
Research Article
Iterative Splitting Methods for Integrodifferential Equations:
Theory and Applications

Jürgen Geiser

Department of Physics, Ernst-Moritz-Arndt University of Greifswald, Domstraße 14, 17487 Greifswald, Germany

Correspondence should be addressed to Jürgen Geiser; geiser@mathematik.hu-berlin.de

Received 30 May 2014; Revised 5 August 2014; Accepted 5 August 2014; Published 24 August 2014

Academic Editor: Giuseppe Marino

Copyright © 2014 Jürgen Geiser.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present novel iterative splittingmethods to solve integrodifferential equations. Such integrodifferential equations are applied, for
example, in scattering problems of plasma simulations.We concentrate on a linearised integral part and a reformulation to a system
of first order differential equations. Suchmodifications allow for applying standard iterative splitting schemes and for extending the
schemes, respecting the integral operator. A numerical analysis is presented of the system of semidiscretised differential equations
as abstract Cauchy problems. In the applications, we present benchmark and initial realistic applications to transport problems with
scattering terms. We also discuss the benefits of such iterative schemes as fast solver methods.

1. Introduction

The motivation is to apply fast splitting schemes that have
been developed for systems of differential equations, to
integrodifferential equations. The applications are related
to transport problems with scattering terms, for example,
plasma simulations with collision terms; see [1, 2]. Due to the
physics of the situation, the numerical implementation allows
decoupling the system into transport and scattering terms,
so that the underlying methods can employ optimal splitting
schemes.

We concentrate on a semidiscretised transport-scattering
equation, given as a Cauchy problem. In the following, we
consider the abstract homogeneous Cauchy problem as a
system of ordinary integrodifferential equations:

𝑑u (𝑡)

𝑑𝑡
= A (u (𝑡)) + ∫

𝑡

0

B (u (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] , (1)

u (0) = u
0
, (2)

whereA,B ∈ X → X are bounded andnonlinear operators,
which are derived from the semidiscretised transport and
scattering operators. X ∈ R𝑛 is a Banach space and ‖ ⋅ ‖ is
the corresponding norm in X. The operatorA represents the
transport processes, and the operatorB is a given scattering
operator.

This paper is organised as follows.

In Section 2 we present the mathematical model and
a possible reduced model for further approximations. The
numerical schemes are presented in Section 3. The results
of some numerical experiments are given in Section 4. The
contents of Section 5 contain a summary of the results.

2. Analytical Approach to
the Integrodifferential Equation

In the following, we discuss the transformation to a system
of differential equations in order to apply iterative splitting
schemes; see also the decomposition of matrices in [3].

For the linearisation, wemake the following assumptions.

Assumption 1. We assume a weak nonlinearity and employ
the following simplification.

(1) The Jacobian of𝐴, given as 𝑑A/𝑑u, is linearised at 𝑡 =
0, which means (𝑑A/𝑑u)|

𝑡=0
= 𝐴, where 𝐴 ∈ X × X.

(2) The operator B is linearised at 𝑡 = 0, which means
𝐵(u)|
𝑡=0

= 𝐵, where 𝐵 ∈ X × X.

(3) The initial condition of the first derivative is given by
𝑑u
0
/𝑑𝑡 = 𝐴u

0
.
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(4) For the linearised case, the following matrix opera-
tions can be applied:

(
𝐴𝐴
𝑡

4
+ 𝐵)

1/2

= 𝑉(
𝐷
1

4
+ 𝐷
2
)𝑉
−1
, (3)

where 𝐴𝐴
𝑡 and 𝐵 are simultaneous and diagonal-

isable, with the same matrix 𝑉, to the diagonal
matrices 𝐷

1
and 𝐷

2
. Furthermore, 𝐴𝐴

𝑡 and 𝐵 have
𝑛 eigenvectors as a basis forX ∈ R𝑛. Further𝐴𝐴

𝑡 and
𝐵 commute.

Corollary 2. The integrodifferential equation (1) can be trans-
formed, under Assumption 1, to the following differential equa-
tion:

𝑑
2u (𝑡)

𝑑2𝑡
= 𝐴

𝑑u (𝑡)

𝑑𝑡
+ 𝐵u (𝑡) , (4)

u (0) = u
0
, (5)

𝑑u
𝑑𝑡

𝑡=0
= 𝐴u
0
, (6)

where the analytical solution is

u (𝑡) = exp (
𝐴

2
𝑡) (cosh (𝑄𝑡) −

𝐴

2
𝑄
−1 sinh (𝑄𝑡)) u

0
, (7)

+ exp (
𝐴

2
𝑡)𝑄
−1 sinh (𝑄𝑡) 𝐴u

0
, (8)

where 𝑄 = (1/2)√𝐴𝐴𝑡/4 + 𝐵.
While 𝐴𝐴

𝑡and 𝐵 commute, we also have the commutation
of 𝐴 and 𝑄 and, for small 𝑡, we have the solution

u (𝑡) = exp (
𝐴

2
𝑡) cosh (𝑄𝑡) u

0
,

=
1

2
(exp((

𝐴

2
+ 𝑄) 𝑡) + exp((

𝐴

2
− 𝑄) 𝑡)) u

0
.

(9)

Proof. The analytical solution of the second order differential
equation (4) is given as follows. We rewrite (4) into

𝑑u (𝑡)

𝑑𝑡
= k (𝑡) ,

𝑑k
𝑑𝑡

= 𝐴k (𝑡) + 𝐵u (𝑡) ,

u (0) = u
0
, k (0) =

𝑑u
𝑑𝑡

𝑡=0
= 𝐴u
0
.

(10)

The exponential matrixA ∈ R2𝑛×2𝑛 can be decoupled via
the Cayley Hamilton theorem as

exp (A) = 𝑠
0
(𝑡)I + 𝑠

1
(𝑡)A, (11)

whereI ∈ R2𝑛×2𝑛 is the identity matrix.
The characteristic polynomial ofA is given as

𝑧
2
− 𝐴𝑧 − 𝐵 = (𝑧 − 𝜆

1
) (𝑧 − 𝜆

2
) = 0, (12)

and the roots are given as

𝜆
1,2

=
𝐴

2
± √

𝐴𝐴
𝑡

4
+ 𝐵. (13)

Then 𝑠
0
(𝑡) = exp((𝐴/2)𝑡)(cosh(𝑄𝑡) − (𝐴/2)𝑄

−1 sinh(𝑄𝑡))

and 𝑠
1
(𝑡) = exp((𝐴/2)𝑡)𝑄

−1 sinh(𝑄𝑡); see also [4]. Therefore
the analytical solution is given by (7).

We apply this solution to our integrodifferential equation
(1) and, with Assumption 1, the equation is satisfied.

A further simplification can be made to rewrite the
integral-differential equation as two first order differential
equations. Later such a reduction will allow us to apply fast
iterative splitting methods.

Corollary 3. The integrodifferential equation (1) can be trans-
formed, with the help of Assumption 1, to two first order
differential equations:

𝑑u
1
(𝑡)

𝑑𝑡
= 𝐴u
1
(𝑡) + 𝐵u

1
(𝑡) , (14)

u
1
(0) = u

0
, (15)

𝑑u
2
(𝑡)

𝑑𝑡
= 𝐴u
2
(𝑡) − 𝐵u

2
(𝑡) , (16)

u
2
(0) = u

0
, (17)

where 𝐴 = 𝐴/2 and 𝐵 = (1/2)√𝐴𝐴𝑡/4 + 𝐵.
The analytical solution is

u (𝑡) =
1

2
(u
1
(𝑡) + u

2
(𝑡))

=
1

2
(exp((

𝐴

2
+

1

2

√
𝐴𝐴
𝑡

4
+ 𝐵) 𝑡)

+ exp((
𝐴

2
−

1

2

√
𝐴𝐴
𝑡

4
+ 𝐵) 𝑡)) u

0
.

(18)

Proof. The analytical solution of the first order differential
equations (14) and (16) is obtained using their characteristic
polynomials:

𝜆
1
− (𝐴 − 𝐵) = 0,

𝜆
2
− (𝐴 + 𝐵) = 0;

(19)

hence the solution is, using the notations of 𝐴 and 𝐵,

𝜆
1,2

= 𝐴 ± 𝐵, (20)

and therefore the analytical solution is given by (18) with𝐴 =

𝐴/2, 𝐵 = (1/2)√𝐴𝐴𝑡/4 + 𝐵.
Therefore this is the solution of our integrodifferential

equation (1) under Assumption 1.
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3. Iterative Splitting Approach to
the Integrodifferential Equation

Operator splittingmethods are used to solve complexmodels
in geophysical and environmental physics. They have been
developed and applied in [5–7]. Such ideas are the basis
for this paper: solving the simpler equations but using
higher order discretisation methods for the remaining, more
complicated equations. With this aim, we use the operator
splittingmethod and decouple the system of equations as will
be described in the following.

Wewill concentrate on the iterative splittingmethod.This
algorithm is based on an iteration with fixed splitting dis-
cretisation step-size 𝜏; namely, on the time interval [𝑡𝑛, 𝑡𝑛+1]
we solve the following subproblems consecutively for 𝑖 =

0, 2, . . . , 2𝑚 (cf. [8, 9]):

𝜕𝑐
𝑖
(𝑡)

𝜕𝑡
= 𝐴𝑐
𝑖
(𝑡) + 𝐵∫

𝑡

0

𝑐
𝑖−1

(𝑠) 𝑑𝑠,

with 𝑐
𝑖
(𝑡
𝑛
) = 𝑐
𝑛
, 𝑐
0
(𝑡
𝑛
) = 𝑐
𝑛
, 𝑐
−1

= 0.0,

𝜕𝑐
𝑖+1

(𝑡)

𝜕𝑡
= 𝐴𝑐
𝑖
(𝑡) + 𝐵∫

𝑡

0

𝑐
𝑖+1

(𝑠) 𝑑𝑠,

with 𝑐
𝑖+1

(𝑡
𝑛
) = 𝑐
𝑛
,

(21)

where 𝑐𝑛 is the known split approximation at the time level 𝑡 =
𝑡
𝑛.The split approximation at the time level 𝑡 = 𝑡

𝑛+1 is defined
by 𝑐𝑛+1 = 𝑐

2𝑚+1
(𝑡
𝑛+1

). (Clearly, the function 𝑐
𝑖+1

(𝑡) depends on
the interval [𝑡𝑛, 𝑡𝑛+1], too, but, for the sake of simplicity, in our
notation, we omit the dependence on 𝑛.)

For the simplification, we apply two standard iterative
splitting schemes to the first order differential equations.

The first iterative process is

𝜕𝑐
1,𝑖

(𝑡)

𝜕𝑡
= 𝐴𝑐
1,𝑖

(𝑡) + 𝐵𝑐
1,𝑖−1

(𝑡) ,

with 𝑐
1,𝑖

(𝑡
𝑛
) = 𝑐
𝑛
, 𝑐
1,0

(𝑡
𝑛
) = 𝑐
𝑛
, 𝑐
1,−1

= 0.0,

𝜕𝑐
1,𝑖+1

(𝑡)

𝜕𝑡
= 𝐴𝑐
1,𝑖

(𝑡) + 𝐵𝑐
1,𝑖+1

(𝑡) ,

with 𝑐
1,𝑖+1

(𝑡
𝑛
) = 𝑐
𝑛
,

(22)

and the second iterative process is

𝜕𝑐
2,𝑖

(𝑡)

𝜕𝑡
= 𝐴𝑐
2,𝑖

(𝑡) − 𝐵𝑐
2,𝑖−1

(𝑡) ,

with 𝑐
2,𝑖

(𝑡
𝑛
) = 𝑐
𝑛
, 𝑐
2,0

(𝑡
𝑛
) = 𝑐
𝑛
, 𝑐
1,−1

= 0.0,

𝜕𝑐
2,𝑖+1

(𝑡)

𝜕𝑡
= 𝐴𝑐
2,𝑖

(𝑡) − 𝐵𝑐
2,𝑖+1

(𝑡) ,

with 𝑐
2,𝑖+1

(𝑡
𝑛
) = 𝑐
𝑛
,

(23)

where 𝑐
𝑛 is the known split approximation at the time level

𝑡 = 𝑡
𝑛. The split approximation at the time level 𝑡 = 𝑡

𝑛+1 is
defined by 𝑐

𝑛+1
= (1/2)(𝑐

1,2𝑚+1
(𝑡
𝑛+1

) + 𝑐
2,2𝑚+1

(𝑡
𝑛+1

)).
In the following, we will analyse the convergence and

the rate of convergence of the methods (22) and (23) for 𝑚

tending to infinity for the linear operators 𝐴, 𝐵 : X → X
using Assumption 1.

It suffices to discuss one case, since the other case is the
same with only a change in the sign of the operator 𝐵.

Theorem 4. Let us consider the abstract Cauchy problem in a
Banach space X :

𝜕
𝑡
𝑐 (𝑡) = 𝐴𝑐 (𝑡) + 𝐵𝑐 (𝑡) , 0 < 𝑡 ≤ 𝑇,

𝑐 (0) = 𝑐
0
,

(24)

where𝐴, 𝐵, 𝐴+𝐵 : X → X are given linear operatorswhich are
generators of the 𝐶

0
-semigroup and 𝑐

0
∈ X is a given element.

Then the iteration process (22) is convergent and the rate of
convergence is of second order.

Proof. The proof is given in [10].

In the following Algorithm 5, we have combined the first
and second iterative processes.

Algorithm 5. We apply (−𝐵
𝑖
) = (−1)

𝑖
𝐵 and exp(𝐵𝑡)

exp(−𝐵𝑡) = 𝐼. The time-steps are 𝑡
𝑗
, 𝑗 = 0, . . . , 𝑁, with

𝑡
𝑗+1

−𝑡
𝑗
= Δ𝑡, and where 𝐼 ∈ N+ is a given number of iterative

steps.
We have the following algorithm:

𝜕𝑐
𝑖

1/2
(𝑡)/𝜕𝑡 = 𝐴𝑐

𝑖

1/2
(𝑡) ± 𝐵𝑐

𝑖−1
(𝑡), with 𝑐

𝑖

1/2
(𝑡
𝑛
) =

𝑐
𝑖−1

1/2
(𝑡
𝑛+1

),

the starting values 𝑐0
1/2

(𝑡
𝑛
) = 𝑐(𝑡

𝑛
),

results of the last iteration, 𝑐−1
1/2

(𝑡
𝑛
) = 0.0,

𝜕𝑐
𝑖+1

1/2
(𝑡)/𝜕𝑡 = 𝐴𝑐

𝑖

1/2
(𝑡) ± 𝐵𝑐

𝑖+1

1/2
(𝑡),

with 𝑐
𝑖+1

1/2
(𝑡
𝑛
) = 𝑐
𝑖

1/2
(𝑡
𝑛+1

),

if 𝜖 > max
𝑗=1,2

|𝑐
𝑖+1

𝑗
(𝑡
𝑛+1

) − 𝑐
𝑖−1

𝑗
(𝑡
𝑛+1

)| or 𝑖 + 1 =

𝐼 we stop

𝑐(𝑡
𝑛+1

) = (1/2)(𝑐
𝑖+1

1
(𝑡
𝑛+1

) + 𝑐
𝑖+1

2
(𝑡
𝑛+1

))

we go to the next time-step 𝑛 = 𝑛 + 1 till 𝑛 + 1 = 𝑁,

else 𝑖 = 𝑖 + 1.

4. Numerical Experiments

For the applications part, we will now treat test problems and
real-life applications to transport-scattering problems.

The first examples are to validate our novel splitting and
solver methods; then, in the subsequent examples, we use
more delicate coupled differential equations.

4.1. First Example: A Matrix Problem with Integral Term. We
deal with simpler integrodifferential equations:

𝑐

(𝑡) = 𝑐 + ∫

𝑡

0

𝑐 (𝑡) 𝑑𝑡, 𝑡 ∈ [0, 1] , (25)
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where we take ∫𝑡
0
𝑐(𝑡)𝑑𝑡 = 𝑡𝑐(𝑡) as a first order approximation

of the integral and treat

𝑐

(𝑡) = 𝑐 + 𝑡𝑐 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑐 (0) = 𝑐 (𝑡
0
) = 1,

(26)

where 𝑇 = 10.0 and we have the analytical solution for the
approximation

𝑐 (𝑡) = exp(𝑡 +
𝑡
2

2
) 𝑢 (0) . (27)

We split this into

𝐴 = 1,

𝐵 (𝑡) = 𝑡.

(28)

We have the following solutions for the iterative scheme:

𝑐
1
(𝑡) = exp (𝐴 (𝑡

𝑛+1
− 𝑡)) 𝑐 (𝑡

𝑛
) , 𝑡 ∈ (𝑡

𝑛
, 𝑡
𝑛+1

] ,

𝑐
2
(𝑡) = exp(∫

𝑡
𝑛+1

𝑡
𝑛

𝐵 (𝑡) 𝑑𝑡) 𝑐 (𝑡
𝑛
)

+ ∫

𝑡
𝑛+1

𝑡
𝑛

exp(∫

𝑡
𝑛+1

𝑠

𝐵 (𝑡
𝑛+1

− 𝑡))𝑑𝑡𝐴𝑐
1
(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] ,

(29)

where 𝑛 = 0, 1, . . . , 𝑁 and 𝑡
𝑁

= 𝑇 while the time-steps are
given by Δ𝑡 = 𝑡

𝑛+1
− 𝑡
𝑛.

We employ the following recurrence relations, distin-
guishing between even and odd iterations.

For the odd iterations, 𝑖 = 2𝑚 + 1, for𝑚 = 0, 1, 2, . . .,

𝑐
𝑖
(𝑡) = exp (𝐴 (𝑡 − 𝑡

𝑛
)) 𝑐 (𝑡
𝑛
)

+ ∫

𝑡

𝑡
𝑛

exp (𝑠𝐴) 𝐵 (𝑠) 𝑐
𝑖−1

(𝑡
𝑛+1

− 𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] .

(30)

For the even iterations, 𝑖 = 2𝑚, for𝑚 = 1, 2, . . .,

𝑐
𝑖
(𝑡) = exp(∫

𝑡
𝑛+1

𝑡
𝑛

𝐵 (𝑠) 𝑑𝑠) 𝑐 (𝑡
𝑛
)

+ ∫

𝑡

𝑡
𝑛

exp(∫

𝑠

0

𝐵 (𝑡) 𝑑𝑡)𝐴𝑐
𝑖−1

(𝑡
𝑛+1

− 𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] .

(31)

We have a blow-up solution of exponential character in long
time behavior; see Figure 1. Therefore, it is advisable that the
integrator should be highly accurate for long time behavior.

Table 1 gives the numerical results of the iterative splitting
scheme.

Figure 2 presents the one-sided and two-sided iterative
results.

Remark 6. In the experiments, we obtain improved results
with each additional step. By the way, the solution blows up
and we have to use also very fine time-steps to control the
errors. Optimal results are obtained by using the integral part
(stiff part) as the implicit part in the iteration (one-sided over
𝐵).

4.2. Second Example: Integrodifferential Equation. We treat
the system of integrodifferential equations

c (𝑡) = 𝐴c + 𝐵∫

𝑡

0

c (𝑡) 𝑑𝑡, 𝑡 ∈ [0, 1] , (32)

where we have the analytical solution

c (𝑡) = exp(𝐴𝑡 +
1

2
𝐵𝑡
2
) c (0) , 𝑡 ∈ [0, 𝑇] ,

c (0) = c (𝑡
0
) = (1, . . . , 1)

𝑡
,

(33)

where 𝐴, 𝐵 ∈ IR𝑚×𝑚 and, for example, we take𝑚 = 10.
We have employed the integral approximation

c (𝑡) = 𝐴c + 𝐵∫

𝑡

0

c (𝑡) 𝑑𝑡

c (𝑡) = 𝐴c + 𝐵𝑡c (𝑡) .
(34)

The matrices are given by

𝐴 = Λ
1
+ Λ
2
= (

−𝜆
1

0 . . . 0

0 −𝜆
1

0
.
.
.

.

.

. d d d
0 . . . 0 −𝜆

1

)

+ (

0 0 . . . 0

𝜆
2

0 0
.
.
.

.

.

. d d d
0 . . . 𝜆

2
0

),

𝐵 = (

−𝜆
3

0 . . . 0

0 −𝜆
3

0
.
.
.

.

.

. d d d
0 . . . 0 −𝜆

3

),

(35)

where the parameters are 𝜆
1
= 0.02, 𝜆

2
= 0.02, and 𝜆

3
=

0.01.
The splitting into the two operators 𝐴 and 𝐵 is made

in order to accelerate the computation of the exponential
matrices exp(𝐴) and exp(𝐵).
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Figure 1: Short time and long time behavior of the solution ((a) 𝑇 = 1, (b) 𝑇 = 10).

Table 1: Numerical experiment with 10 iterative steps for the first example.

Δ𝑡 = 1 Δ𝑡 = 0.5 Δ𝑡 = 0.25 Δ𝑡 = 2−3 Δ𝑡 = 2−4

𝑐
1

1.7634 0.4958 0.1793 0.0753 0.0343
𝑐
2

0.8628 0.1444 0.0282 0.0061 0.0014
𝑐
3

0.2220 0.0104 5.2127𝑒 − 04 2.8455𝑒 − 05 1.6511𝑒 − 06

𝑐
4

0.1116 0.0041 1.8660𝑒 − 04 9.7846𝑒 − 06 5.5769𝑒 − 07

𝑐
5

0.0971 0.0039 1.8367𝑒 − 04 9.7418𝑒 − 06 5.5644𝑒 − 07

𝑐
6

0.0956 0.0039 1.8365𝑒 − 04 9.7418𝑒 − 06 5.5644𝑒 − 07

𝑐
7

0.0954 0.0039 1.8365𝑒 − 04 9.7416𝑒 − 06 5.5644𝑒 − 07

𝑐
8

0.0954 0.0039 1.8366𝑒 − 04 9.7343𝑒 − 06 5.5556𝑒 − 07
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Figure 2: Numerical errors of the one-sided and two-sided splitting schemes: one-sided splitting over 𝐴 (a) and two-sided splitting scheme
alternating between 𝐴 and 𝐵 (b) with 1, . . . , 8 iterative steps.
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Figure 3: Numerical errors of the one-sided and two-sided splitting schemes: one-sided splitting over 𝐴 (a) and two-sided splitting scheme
alternating between 𝐴 and 𝐵 (b) with 1, . . . , 6 iterative steps.

(1) The operator 𝐴 is computed as

exp (𝐴𝑡) = exp (Λ
1
𝑡) exp (Λ

2
𝑡) ,

exp (Λ
1
𝑡) = (

exp (−𝜆
1
𝑡) 0 ⋅ ⋅ ⋅ 0

0 exp (−𝜆
1
𝑡) 0

.

.

.

.

.

. d d
.
.
.

0 ⋅ ⋅ ⋅ 0 exp (−𝜆
1
𝑡)

) ,

exp (Λ
2
𝑡) = 𝐼 + Λ

2
𝑡 +

1

2
Λ
2

2
𝑡
2
+

1

6
Λ
3

2
𝑡
3

+ ⋅ ⋅ ⋅ +
1

(𝑞 − 1)!
Λ
𝑞−1

2
𝑡
𝑞−1

,

(36)

where Λ𝑞
2
= 0.

We have the following solutions for the iterative scheme:

𝑐
1
(𝑡) = exp (𝐴 (𝑡

𝑛+1
− 𝑡)) 𝑐 (𝑡

𝑛
) , 𝑡 ∈ (𝑡

𝑛
, 𝑡
𝑛+1

] ,

𝑐
2
(𝑡) = exp(𝐵

(𝑡
𝑛+1

− 𝑡)
2

2
) 𝑐 (𝑡

𝑛
)

+ ∫

𝑡
𝑛+1

𝑡
𝑛

exp(𝐵
(𝑡 − 𝑠)

2

2
)𝐴𝑐
1
(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] ,

(37)

where 𝑛 = 0, 1, . . . , 𝑁 and 𝑡
𝑁

= 𝑇 while the time-steps are
given by Δ𝑡 = 𝑡

𝑛+1
− 𝑡
𝑛.

We employ the following recurrence relations, distin-
guishing between even and odd iterations.

For the odd iterations, 𝑖 = 2𝑚 + 1, for𝑚 = 0, 1, 2, . . .,

𝑐
𝑖
(𝑡) = exp (𝐴 (𝑡 − 𝑡

𝑛
)) 𝑐 (𝑡
𝑛
)

+ ∫

𝑡

𝑡
𝑛

exp ((𝑡 − 𝑠) 𝐴) 𝐵𝑠𝑐
𝑖−1

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] .

(38)

For the even iterations, 𝑖 = 2𝑚, for𝑚 = 1, 2, . . .,

𝑐
𝑖
(𝑡) = exp(𝐵

(𝑡
𝑛+1

− 𝑡)
2

2
) 𝑐 (𝑡

𝑛
)

+ ∫

𝑡

𝑡
𝑛

exp(𝐵
(𝑡 − 𝑠)

2

2
)𝐴𝑐
𝑖−1

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] .

(39)

For the integral computations, we apply higher order
schemes, the Newton-Cotes formula (e.g., Simpson’s rule and
Boole’s rule); see [11].

We acchieve for the second example (vectorial bench-
mark problem) the same accuracy for its first component as
in the first example (scalar benchmark problem).

Figure 3 presents the one-sided and two-sided iterative
results.

The computational results are given in Figure 4, which
presents the one-sided and two-sided iterative results.

Remark 7. In the experiments, we obtain improved results
with each additional step. By the way, the solution blows up
and so we have to use very fine time-steps to control the
errors. The optimal results are obtained by using the integral
part (stiff part) as the implicit part in the iteration (one-sided
over 𝐵).
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Figure 4: The computational time of the one-sided and two-sided splitting schemes: one-sided splitting over 𝐴 (a) and two-sided splitting
scheme alternating between 𝐴 and 𝐵 (b) with 1, . . . , 6 iterative steps.

4.2.1. Exact Integral Part Based on the Splitting Approach. We
treat a system of integrodifferential equations

c (𝑡) = 𝐴c + 𝐵∫

𝑡

0

c (𝑡) 𝑑𝑡, 𝑡 ∈ [0, 1] , (40)

where we assume that the primitive of c is C(0) = 0.
We have the analytical solution

u (𝑡) =
1

2
(exp((

𝐴

2
+ √

𝐴𝐴
𝑡

4
+ 𝐵) 𝑡)

+ exp((
𝐴

2
− √

𝐴𝐴
𝑡

4
+ 𝐵) 𝑡)) u

0
,

(41)

where 𝐴 = 𝐴/2, 𝐵 = √𝐴𝐴𝑡/4 + 𝐵 ∈ R𝑚×𝑚 and, for example,
we take𝑚 = 10.

The treatment of the square root for matrices is given in
[12, 13].

We have the following matrices:

𝐴 = Λ
1
+ Λ
2
= (

−𝜆
1

0 . . . 0

0 −𝜆
1

0
.
.
.

.

.

. d d d
0 . . . 0 −𝜆

1

)

+ (

0 0 . . . 0

𝜆
2

0 0
.
.
.

.

.

. d d d
0 . . . 𝜆

2
0

),

𝐵 = (

−𝜆
3

0 . . . 0

0 −𝜆
3

0
.
.
.

.

.

. d d d
0 . . . 0 −𝜆

3

),

(42)

where the parameters are𝜆
1
= 0.02, 𝜆

2
= 0.02, and𝜆

3
= 0.01.

The exponentials of these operators are computed using
Padé approximants; see the discussion in [11].

We have the following solutions for the two iterative
schemes.

Algorithm 8. Iterative process for 𝑐
1
:

𝑐
1,1

(𝑡) = exp (𝐴 (𝑡
𝑛+1

− 𝑡)) 𝑐 (𝑡
𝑛
) , 𝑡 ∈ (𝑡

𝑛
, 𝑡
𝑛+1

] ,

𝑐
1,2

(𝑡) = exp (𝐵 (𝑡
𝑛+1

− 𝑡)) 𝑐 (𝑡
𝑛
)

+ ∫

𝑡
𝑛+1

𝑡
𝑛

exp ((𝑡
𝑛+1

− 𝑠) 𝐵)𝐴𝑐
1,1

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] .

(43)

For the odd iterations, 𝑖 = 2𝑚+1, we have, for𝑚 = 0, 1, 2, . . .,

𝑐
1,𝑖

(𝑡) = exp (𝐴 (𝑡 − 𝑡
𝑛
)) 𝑐 (𝑡

𝑛
)

+ ∫

𝑡

𝑡
𝑛

exp ((𝑡 − 𝑠) 𝐴) 𝐵𝑐
1,𝑖−1

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] .

(44)



8 Journal of Applied Mathematics

Table 2: Numerical experiment with three iterative steps for the second example and the first component.

Δ𝑡 = 1 Δ𝑡 = 0.5 Δ𝑡 = 0.25 Δ𝑡 = 2−3 Δ𝑡 = 2−4

𝑐
1

1.7634 0.4958 0.1793 0.0753 0.0343
𝑐
2

0.8628 0.1444 0.0282 0.0061 0.0014
𝑐
3

0.2220 0.0104 5.2127𝑒 − 04 2.8455𝑒 − 05 1.6511𝑒 − 06

For the even iterations, 𝑖 = 2𝑚, we have, for𝑚 = 1, 2, . . .,

𝑐
1,𝑖

(𝑡) = exp (𝐵 (𝑡 − 𝑡
𝑛
)) 𝑐 (𝑡

𝑛
)

+ ∫

𝑡

𝑡
𝑛

exp (𝐵 (𝑡 − 𝑠))𝐴𝑐
1,𝑖−1

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] ,

(45)

where 𝑛 = 0, 1, . . . , 𝑁, 𝑡𝑁 = 𝑇, and the time-steps are given
by Δ𝑡 = 𝑡

𝑛+1
− 𝑡
𝑛.

Algorithm 9. Iterative process for 𝑐
2
:

𝑐
2,1

(𝑡) = exp (𝐴 (𝑡
𝑛+1

− 𝑡)) 𝑐 (𝑡
𝑛
) , 𝑡 ∈ (𝑡

𝑛
, 𝑡
𝑛+1

] ,

𝑐
2,2

(𝑡) = exp (−𝐵 (𝑡
𝑛+1

− 𝑡)) 𝑐 (𝑡
𝑛
)

+ ∫

𝑡
𝑛+1

𝑡
𝑛

exp (− (𝑡
𝑛+1

− 𝑠) 𝐵)𝐴𝑐
1,1

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] .

(46)

For the odd iterations, 𝑖 = 2𝑚+1, we have, for𝑚 = 0, 1, 2, . . .,

𝑐
2,𝑖

(𝑡) = exp (𝐴 (𝑡 − 𝑡
𝑛
)) 𝑐 (𝑡

𝑛
)

+ ∫

𝑡

𝑡
𝑛

exp ((𝑡 − 𝑠) 𝐴) (−𝐵) 𝑐
2,𝑖−1

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] .

(47)

For the even iterations, 𝑖 = 2𝑚, we have, for𝑚 = 1, 2, . . .,

𝑐
2,𝑖

(𝑡) = exp (−𝐵 (𝑡 − 𝑡
𝑛
)) 𝑐 (𝑡

𝑛
)

+ ∫

𝑡

𝑡
𝑛

exp (−𝐵 (𝑡 − 𝑠))𝐴𝑐
2,𝑖−1

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] ,

(48)

where 𝑛 = 0, 1, . . . , 𝑁, 𝑡𝑁 = 𝑇, and the time-steps are given
by Δ𝑡 = 𝑡

𝑛+1
− 𝑡
𝑛.

The solution after each iterative step with the two single
solutions is

𝑐
𝑖
(𝑡) =

1

2
(𝑐
1,𝑖

(𝑡) + 𝑐
2,𝑖

(𝑡)) . (49)

For the integral computations, we apply higher order
schemes, Newton-Cotes formulas (e.g., Simpson’s rule and
Boole’s rule); see [11].

Table 3: The computational time of all three experiments.

Algorithm Computational time in sec
num. approach—twoSide 24.3976
num. approach—oneSideA 24.7610
num. approach—oneSideB 24.7252
exact approach—twoSide 67.0159
exact approach—oneSideA 68.4638
exact approach—oneSideB 69.1291
exact optimised approach—twoSide 36.3361
exact optimised approach—oneSideA 36.9736
exact optimised approach—oneSideB 35.8903

Table 2 shows the numerical results of the iterative split-
ting scheme. We also acchieve similar results for the first
component of the vectorial benchmark problem as in its
scalar form in the first experiment.

Figure 5 presents the one-sided and two-sided iterative
results for an optimised approach.

The computational results are given in Figure 6; we
present the one-sided and two-sided iterative results for an
optimised approach.

Remark 10. In the experiments, we obtain improved results
with each additional step. By the way, the solution blows up
and we have to use very fine time-steps to control the errors.
The optimal results are obtained by using the integral part
(stiff part) as the implicit part in the iteration (one-sided over
𝐵).

Remark 11. To optimise the algorithms, we combine both of
the iterative cycles with the idea of −𝐵

𝑖
= (−1)

𝑖
𝐵 and in

the Padé approximants we apply exp(𝐵𝑡) exp(−𝐵𝑡) = 𝐼; see
Algorithm 5.

Remark 12. Table 3 presents the computational times of the
three experiments. While the exact approach based on the
splitting idea of higher order differential equations obtains
more accurate solutions, its drawback is its higher computa-
tional costs. We reduce such costs by using the symmetry of
the underlying iterative schemes and reach nearly the same
computational time as in the numerical approach scheme.

4.3. Real-Life Example: One-Phase Problem. The next exam-
ple is a simplified real-life problem with a neutron transport
equation, which includes the gain and loss of a neutron.

We concentrate on the computational benefits of a fast
computation of the iterative scheme, given with matrix
exponential functions.
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Figure 5: Numerical errors of the one-sided and two-sided splitting schemes for an optimised approach: one-sided splitting over 𝐴 (a) and
two-sided splitting scheme alternating between 𝐴 and 𝐵 (b) with 1, . . . , 6 iterative steps.
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Figure 6: The computational time of the one-sided and two-sided splitting schemes for an optimised approach: one-sided splitting over 𝐴
(a) and two-sided splitting scheme alternating between 𝐴 and 𝐵 (b) with 1, . . . , 6 iterative steps.

The equation is

𝜕
𝑡
𝑐 + ∇ ⋅ F𝑐 = −𝜆

1
𝑐 + ∫

𝑡

0

𝜆
2
𝑐 (𝑥, 𝑡) 𝑑𝑡, in Ω × [0, 𝑡] ,

F = k − 𝐷∇,

𝑐 (x, 𝑡) = 𝑐
0
(x) , on Ω,

𝑐 (x, 𝑡) = 𝑐
1
(x, 𝑡) , on 𝜕Ω × [0, 𝑡] .

(50)

In the following, we deal with the semidiscretised equa-
tion given by the matrices

𝜕
𝑡
C = (𝐴 − Λ

1
)C + ∫

𝑡

0

Λ
2
C (𝑠) 𝑑𝑠, (51)

where C = (𝑐
1
, . . . , 𝑐

𝑚
)
𝑇 is the solution of the species in

the mobile phase in each spatial discretisation point (𝑖 =

1, . . . , 𝑚).
We have the following two operators for the splitting

method:

𝐴 =
𝐷

Δ𝑥2
⋅ (

−2 1

1 −2 1

d d d
1 −2 1

1 −2

)

+
V
Δ𝑥

⋅ (

1

−1 1

d d
−1 1

−1 1

) ∈ R
𝑚×𝑚

.

(52)
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Figure 7: Numerical errors of the one-sided and two-sided splitting schemes: one-sided splitting over 𝐴 (a) and two-sided splitting scheme
alternating between 𝐴 and 𝐵 (b) with 1, . . . , 6 iterative steps.
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Figure 8: The computational time of the one-sided and two-sided splitting schemes: one-sided splitting over 𝐴 (a) and two-sided splitting
scheme alternating between 𝐴 and 𝐵 (b) with 1, . . . , 6 iterative steps.

The reaction and scattering matrices are

Λ
1
= (

𝜆
1

0

0 𝜆
1

0

d d d
0 𝜆
1

0

0 𝜆
1

) ∈ R
𝑚×𝑚

,

Λ
2
= (

𝜆
2

0

0 𝜆
2

0

d d d
0 𝜆
2

0

0 𝜆
2

) ∈ R
𝑚×𝑚

,

(53)

where𝑚 is the number of spatial points.

In the first algorithm, we use the following approximation
of the integral term:

∫

𝑡

0

𝜆
2
𝑐 (𝑥, 𝑡) 𝑑𝑡 ≈ 𝜆

2
𝑡𝑐 (𝑥, 𝑡) . (54)

We use the following recurrence relations, distinguishing
between even and odd iterations.

For the odd iterations, 𝑖 = 2�̃� + 1, with �̃� = 0, 1, 2, . . ., we
have

C
𝑖
(𝑡) = exp (𝐴 (𝑡 − 𝑡

𝑛
))C (𝑡

𝑛
)

+ ∫

𝑡

𝑡
𝑛

exp ((𝑡 − 𝑠) 𝐴) 𝐵 (𝑠)C
𝑖−1

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] .

(55)
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Figure 9: Numerical errors of the one-sided and two-sided splitting schemes for an optimised approach: one-sided splitting over 𝐴 (a) and
two-sided splitting scheme alternating between 𝐴 and 𝐵 (b) with 1, . . . , 6 iterative steps.

c1

c2

c3

c4

c5

c6

10
0

10
−3

10
−2

10
−1

10
0

10
1

10
2

C
om

pu
ta

tio
na

l t
im

e

Δt

(a)

c1

c2

c3

c4

c5

c6

10
0

10
−3

10
−2

10
−1

10
0

10
1

10
2

C
om

pu
ta

tio
na

l t
im

e

Δt

(b)

Figure 10: The computational time of the one-sided and two-sided splitting schemes for an optimised approach: one-sided splitting over 𝐴
(a) and two-sided splitting scheme alternating between 𝐴 and 𝐵 (b) with 1, . . . , 6 iterative steps.

For the even iterations, 𝑖 = 2�̃�, with �̃� = 0, 1, 2, . . ., we
have

C
𝑖
(𝑡) = exp(∫

𝑡−𝑡
𝑛

0

𝐵 (𝑠) 𝑑𝑠)C (𝑡
𝑛
)

+ ∫

𝑡

𝑡
𝑛

exp(∫

𝑡−𝑠

0

𝐵 (𝑠) 𝑑𝑠)𝐴C
𝑖−1

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] ,

(56)

where ∫𝑡−𝑡
𝑛

0
𝐵(𝑠)𝑑𝑠 = Λ

1
(𝑡 − 𝑡
𝑛
) + Λ
2
((𝑡 − 𝑡

𝑛
)
2
/2).

For the reference solution, we apply a fine time-spatial
scale without decoupling the equations.

For the algorithms, we employ novel Algorithm 5 and we
obtain 𝐴 = 𝐴 − Λ

1
and 𝐵 = Λ

2
.

The matrices for the novel algorithm are

̃̃
𝐴 =

𝐴

2
,

̃̃
𝐵 =

1

2

√
𝐴𝐴
𝑡

4
+ 𝐵.

(57)

Figure 7 presents the one-sided and two-sided iterative
results.

The computational results are given in Figure 8, which
presents the one-sided and two-sided iterative results.
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Table 4: The computational time of all three experiments.

Algorithm Computational time in sec
numerical approach—twoSide 23.8826
numerical approach—oneSideA 25.4946
numerical approach—oneSideB 24.1386
exact approach—twoSide 67.1759
exact approach—oneSideA 62.7140
exact approach—oneSideB 70.8573
exact optimised approach—twoSide 36.4432
exact optimised approach—oneSideA 29.7267
exact optimised approach—oneSideB 38.1619

Figure 9 presents the one-sided and two-sided iterative
results for an optimised approach.

The computational results are given in Figure 10, which
presents the one-sided and two-sided iterative results for an
optimised approach.

Table 4 presents the computational times of the three
experiments.

Remark 13. For all iterative schemes, we can reach faster
results using the optimised approach. Such iterative schemes
with fast computations of the exponential matrices accelerate
standard splitting schemes.With four or five iterative stepswe
obtain more accurate results than we did using the expensive
standard schemes. One-sided iterative schemes yield the best
convergence results.

5. Conclusions and Discussion

We presented a coupled model for a transport and kinetic
model for deposition species in a plasma environment. We
proposed numerical schemes to decompose the flow field and
the reaction-collision term. A generalised iterative scheme
was discussed and their analysis and benefits were presented.

Such combined splitting schemes help to reduce the
computational time required for delicate plasma problems. In
the future, we will deal with nonlinear schemes of collision
problems in plasma reactors.
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