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A new scheme, deduced from Khan’s homotopy perturbation transform method (HPTM) (Khan, 2014; Khan and Wu, 2011) via
optimal parameter, is presented for solving nonlinear differential difference equations. Simple but typical examples are given to
illustrate the validity and great potential of Khan’s homotopy perturbation transform method (HPTM) via optimal parameter in
solving nonlinear differential difference equation. The numerical solutions show that the proposed method is very efficient and
computationally attractive. It providesmore realistic series solutions that converge very rapidly for nonlinear real physical problems.
The results reveal that themethod is very effective and simple.Thismethod gives more reliable results as compared to other existing
methods available in the literature. The numerical results demonstrate the validity and applicability of the method.

1. Introduction

Nonlinear differential difference equations (NDDEs) play
a crucial role in many branches of applied physical sciences
such as condensed matter physics, biophysics, atomic chains,
molecular crystals, and discretization in solid-state and quan-
tum physics. They also play an important role in numerical
simulation of solution dynamics in high-energy physics
because of their rich structures. Therefore, researchers have
shown a wide interest in studying NDDEs since the original
work of Fermi et al. [1] in the 1950s and [2, 3]. Contrary to
difference equations that are being fully discretized, NDDEs
are semidiscretized, with some (or all) of their space variables
being discretized, while time is usually kept continuous. As
far as we could verify, little work has been done to search
for exact solutions of NDDEs. Hence, it would make sense
to do more research on solving NDDEs. The approximate
solution involves series of small parameters which poses
difficulty since the majority of nonlinear problems have no
small parameters at all. Although appropriate choices of small
parameters sometime lead to ideal solutions in most cases,

unsuitable choices lead to serious effects in the solutions.
Therefore, an analytical method is welcome which does not
require a small parameter in the equation modeling the
phenomenon. The homotopy perturbation method (HPM)
was first introduced by He [4]. The HPM was also used by
many researchers to investigate various linear and nonlinear
equations arising in physics and engineering. Many analytic
approximate approaches for solving nonlinear differential
equations have been proposed and the most outstanding one
is the homotopy analysis method (HAM). In recent years,
many authors have paid attention to studying the solutions
of nonlinear partial differential equations and nonlinear
differential difference equations by various methods [5–25].

The objective of the present paper is to extend the
application of the HPTM to obtain an analytic approximate
solution of the following nonlinear difference differential
equations in mathematical physics:

(i) the general lattice equation [1–3]:

𝑑𝑢
𝑛

𝑑𝑡
= (𝛼 + 𝛽𝑢

𝑛
+ 𝛾𝑢
2

𝑛
) (𝑢
𝑛+1

− 𝑢
𝑛−1

) ; (1)
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(ii) the relativistic Toda lattice system [1–3]:

𝑑𝑢
𝑛

𝑑𝑡
− (1 + 𝛼𝑢

𝑛
) (V
𝑛

− V
𝑛−1

) = 0;

𝑑V
𝑛

𝑑𝑡
− V
𝑛

(𝑢
𝑛+1

− 𝑢
𝑛

+ 𝛼V
𝑛+1

− 𝛼V
𝑛−1

) = 0,

(2)

where 𝛼, 𝛽, and 𝛾 are arbitrary constants. The HPTM
provides the solutions in terms of convergent series with
easily computable components in a direct way without using
linearization, perturbation, or restrictive assumptions. It is
worth mentioning that the proposed approach is capable of
reducing the volume of computational work compared to
classical methods while still maintaining the high accuracy
in the numerical result; the size reduction amounts to
an improvement of the performance of the approach. The
technique is based on the application of the Laplace transform
via the homotopy method to solve nonlinear differential
difference models. The main advantage of this problem
is that we can accelerate the convergence rate, minimize
iterative times, accordingly save the computation time, and
evaluate the efficiency. Several examples are given to access
the reliability of HPTM via optimal parameter.

2. Description of the Homotopy Perturbation
Transform Method

Weconsider a general nonlinear, nonhomogenous partial dif-
ferential equation

𝐿𝑢 (𝑥, 𝑡) + 𝑅𝑢 (𝑥, 𝑡) + 𝑁𝑢 (𝑥, 𝑡) = 𝑓 (𝑥) , (3)

where 𝐿 is a linear operator, 𝑁 is a nonlinear operator, and
𝑓(𝑥, 𝑡) is a source function. The initial conditions are also as

𝑢 (𝑥, 0) = 𝑔 (𝑥) , 𝑢
𝑡
(𝑥, 0) = 𝑓 (𝑥) . (4)

Applying the Laplace transformsL on both sides, we get

L [𝐿𝑢 (𝑥, 𝑡) + 𝑅𝑢 (𝑥, 𝑡) + 𝑁𝑢 (𝑥, 𝑡) = 𝑓 (𝑥)] . (5)

Using the differentiation property of Laplace transform,
we get

𝑠
2

L [𝑢] − 𝑠𝑢 (𝑥, 0) − 𝑢
𝑡
(𝑥, 0)

= L𝑓 (𝑥, 𝑡) − L𝑅𝑢 (𝑥, 𝑡) − L𝑁𝑢 (𝑥, 𝑡) ,

L𝑢 (𝑥, 𝑡) =
ℎ (𝑥)

𝑠
+

𝑓 (𝑥)

𝑠2
+

1

𝑠2
L𝑓 (𝑥, 𝑡)

−
1

𝑠2
L𝑅𝑢 (𝑥, 𝑡) −

1

𝑠2
L𝑁𝑢 (𝑥, 𝑡) .

(6)

Now we embed the homotopy in Laplace transform
method. Hence we may write any equation in the form

𝑁 [𝑢
𝑖
(𝑥, 𝑡)] = 0, 𝑖 = 1, 2, 3,

𝑁 [𝜙 (𝑥, 𝑡; 𝑞)] =
ℎ (𝑥)

𝑠
+

𝑓 (𝑥)

𝑠2
+

1

𝑠2
L𝑓 (𝑥, 𝑡)

−
1

𝑠2
L𝑅 [𝜙 (𝑥, 𝑡; 𝑞)] −

1

𝑠2
L𝑁 [𝜙 (𝑥, 𝑡; 𝑞)]

− L [𝜙 (𝑥, 𝑡; 𝑞)] ,

(7)

where 𝜙(𝑥, 𝑡; 𝑞) is a real function of 𝑥, 𝑡, and 𝑞. We construct
a homotopy as

(1 − 𝑞) 𝐿 [𝜙 (𝑥, 𝑡; 𝑞) − 𝑢
0

(𝑥, 𝑡)] = 𝑞ℏ𝐻 (𝑥, 𝑡) 𝑁 [𝑢 (𝑥, 𝑡)] ,

(8)

where 𝑞 ∈ [0, 1] is an embedding parameter, ℏ ̸= 0 is
a nonzero auxiliary parameter, 𝐻(𝑥, 𝑡) ̸= 0 is a nonzero
auxiliary function, 𝐿 is an auxiliary linear operator, 𝑢

0
(𝑥, 𝑡)

is an initial guess, and 𝜙(𝑥, 𝑡; 𝑞) is an unknown function. It
is important that one has great freedom to choose auxiliary
things in homotopy deformation. Obviously, when 𝑞 = 0 and
𝑞 = 1, it holds

𝜙 (𝑥, 𝑡; 0) = 𝑢
0

(𝑥, 𝑡) , 𝜙 (𝑥, 𝑡; 1) = 𝑢 (𝑥, 𝑡) . (9)

The embedding parameter 𝑞 increases from 0 to 1. Using
Taylor’s theorem, 𝜙

𝑖
(𝑥, 𝑡; 𝑞) can be expanded in a power series

of 𝑞 as follows:

𝜙 (𝑥, 𝑡; 𝑞) = 𝑢
0

(𝑥, 𝑡) +

∞

∑

𝑚=1

𝑢
𝑚

(𝑥, 𝑡) 𝑞
𝑚

, (10)

where

𝑢
𝑚

(𝑥, 𝑡) =
1

𝑚!

𝜕
𝑚

𝜙 (𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=0

. (11)

If the auxiliary linear operator, the initial guess, the
auxiliary parameter ℏ, and the auxiliary function are so
properly chosen, series (10) converges at 𝑞 = 1; then we have

𝑢 (𝑥, 𝑡) = 𝑢
0

(𝑥, 𝑡) +

∞

∑

𝑚=1

𝑢
𝑚

(𝑥, 𝑡) (12)

which must be one of the solutions of the original nonlinear
equation.The governing equation can be deduced from zero-
order deformation equation (8).

Define the vector

𝑢⃗
𝑛

= {𝑢
0

(𝑥, 𝑡) , 𝑢
1

(𝑥, 𝑡) , . . . , 𝑢
𝑛

(𝑥, 𝑡)} . (13)

Differentiating (8) 𝑚-times with respect to the embed-
ding parameter 𝑞, then setting 𝑞 = 0, and finally dividing
them by 𝑚!, we obtain the 𝑚th-order deformation equation:

L [𝑢
𝑚

(𝑥, 𝑡) − 𝜒
𝑚

𝑢
𝑚−1

(𝑥, 𝑡)] = ℏ𝐻 (𝑥, 𝑡) 𝑅
𝑚

(𝑢⃗
𝑚−1

) . (14)
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Applying inverse Laplace transform we get

𝑢
𝑚

(𝑥, 𝑡) = 𝜒
𝑚

𝑢
𝑚−1

+ ℏL
−1

[𝐻 (𝑥, 𝑡) 𝑅
𝑚

(𝑢⃗
𝑚−1

)] , (15)

where

𝑅
𝑚

(𝑢⃗
𝑚−1

) =
1

(𝑚 − 1)!

𝜕
𝑚−1

𝑁 [𝜙 (𝑥, 𝑡; 𝑞)]

𝜕𝑞𝑚−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=0

,

𝜒
𝑚

= {
0, 𝑚 ≤ 1,

1, 𝑚 > 1.

(16)

𝑚th-order deformation equation (15) is a linear iteration
problem and thus can be easily solved, especially by means
of symbolic computation software such as Mathematica or
Maple.

3. Numerical Results

To demonstrate the effectiveness of the HPTM algorithm
discussed above [19–28], several examples of variational
problems will be studied in this section.

Example 1. Consider the following nonlinear difference dif-
ferential equation:

𝑑𝑢
𝑛

𝑑𝑡
= (𝛼 + 𝛽𝑢

𝑛
+ 𝛾𝑢
2

𝑛
) (𝑢
𝑛−1

− 𝑢
𝑛+1

) , (17)

with the initial condition

𝑢
𝑛

(0) =

√𝛽2 − 4𝛼𝛾𝑠𝑛 (𝜆, 𝜇) 𝑐𝑛 (𝜆𝑛, 𝜇) 𝑑𝑛 (𝜆𝑛, 𝜇)

2𝛾𝑐𝑛 (𝜆, 𝜇) 𝑑𝑛 (𝜆, 𝜇) 𝑠𝑛 (𝜆𝑛, 𝜇)
−

𝛽

2𝛾

(18)

with the exact solution

𝑢
𝑛

(𝑡) =

√𝛽2 − 4𝛼𝛾𝑠𝑛 (𝜆, 𝑚) 𝑐𝑛 (𝜁, 𝑚) 𝑑𝑛 (𝜁, 𝑚)

2𝛾𝑐𝑛 (𝜆, 𝜇) 𝑑𝑛 (𝜆, 𝜇) 𝑠𝑛 (𝜁, 𝜇)
−

𝛽

2𝛾
, (19)

where 𝑠𝑛(𝜆, 𝜇), 𝑐𝑛(𝜆𝑛, 𝜇), and 𝑑𝑛(𝜆𝑛, 𝜇) are Jacobian func-
tions and 𝛼, 𝛽, 𝛾, 𝜆, and 𝜇 are arbitrary constants and

𝜁 = 𝜆𝑛 −
𝑡 (4𝛼𝛾 − 𝛽

2

) 𝑠𝑛 (𝜆, 𝜇)

2𝛾𝑐𝑛 (𝜆, 𝜇) 𝑑𝑛 (𝜆, 𝜇)
. (20)

To solve (17) by means of the transform method we
consider the following linear equation:

L [𝜙 (𝑥, 𝑡; 𝑞)] =
𝜕𝜙 (𝑥, 𝑡; 𝑞)

𝜕𝑡
(21)

with the property that

L [𝑐
1
] = 0 (22)

which implies that

L
−1

(⋅) = ∫

𝑡

0

(⋅) 𝑑𝑡. (23)

Taking Laplace transform of (17) with both sides subject
to the initial condition, we get

L [𝑢
𝑛

(𝑛, 𝑡)]

−
1

𝑠

[
[

[

√𝛽2 − 4𝛼𝛾𝑠𝑛 (𝜆, 𝜇) 𝑐𝑛 (𝜆𝑛, 𝜇) 𝑑𝑛 (𝜆𝑛, 𝜇)

2𝛾𝑐𝑛 (𝜆, 𝜇) 𝑑𝑛 (𝜆, 𝜇) 𝑠𝑛 (𝜆𝑛, 𝜇)

]
]

]

−
1

𝑠
L [(𝛼 + 𝛽𝑢

𝑛
+ 𝛾𝑢
2

𝑛
) (𝑢
𝑛−1

− 𝑢
𝑛+1

)] = 0.

(24)

We now define the nonlinear operator as

𝑁 [𝜙
𝑛

(𝑡; 𝑞)]

= L [𝜙
𝑛

(𝑡; 𝑞)]

−
1

𝑠

[
[

[

√𝛽2 − 4𝛼𝛾𝑠𝑛 (𝜆, 𝜇) 𝑐𝑛 (𝜆𝑛, 𝜇) 𝑑𝑛 (𝜆𝑛, 𝜇)

2𝛾𝑐𝑛 (𝜆, 𝜇) 𝑑𝑛 (𝜆, 𝜇) 𝑠𝑛 (𝜆𝑛, 𝜇)

]
]

]

−
1

𝑠
L [(𝛼 + 𝛽𝜙

𝑛
(𝑡; 𝑞) + 𝛾𝜙

𝑛
(𝑡; 𝑞)
2

)

× (𝜙
𝑛−1

(𝑡; 𝑞) − 𝜙
𝑛+1

(𝑡; 𝑞))] = 0

(25)

and then the 𝑚th-order deformation equation is given by

L [𝑢
𝑚

(𝑛, 𝑡) − 𝜒
𝑚

𝑢
𝑚−1

(𝑛, 𝑡)] = ℏ𝐻 (𝑛, 𝑡) 𝑅
𝑚

(𝑢⃗
𝑚−1

) . (26)

Taking inverse Laplace transform of (26), we get

𝑢
𝑚

(𝑛, 𝑡) = 𝜒
𝑚

𝑢
𝑚−1

+ ℏL
−1

[𝐻 (𝑛, 𝑡) 𝑅
𝑚

(𝑢⃗
𝑚−1

)] , (27)

where

𝑅
𝑚

(𝑢⃗
𝑚−1

)

= L [𝑢
𝑚

]

−
1

𝑠

[
[

[

√𝛽2 − 4𝛼𝛾𝑠𝑛 (𝜆, 𝜇) 𝑐𝑛 (𝜆𝑛, 𝜇) 𝑑𝑛 (𝜆𝑛, 𝜇)

2𝛾𝑐𝑛 (𝜆, 𝜇) 𝑑𝑛 (𝜆, 𝜇) 𝑠𝑛 (𝜆𝑛, 𝜇)

]
]

]

× (1 − 𝜒
𝑚

)

−
1

𝑠
L [(𝛼 + 𝛽𝑢

𝑚−1
(𝑛, 𝑡) + 𝛾𝑢

2

𝑚−1
(𝑛, 𝑡))

× (𝑢
𝑚−1

(𝑛 − 1, 𝑡) − 𝑢
𝑚−1

(𝑛 + 1, 𝑡))] .

(28)

Let us take the initial approximation as

𝑢
0

(𝑛, 𝑡) =

√𝛽2 − 4𝛼𝛾𝑠𝑛 (𝜆, 𝜇) 𝑐𝑛 (𝜆𝑛, 𝜇) 𝑑𝑛 (𝜆𝑛, 𝜇)

2𝛾𝑐𝑛 (𝜆, 𝜇) 𝑑𝑛 (𝜆, 𝜇) 𝑠𝑛 (𝜆𝑛, 𝜇)
; (29)
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the other components are given by

𝑢
1

(𝑛, 𝑡)

= −ℎ𝑡 (𝛼

+
(𝛽
2

− 4𝛼𝛾) 𝑐𝑛 [𝑛𝜆, 𝜇]
2

𝑑𝑛 [𝑛𝜆, 𝜇]
2

𝑠𝑛 [𝜆, 𝜇]
2

4𝛾𝑐𝑛 [𝜆, 𝜇]
2

𝑑𝑛 [𝜆, 𝜇]
2

𝑠𝑛 [𝑛𝜆, 𝜇]
2

+

𝛽√𝛽2 − 4𝛼𝛾𝑐𝑛 [𝑛𝜆, 𝜇] 𝑑𝑛 [𝑛𝜆, 𝜇] 𝑠𝑛 [𝜆, 𝜇]

2𝛾𝑐𝑛 [𝜆, 𝜇] 𝑑𝑛 [𝜆, 𝜇] 𝑠𝑛 [𝑛𝜆, 𝜇]
)

× (((√𝛽2 − 4𝛼𝛾𝑐𝑛 [(−1 + 𝑛) 𝜆, 𝜇]

× 𝑑𝑛 [(−1 + 𝑛) 𝜆, 𝜇] 𝑠𝑛 [𝜆, 𝜇])

× (2𝛾𝑐𝑛 [𝜆, 𝜇] 𝑑𝑛 [𝜆, 𝜇]

× 𝑠𝑛 [(−1 + 𝑛) 𝜆, 𝜇])
−1

)

− ((√𝛽2 − 4𝛼𝛾𝑐𝑛 [(1 + 𝑛) 𝜆, 𝜇]

× 𝑑𝑛 [(1 + 𝑛) 𝜆, 𝜇] 𝑠𝑛 [𝜆, 𝜇])

× (2𝛾𝑐𝑛 [𝜆, 𝜇] 𝑑𝑛 [𝜆, 𝜇]

× 𝑠𝑛 [(1 + 𝑛) 𝜆, 𝜇])
−1

))

⋅ ⋅ ⋅ ;

(30)

other components of the approximate solution can be
obtained in the same manner. Therefore, the approximate
solution is

𝑢 (𝑛, 𝑡) = 𝑢
0

(𝑛, 𝑡) + 𝑢
1

(𝑛, 𝑡) + 𝑢
2

(𝑛, 𝑡) + ⋅ ⋅ ⋅ . (31)

We calculate the numerical results for different values of
𝑛 ∈ [−30, 30]; 𝛼 = 0.2, 𝛽 = 0.5, 𝛾 = 0.2, 𝜆 = 0.3, and
𝑡 = 0.45 are presented in Figures 1 and 2. The comparison
betweenHPTM via optimal parameter and the exact solution
is performed in Figures 3 and 4. A very good agreement
is achieved between the results obtained by the presented
method HPTM via optimal parameter and the exact solution
(Figure 6) for different values of 𝜇.

The Jacobi elliptic functions are generated into hyperbolic
functions when 𝜇 → 1 as follows,

𝑠𝑛 (𝜉) 󳨀→ tanh (𝜉) , 𝑐𝑛 (𝜉) 󳨀→ sech (𝜉) ,

𝑑𝑛 (𝜉) 󳨀→ sech (𝜉) ,

(32)

and into trigonometric functions when 𝜇 → 0 as follows:

𝑠𝑛 (𝜉) 󳨀→ sin (𝜉) , 𝑐𝑛 (𝜉) 󳨀→ cos (𝜉) ,

𝑑𝑛 (𝜉) 󳨀→ 1.

(33)

Example 2. Let us consider the following problem:

𝑑

𝑑𝑡
𝑢
𝑛

− (1 + 𝛼𝑢
𝑛
) (V
𝑛

− V
𝑛−1

) = 0,

𝑑

𝑑𝑡
𝑢
𝑛

− V
𝑛

(𝑢
𝑛+1

− 𝑢
𝑛

+ 𝛼V
𝑛+1

− 𝛼V
𝑛−1

) = 0,

(34)

with the initial condition

𝑢
0

(𝑛, 0) =
− (𝑒
𝜆

− 1 + 𝛼𝑐)

𝛼 (𝑒𝜆 − 1)
−

𝑐𝛽

(𝛽 + 𝑒𝑛𝜆+𝜁)
,

V
0

(𝑛, 0) =
𝑐

𝛼 (𝑒𝜆 − 1)
+

𝑐𝛽

𝛼 (𝛽 + 𝑒𝑛𝜆+𝜁)
,

(35)

with the exact solution

𝑢 (𝑛, 𝑡) =
− (𝑒
𝜆

− 1 + 𝛼𝑐)

𝛼 (𝑒𝜆 − 1)
−

𝑐𝛽

(𝛽 + 𝑒𝑐𝑡+𝑛𝜆+𝜁)
,

V (𝑛, 𝑡) =
𝑐

𝛼 (𝑒𝜆 − 1)
+

𝑐𝛽

𝛼 (𝛽 + 𝑒𝑐𝑡+𝑛𝜆+𝜁)
,

(36)

where 𝛼, 𝛽, 𝑐, 𝜆, 𝑛, and 𝜁 are arbitrary constants. Let

L [𝜙 (𝑡; 𝑞)] =
𝜕𝜙 (𝑡; 𝑞)

𝜕𝑡
(37)

with the property that

L [𝑐
1
] = 0 (38)

which implies that

L
−1

(⋅) = ∫

𝑡

0

(⋅) 𝑑𝑡. (39)

Taking Laplace transform of (34) with both sides subject
to the initial condition, we get

L [𝑢
𝑛

(𝑥, 𝑡)] −
1

𝑠
[

− (𝑒
𝜆

− 1 + 𝛼𝑐)

𝛼 (𝑒𝑑 − 1)
−

𝑐𝛽

(𝛽 + 𝑒𝑛𝜆+𝜁)
]

−
1

𝑠
L [(1 + 𝛼𝑢

𝑛
) (V
𝑛

− V
𝑛−1

)] = 0,

L [V
𝑛

(𝑥, 𝑡)] −
1

𝑠
[

𝑐

𝛼 (𝑒𝑑 − 1)
+

𝑐𝛽

𝛼 (𝛽 + 𝑒𝑛𝜆+𝜁)
]

−
1

𝑠
L [V
𝑛

(𝑢
𝑛+1

− 𝑢
𝑛

+ 𝛼V
𝑛+1

− 𝛼V
𝑛−1

)] = 0.

(40)
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Figure 1: The 2nd-order approximate solution (31), respectively, when 𝜇 = 0.5 and 1 at ℎ|optimal = −0.975.
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Figure 2: The 2nd-order approximate solution (31) when 𝜇 = 0.

We now define the nonlinear operator as

𝑁
1

[𝜙
𝑛

(𝑡; 𝑞)] = L [𝜙
𝑛

(𝑡; 𝑞)]

−
1

𝑠
[

− (𝑒
𝜆

− 1 + 𝛼𝑐)

𝛼 (𝑒𝑑 − 1)
−

𝑐𝛽

(𝛽 + 𝑒𝑛𝜆+𝜁)
]

−
1

𝑠
L [(1 + 𝛼𝜙

𝑛
(𝑡; 𝑞))

× (𝜓
𝑛

(𝑡; 𝑞) − 𝜓
𝑛−1

(𝑡; 𝑞))] = 0,

𝑁
2

[𝜓
𝑛

(𝑡; 𝑞)] = L [𝜓
𝑛

(𝑡; 𝑞)]

−
1

𝑠
[

𝑐

𝛼 (𝑒𝑑 − 1)
+

𝑐𝛽

𝛼 (𝛽 + 𝑒𝑛𝜆+𝜁)
]

−
1

𝑠
L
2

[𝜓
𝑛

(𝑡; 𝑞)

× (𝜙
𝑛+1

(𝑡; 𝑞) − 𝜙
𝑛

(𝑡; 𝑞)

+ 𝛼𝜓
𝑛−1

(𝑡; 𝑞)

− 𝛼𝜓
𝑛−1

(𝑡; 𝑞))] = 0

(41)

and then the 𝑚th-order deformation equation is given by

L [𝑢
𝑚

(𝑛, 𝑡) − 𝜒
𝑚

𝑢
𝑚−1

(𝑡, 𝑛)] = ℏ
1
𝐻
1

(𝑛, 𝑡) 𝑅
1𝑚

(𝑢⃗
𝑚−1

) ,

L [V
𝑚

(𝑛, 𝑡) − 𝜒
𝑚
V
𝑚−1

(𝑡, 𝑛)] = ℏ
2
𝐻
2

(𝑛, 𝑡) 𝑅
2𝑚

(V⃗
𝑚−1

) .

(42)

Taking inverse Laplace transform of (42), we get

𝑢
𝑚

(𝑛, 𝑡) = 𝜒
𝑚

𝑢
𝑚−1

+ ℏ
1
L
−1

[𝐻
1

(𝑛, 𝑡) 𝑅
1𝑚

(𝑢⃗
𝑚−1

)] ,

V
𝑚

(𝑛, 𝑡) = 𝜒
𝑚
V
𝑚−1

+ ℏ
2
L
−1

[𝐻
2

(𝑛, 𝑡) 𝑅
2𝑚

(V⃗
𝑚−1

)] ,

(43)

where

𝑅
1𝑚

(𝑢⃗
𝑚−1

) = L [𝑢
𝑚−1

]

−
1

𝑠
[

− (𝑒
𝜆

− 1 + 𝛼𝑐)

𝛼 (𝑒𝑑 − 1)
−

𝑐𝛽

(𝛽 + 𝑒𝑛𝜆+𝜁)
]

× (1 − 𝜒
𝑚

)

−
1

𝑠
L [(1 + 𝛼𝑢

𝑚−1
(𝑛, 𝑡))

× (V
𝑚−1

(𝑛, 𝑡) − V
𝑚−1

(𝑛 − 1, 𝑡))] ,
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Figure 3: The behavior of the approximate solution using HPTM via optimal parameter when 𝜇 = 0.5 and 1.
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Figure 4: The behavior of the approximate solution using HPTM via optimal parameter when 𝜇 = 0.

𝑅
2𝑚

(V⃗
𝑚−1

) = L [V
𝑚−1

]

−
1

𝑠
[

𝑐

𝛼 (𝑒𝑑 − 1)
+

𝑐𝛽

𝛼 (𝛽 + 𝑒𝑛𝜆+𝜁)
] (1 − 𝜒

𝑚
)

−
1

𝑠
L [V
𝑚−1

(𝑛, 𝑡)

× (𝑢
𝑚−1

(𝑛 + 1, 𝑡) − 𝑢
𝑚−1

(𝑛, 𝑡)

+ 𝛼V
𝑚−1

(𝑛 + 1, 𝑡)

− 𝛼V
𝑚−1

(𝑛 − 1, 𝑡))] ,

(44)

where ℎ
1

= ℎ
2

= −1 and 𝐻
1
(𝑛, 𝑡) = 𝐻

2
(𝑛, 𝑡) = 1.

Let us take the initial approximation as

𝑢
0

(𝑛, 0) =
− (𝑒
𝜆

− 1 + 𝛼𝑐)

𝛼 (𝑒𝜆 − 1)
−

𝑐𝛽

(𝛽 + 𝑒𝑛𝜆+𝜁)
,

V
0

(𝑛, 0) =
𝑐

𝛼 (𝑒𝜆 − 1)
+

𝑐𝛽

𝛼 (𝛽 + 𝑒𝑛𝜆+𝜁)
;

(45)

the other components (Figure 5) are given by

𝑢
1

(𝑛, 𝑡) = −
𝛽𝑐

𝑒𝜁+𝑛𝜆 + 𝛽
−

−1 + 𝑒
𝜆

+ 𝛼𝑐

(−1 + 𝑒𝑑) 𝛼

− ℎ𝑡 (−
𝛽𝑐

𝛼 (𝑒𝜁+(−1+𝑛)𝜆 + 𝛽)
+

𝛽𝑐

𝛼 (𝑒𝜁+𝑛𝜆 + 𝛽)
)

× (1 + 𝛼 (−
𝛽𝑐

𝑒𝜁+𝑛𝜆 + 𝛽
−

−1 + 𝑒
𝜆

+ 𝛼𝑐

(−1 + 𝑒𝑑) 𝛼
)) ,

(46)

V
1

(𝑛, 𝑡) =
𝑐

(−1 + 𝑒𝑑) 𝛼
+

𝛽𝑐

𝛼 (𝑒𝜁+𝑛𝜆 + 𝛽)

− ℎ𝑡 (
𝑐

(−1 + 𝑒𝑑) 𝛼
+

𝛽𝑐

𝛼 (𝑒𝜁+𝑛𝜆 + 𝛽)
)

× (
𝛽𝑐

𝑒𝜁+𝑛𝜆 + 𝛽
−

𝛽𝑐

𝑒𝜁+(1+𝑛)𝜆 + 𝛽

− 𝛼 (
𝑐

(−1 + 𝑒𝑑) 𝛼
+

𝛽𝑐

𝛼 (𝑒𝜁+(−1+𝑛)𝜆 + 𝛽)
)
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Figure 5: The 4th-order approximate solution (46) and (47), respectively, at ℎ|optimal = −0.993.
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Figure 6: The behavior of the approximate solution using HPTM via optimal parameter and the exact solution (36).
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4. Conclusions

In this paper, the HPTM via optimal parameter has been suc-
cessfully applied for solving discontinued problems arising in
nanotechnology.The result shows that theHPTMvia optimal
parameter is a powerful and efficient technique in finding
exact and approximate solutions for nonlinear differential

equations. Also, it can be observed that there is good agree-
ment between the results obtained using the present method
and the exact solution. The HPTM via optimal parameter
requires less computational work compared to other analyti-
calmethods. In conclusion, theHPTMvia optimal parameter
may be considered a nice refinement in existing numerical
techniques and may find wide applications. It is worth men-
tioning that the method is capable of reducing the volume of
the computational work as compared to the classical methods
while still maintaining high accuracy of the numerical result,
and the size reduction amounts to the improvement of
performance of the approach. The method overcomes the
difficulty encountered in othermethods because it is efficient.
Comparisons have been made among the exact solutions,
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the Adomian decomposition method, the variational itera-
tion method, and the HPM. We obtained the best results by
using HPTM and we confirm that engineers can use these
results for any application especially in textile engineering.
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