𝑛,𝑖
(2𝛾
𝑛,𝑖
− 𝛾
2

𝑛,𝑖
‖𝐴‖
2

) ≥ 𝑐
𝑛,𝑖
𝛾
𝑛,𝑖
/(‖𝐴‖

2

+ 1).
Since, for all 𝑖 ∈ 𝑁, lim inf

𝑛→∞
𝑐
𝑛,𝑖
𝛾
𝑛,𝑖

> 0, it follows from
(25) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑛
− 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
= 0, ∀𝑖 ∈ 𝑁, (28)

and it follows from Lemma 6(iii) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑛
− 𝐽
𝐾
𝑖

𝛽
𝑖

𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
= 0, ∀𝑖 ∈ 𝑁. (29)

Besides, by Lemma 6(i) and (28), for all 𝑖 ∈ 𝑁, we have
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛾
𝑖
‖𝐴‖

󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑛
− 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
󳨀→ 0 (𝑛 󳨀→ ∞) .

(30)

By (27) and (30), for all 𝑖 ∈ 𝑁, we obtain
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
󳨀→ 0

(𝑛 󳨀→ ∞) .

(31)

It follows from Lemma 6(iii) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵
𝑖

𝛽
𝑖

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
= 0, ∀𝑖 ∈ 𝑁. (32)

By Lemma 6(i) and (29), for all 𝑖 ∈ 𝑁, we have
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑖

(𝐼 − 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴) 𝑥
𝑛
− 𝐽
𝐵
𝑖

𝛽
𝑖

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛾
𝑖
‖𝐴‖

󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑛
− 𝐽
𝐾
𝑖

𝛽
𝑖

𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
󳨀→ 0 (𝑛 󳨀→ ∞) .

(33)

By (32) and (33), for all 𝑖 ∈ 𝑁, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵
𝑖

𝛽
𝑖

(𝐼 − 𝛾
𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
= 0. (34)

Now, we show that

lim sup
𝑛→∞

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩ ≤ 0. (35)

To show this inequality, we choose a subsequence {𝑥
𝑛
𝑘

} of {𝑥
𝑛
}

such that

lim
𝑘→∞

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛
𝑘

− 𝑥
∗

⟩

= lim sup
𝑛→∞

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩ .

(36)

Since {𝑥
𝑛
𝑘

} is bounded, there exists a subsequence {𝑥
𝑛
𝑘
𝑗

} of
{𝑥
𝑛
𝑘

}which converges weakly to𝑤.Without loss of generality,
we can assume that 𝑥

𝑛
𝑘

⇀ 𝑤. Notice that, for each 𝑖 ∈ 𝑁,
𝐽
𝐵
𝑖

𝛽
𝑖

(𝐼−𝛾
𝑖
𝐴
∗

(𝐼−𝐽
𝐾
𝑖

𝛽
𝑖

)𝐴) is nonexpansive.Thus, from Lemma 4
and (34), we have𝑤 ∈ Ω. Therefore, it follows from Lemma 5
that

lim sup
𝑛→∞

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

= lim
𝑘→∞

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛
𝑘

− 𝑥
∗

⟩

= ⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑤 − 𝑥
∗

⟩ ≤ 0.

(37)
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Finally, we show that 𝑥
𝑛
→ 𝑥
∗. Applying Lemma 2, we

have that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑓 (𝑥
𝑛
)

+

∞

∑

𝑖=1

𝑐
𝑛,𝑖
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
∗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑎𝑛 (𝑥𝑛 − 𝑥

∗

)

+

∞

∑

𝑖=1

𝑐
𝑛,𝑖
(𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
∗

)

+ 𝑏
𝑛
(𝑓 (𝑥
𝑛
) − 𝑥
∗

)
󵄩󵄩󵄩󵄩

2

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑎
𝑛
(𝑥
𝑛
− 𝑥
∗

)

+

∞

∑

𝑖=1

𝑐
𝑛,𝑖
(𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
− 𝑥
∗

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑏
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (𝑎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 +

∞

∑

𝑖=1

𝑐
𝑛,𝑖

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩)

2

+ 2𝑏
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝑏
𝑛
)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝑏
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

∗

) , 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 2𝑏
𝑛
⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝑏
𝑛
)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝑏
𝑛
𝑘
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 2𝑏
𝑛
⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝑏
𝑛
)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝑏
𝑛
𝑘 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

)

+ 2𝑏
𝑛
⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ .

(38)

This implies that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
(1 − 𝑏

𝑛
)
2

+ 𝑏
𝑛
𝑘

1 − 𝑏
𝑛
𝑘

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
2𝑏
𝑛

1 − 𝑏
𝑛
𝑘
⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

=
1 − 2𝑏

𝑛
+ 𝑏
𝑛
𝑘

1 − 𝑏
𝑛
𝑘

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
𝑏
2

𝑛

1 − 𝑏
𝑛
𝑘

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
2𝑏
𝑛

1 − 𝑏
𝑛
𝑘
⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

= (1 −
2 (1 − 𝑘) 𝑏

𝑛

1 − 𝑏
𝑛
𝑘

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+
2 (1 − 𝑘) 𝑏

𝑛

1 − 𝑏
𝑛
𝑘

{
𝑏
𝑛
𝑀

2 (1 − 𝑘)

+
1

1 − 𝑘
⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ }

= (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝛿
𝑛
,

(39)

where 𝛿
𝑛
= 𝑏
𝑛
𝑀/2(1−𝑘)+(1/(1−𝑘))⟨𝑓(𝑥

∗

)−𝑥
∗

, 𝑥
𝑛+1

−𝑥
∗

⟩,
𝑀 = sup{‖𝑥

𝑛
− 𝑥
∗

‖
2

: 𝑛 ≥ 0}, and 𝛼
𝑛
= 2(1 − 𝑘)𝑏

𝑛
/(1 −

𝑏
𝑛
𝑘). It is easy to see that lim

𝑛→∞
𝛼
𝑛
= 0, ∑∞

𝑛=1
𝛼
𝑛
= ∞, and

lim sup
𝑛→∞

𝛿
𝑛
≤ 0. Hence, by Lemma 9, the sequence {𝑥

𝑛
}

converges strongly to 𝑥∗ = 𝑃
Ω
𝑓(𝑥
∗

).

Case 2. Assume that {‖𝑥
𝑛
− 𝑥
∗

‖} is not a monotone sequence.
Then, we can define an integer sequence {𝜏(𝑛)} for all 𝑛 ≥ 𝑛

0

(for some 𝑛
0
large enough) by

𝜏 (𝑛) = max {𝑘 ∈ 𝑁; 𝑘 ≤ 𝑛 : 󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩 <

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
∗󵄩󵄩󵄩󵄩} .

(40)

Clearly, {𝜏(𝑛)} is a nondecreasing sequence such that 𝜏(𝑛) →
∞ as 𝑛 → ∞ for all 𝑛 ≥ 𝑛

0
:

󵄩󵄩󵄩󵄩𝑥𝜏(𝑛) − 𝑥
∗󵄩󵄩󵄩󵄩 <

󵄩󵄩󵄩󵄩𝑥𝜏(𝑛)+1 − 𝑥
∗󵄩󵄩󵄩󵄩 . (41)

Following a similar argument as the proof of Case 1, we
have

lim sup
𝑛→∞

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝜏(𝑛)

− 𝑥
∗

⟩ ≤ 0. (42)

And by similar argument, we have

󵄩󵄩󵄩󵄩𝑥𝜏(𝑛)+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

= (1 − 𝛼
𝜏(𝑛)

)
󵄩󵄩󵄩󵄩𝑥𝜏(𝑛) − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝛼
𝜏(𝑛)

𝛿
𝜏(𝑛)

, (43)

where lim
𝑛→∞

𝛼
𝜏(𝑛)

= 0, ∑
∞

𝑛=1
𝛼
𝜏(𝑛)

= ∞, and
lim sup

𝑛→∞
𝛿
𝜏(𝑛)

≤ 0. Hence, by Lemma 9, we obtain
lim
𝑛→∞

‖𝑥
𝜏(𝑛)

− 𝑥
∗

‖ = 0 and lim
𝑛→∞

‖𝑥
𝜏(𝑛)+1

− 𝑥
∗

‖ = 0.
Now, from Lemma 8, we have

0 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝜏(𝑛)+1 − 𝑥

∗󵄩󵄩󵄩󵄩 . (44)

Therefore, the sequence {𝑥
𝑛
} converges strongly to 𝑥

∗

=

𝑃
Ω
𝑓(𝑥
∗

). This completes the proof.

Corollary 12. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces, let

𝐴 : 𝐻
1

→ 𝐻
2
be a linear and bounded operator, and

let 𝐴∗ denote the adjoint of 𝐴. Let {𝐵
𝑖
: 𝐻
1
→ 𝐻
1
}
𝑖∈𝑁

and
{𝐾
𝑖
: 𝐻
2
→ 𝐻
2
}
𝑖∈𝑁

be two families of set-valued maximal
monotone mappings for all 𝑖 ∈ 𝑁. Let {𝑎

𝑛
}, {𝑐
𝑛,𝑖
} be sequences

of real numbers in (0, 1) with 𝑎
𝑛
+ ∑
∞

𝑖=1
𝑐
𝑛,𝑖
⊂ (0, 1). Let {𝛽

𝑛,𝑖
}



Abstract and Applied Analysis 7

be a sequence in (0,∞) and {𝛾
𝑛,𝑖
} ⊂ (0, 2/(‖𝐴‖

2

+ 1)) for each
𝑖 ∈ 𝑁. Let Ω be the solution set of GSFVIP and suppose that
Ω ̸= 0. Let {𝑥

𝑛
} be defined by

𝑥
𝑛+1

= 𝑎
𝑛
𝑥
𝑛
+

∞

∑

𝑖=1

𝑐
𝑛,𝑖
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
,

𝑛 ≥ 0.

(45)

If the sequences {𝑎
𝑛
}, {𝑐
𝑛,𝑖
}, {𝛽
𝑛,𝑖
}, and {𝛾

𝑛,𝑖
} satisfy the

following conditions:
(i) lim

𝑛→∞
(𝑎
𝑛
+ ∑
∞

𝑖=1
𝑐
𝑛,𝑖
) = 1, ∑∞

𝑛=0
(1 − 𝑎

𝑛
− ∑
∞

𝑖=1
𝑐
𝑛,𝑖
) =

∞,
(ii) for each 𝑖 ∈ 𝑁, lim inf

𝑛→∞
𝑎
𝑛
𝑐
𝑛,𝑖

> 0,
lim inf

𝑛→∞
𝑐
𝑛,𝑖
𝛾
𝑛,𝑖

> 0, lim inf
𝑛→∞

𝛽
𝑛,𝑖

> 0, and
lim sup

𝑛→∞
𝛾
𝑛,𝑖
< 2/(‖𝐴‖

2

+ 1),
then the sequence {𝑥

𝑛
} converges strongly to a point 𝑥∗ which

is the minimum norm solution of GSFVIP.

Proof. Let 𝑓 = 0 in Theorem 11. We have proved that the
sequence {𝑥

𝑛
} converges strongly to 𝑥∗ = 𝑃

Ω
𝑓(𝑥
∗

). Then, for
all 𝑧 ∈ Ω, we have

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑧 − 𝑥
∗

⟩

= ⟨𝑓 (𝑥
∗

) − 𝑃
Ω
𝑓 (𝑥
∗

) , 𝑧 − 𝑃
Ω
𝑓 (𝑥
∗

)⟩ ≤ 0.

(46)

Since 𝑓 = 0, then ⟨−𝑥∗, 𝑧 − 𝑥∗⟩ ≤ 0, for all 𝑧 ∈ Ω. Hence, we
obtain

󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄨󵄨󵄨󵄨⟨𝑥
∗

, 𝑧⟩
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 ‖𝑧‖

(47)

that is, ‖𝑥∗‖ ≤ ‖𝑧‖. Thus, 𝑥∗ is the minimum norm solution
of GSFVIP. This completes the proof.

In Theorem 11, if we set 𝑓(𝑥) = 𝑢, then we get the
following result.

Corollary 13. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces, let

𝐴 : 𝐻
1

→ 𝐻
2
be a linear and bounded operator, and

let 𝐴∗ denote the adjoint of 𝐴. Let {𝐵
𝑖
: 𝐻
1
→ 𝐻
1
}
𝑖∈𝑁

and
{𝐾
𝑖
: 𝐻
2
→ 𝐻
2
}
𝑖∈𝑁

be two families of set-valued maximal
monotone mappings for all 𝑖 ∈ 𝑁. Let {𝑎

𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛,𝑖
} be

sequences of real numbers in (0, 1) with 𝑎
𝑛
+ 𝑏
𝑛
+ ∑
∞

𝑖=1
𝑐
𝑛,𝑖
= 1.

Let {𝛽
𝑛,𝑖
} be a sequence in (0,∞) and {𝛾

𝑛,𝑖
} ⊂ (0, 2/(‖𝐴‖

2

+1))

for each 𝑖 ∈ 𝑁. Let 𝑢 ∈ 𝐻
1
be fixed. LetΩ be the solution set of

GSFVIP and suppose that Ω ̸= 0. Let {𝑥
𝑛
} be defined by

𝑥
𝑛+1

= 𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑢

+

∞

∑

𝑖=1

𝑐
𝑛,𝑖
𝐽
𝐵
𝑖

𝛽
𝑛,𝑖

(𝐼 − 𝛾
𝑛,𝑖
𝐴
∗

(𝐼 − 𝐽
𝐾
𝑖

𝛽
𝑛,𝑖

)𝐴) 𝑥
𝑛
, 𝑛 ≥ 0.

(48)
If the sequences {𝑎

𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛,𝑖
}, {𝛽
𝑛,𝑖
}, and {𝛾

𝑛,𝑖
} satisfy the

following conditions:
(i) lim

𝑛→∞
𝑏
𝑛
= 0, ∑∞

𝑛=0
𝑏
𝑛
= ∞,

(ii) for each 𝑖 ∈ 𝑁, lim inf
𝑛→∞

𝑎
𝑛
𝑐
𝑛,𝑖

> 0,
lim inf

𝑛→∞
𝑐
𝑛,𝑖
𝛾
𝑛,𝑖

> 0, lim inf
𝑛→∞

𝛽
𝑛,𝑖

> 0, and
lim sup

𝑛→∞
𝛾
𝑛,𝑖
< 2/(‖𝐴‖

2

+ 1),
then the sequence {𝑥

𝑛
} converges strongly to 𝑃

Ω
𝑢.
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