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The concepts of strictly, quasi, weak, and nonlinearly self-adjoint differential equations are revisited. A nonlinear self-adjoint
classification of a class of equations with second and third order is carried out.

1. Introduction

Since Ibragimov [1] proposed an extension to the Noether
theorem, overcoming the major deficiency of that result,
the existence of a Lagrangian, a considerable number
of researchers have been applying his ideas for con-
structing conservation laws for equations without classical
Lagrangians.

However, the price for applyingwhat Ibragimov proposed
in [1] is the obtainment, a priori, ofnonlocal conservation laws
instead of local ones.

In [1, 2], it was introduced the concept of self-adjoint
differential equation, latter receiving a new designation in
[3, 4], where it was called strictly self-adjoint equation. This
last one will be adopted in this work. Although such concept
was not necessarily new; see [5], the works [1, 2] were the start
point of an intense research in this kind of ideas, giving rise to
new developments [3, 4, 6] and providing local conservation
laws for equations once its symmetries are known.

One of the first papers dealing with some kind of
classification was [7]. There, the authors considered a class of
fourth-order evolution equations and found the self-adjoint
subclasses. Then, in [8], the same class was enlarged by
considering nonlinear dispersion as well as source terms.

Weak self-adjointness of some classes of equations was
discussed by Gandarias and coauthors in [9–11].

In regard to third-order equations, in [12], a KdV type
family was considered. However, at the time of this last
reference, the general concept of nonlinear self-adjointness
was not already introduced. In [13], a class of third-order
dispersive equations was considered from the quasi self-
adjoint point of view. More recently, in [14] a general family
of dispersive evolution equations was classified with respect
to quasi self-adjointness.

Recently [15], we considered a class of time dependent
equations up to fifth-order and we obtained necessary and
sufficient conditions for determining the nonlinearly self-
adjoint subclasses. Nonlinear self-adjointness of equations up
to fifth-order can also be found in [16–18].

In [19], a general class of first order (1 + 1) PDE was
classified with respect to strictly and quasi self-adjointness.
Later, in [20], the subclass of the Riemman, or inviscid
Burgers equation, was reconsidered from the point of view of
nonlinear self-adjointness. Recently, in the paper [21], the last
class was studied incorporating damping and conservation
laws were established.

The number of works dealing with systems and self-
adjointness is reduced compared with those ones considering
scalar equations. To cite some of them; for instance, up to our
knowledge, the first paper dealing with some self-adjointness
and systems of PDEs was [22]. Nonlinear self-adjointness of
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a system of coupled modified KdV equations was studied in
[23]. Further examples can be found in [4].

In [24] quasi self-adjointness of a class of wave equation
was considered. Sometime ago, in [25], a class of wave
equation with dissipation was considered from the nonlinear
self-adjoint point of view.

The vast majority of the papers deal with (1 + 1)
equations. However, some results considering PDEs with
more independent variables have been communicated in the
literature. In [26–28], diffusion equations with more than
one spatial dimensions were considered. A generalization
of Kuramoto-Sivashinsky equation was discussed in [29]. In
[30] an extension of KdV equation, the so-called Zakharov-
Kuznetsov equation, was studied. All of these papers dealt
with nonlinear self-adjointness.

The concepts of self-adjoint differential equations will
be better discussed in Section 2. In fact, this is a threefold
purpose paper: the first is to provide a review on some
works dealing with conservation laws and using the concepts
introduced in [1–4, 6]. The second one is to explore the
concepts of strict, quasi, weak, and nonlinear self-adjoint
differential equations, as the reader can check in Section 2.
Although these concepts are commonly, and in fact, power-
fully employed for constructing local conservation laws, such
concepts have interest by themselves. Finally, it is common to
classify equations under certain properties; see, for instance,
[31, 32]. Then, in this work we consider, in Section 4, a
nonlinear self-adjoint classification of the equation

𝑢
𝑡
= 𝑟 (𝑥, 𝑡, 𝑢) 𝑢

𝑥𝑥𝑥
+ 𝑠 (𝑥, 𝑡, 𝑢) 𝑢

𝑥𝑥

+ 𝑓 (𝑥, 𝑡, 𝑢) 𝑢
𝑥
+ ℎ (𝑥, 𝑡, 𝑢) .

(1)

Such equation includes a great number of important
equations in mathematical physics. To cite a few number of
them,wementionKdV, Burgers, Burgers-KdV, andRiemman
equations. More equations belonging to this class will be
considered in the next sections.

Moreover, the self-adjoint classification carried out here
will be used in [33] for constructing local conservation laws
for equations without Lagrangians.

2. Preliminaries

Before presenting the procedure, it is convenient to leave
clear that in the present paper we only consider scalar
differential equations. In the current section, unless it is
explicitly announced, 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) is an independent

variable, while 𝑢 = 𝑢(𝑥) is a dependent one. The set of first
order derivatives of 𝑢 is denoted by 𝑢

(1)
and equal convention

is employed for referring to higher order derivatives; for
example, 𝑢

(𝑘)
means the set of 𝑘th derivatives of 𝑢.

We assume the summation over the repeated indices. By
differential functions we mean locally analytic functions of a
finite number of variables 𝑥, 𝑢 and 𝑢 derivatives. The highest
order of derivatives appearing in a differential function is
called its order. The vector space of all differential functions
of finite order is denoted byA.

Let us now show the algorithm for constructing conser-
vation laws. Given a PDE

𝐹 = 𝐹 (𝑥, 𝑢, 𝑢
(1)

, . . . , 𝑢
(𝑚)

) = 0, 𝐹 ∈ A. (2)

Step 1. We construct the formal LagrangianL = V𝐹.

Step 2. From the Euler-Lagrange equations, the following
system is obtained:

𝐹 (𝑥, 𝑢, 𝑢
(1)

, . . . , 𝑢
(𝑚)

) = 0, (3)

𝐹
∗
(𝑥, 𝑢, V, 𝑢

(1)
, V
(1)

, . . . , 𝑢
(𝑚)

, V
(𝑚)

) = 0, (4)

where the second equation of the system (3)-(4) is called
adjoint equation to 𝐹 = 0.

Step 3. A conserved vector for such system is𝐶 = (𝐶
𝑖
), where

𝐶
𝑖
= 𝜉
𝑖
L + 𝑊[

𝜕L

𝜕𝑢
𝑖

− 𝐷
𝑗
(

𝜕L

𝜕𝑢
𝑖𝑗

) + 𝐷
𝑗
𝐷
𝑘
(

𝜕L

𝜕𝑢
𝑖𝑗𝑘

) − ⋅ ⋅ ⋅ ]

+ 𝐷
𝑗
(𝑊) [

𝜕L

𝜕𝑢
𝑖𝑗

− 𝐷
𝑘
(

𝜕L

𝜕𝑢
𝑖𝑗𝑘

) + ⋅ ⋅ ⋅ ] + ⋅ ⋅ ⋅

(5)

and 𝑊 = 𝜂 − 𝜉
𝑖
𝑢
𝑖
.

Of course, it is clear that components (5) depend explicitly
on the new variable V, which is not a “natural” variable
from the original equation. For this reason, the conservation
laws provided by the developments [1] are, a priori, nonlocal
conservation laws and, consequently, the conserved vectors
are nonlocal ones.

As it was previously pointed out at the beginning, the
points related with conservation laws will be retaken soon,
in [33]. However, for those more anxious, we invite them to
consult the books [34–37] for the discussion between sym-
metries and conservation laws. We also guide the interested
readers to [38–42] for discussions on conservation laws.

The question is: would it be possible to construct, from
the nonlocal conservation laws (5), local ones? This point is
essentially related with: would it be possible to replace the
nonlocal function V by an expression depending of 𝑥, 𝑢 and
eventually derivatives of 𝑢?This lead us to themain subject of
the paper: “self-adjointness”, which will just be revisited. We
firstly begin with the following.

Definition 1. Equation (3) is said to be strictly self-adjoint if
the equation obtained from the adjoint equation (4) by the
substitution V = 𝑢 is identical with the original equation (3);
that is,

𝐹
∗


V=𝑢 = 𝜆 (𝑥, 𝑢, . . .) 𝐹, (6)

for some 𝜆 ∈ A.

This concept was first introduced in [1, 2] as self-adjoint
differential equations. More recently, in [3, 4], Ibragimov
himself changed the designation and he referred to this
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concept as strictly self-adjoint differential equation. Then we
use the last definition proposed by Ibragimov.

Some examples are now welcomed. We start with the
following.

Example 2. Consider the Riemman or inviscid Burgers equa-
tion:

𝑢
𝑡
+ 𝑎 (𝑢) 𝑢

𝑥
= 0, (7)

where we assume 𝑎

(𝑢) ̸= 0. In this case, the adjoint equation

to (7) is

V
𝑡
+ 𝑎 (𝑢) V

𝑥
= 0. (8)

Clearly, setting V = 𝑢 into (8), (7) is obtained. Therefore,
Riemman equation is strictly self-adjoint. For further details,
see [19, 20].

Example 3. Consider now KdV equation:

𝑢
𝑡
= 𝑢
𝑥𝑥𝑥

+ 𝑢𝑢
𝑥
. (9)

Its adjoint equation is

V
𝑡
= V
𝑥𝑥𝑥

+ 𝑢V
𝑥
. (10)

Then, setting V = 𝑢 into (10), one obtains (9). Therefore, KdV
equation is strictly self-adjoint. For further details, see [1, 16].

Example 4. Consider Harry-Dym equation:

𝑢
𝑡
= 𝑢
3
𝑢
𝑥𝑥𝑥

. (11)

Its adjoint equation is given by [14, 15, 43]

V
𝑡
= 𝑢
3V
𝑥𝑥𝑥

+ 9 (𝑢
2V
𝑥
+ 2𝑢V𝑢

𝑥
) 𝑢
𝑥𝑥

+ 9𝑢
2
𝑢
𝑥
V
𝑥𝑥

+ 18𝑢V
𝑥
𝑢
2

𝑥
+ 6V𝑢3

𝑥
.

(12)

Equation (12) is not strictly self-adjoint, as it can easily be
checked directly from (12) setting V = 𝑢 or consulting [43].

In [43] the concept of quasi self-adjoint differential
equation was proposed, which is recalled at the following.

Definition 5. Equation (3) is said to be quasi self-adjoint
if the equation obtained from adjoint equation (4) by the
substitution V = 𝜙(𝑢), for a certain 𝜙 such that 𝜙(𝑢) ̸= 0, is
identical with the original equation (3); that is,

𝐹
∗


V=𝜙(𝑢) = 𝜆 (𝑥, 𝑢, . . .) 𝐹, (13)

for some 𝜆 ∈ A.

Originally, the notion of quasi self-adjointness was
slightly different. In fact, in its first formulation [43], it
was required that function 𝜙 satisfies condition 𝜙


(𝑢) ̸= 0.

However, such conditionwas relaxed in [4] andwe adopt here
the last Ibragimov’s formulation.

We now analyse our previous examples taking
Definition 5 into account.

Example 6. Since (7) is strictly self-adjoint, consequently, it
is also quasi self-adjoint. However, let 𝜙 = 𝜙(𝑢) be a smooth
function such that 𝜙(𝑢) ̸= 0. Substituting V = 𝜙(𝑢) into the
left side of (8) the following is obtained:

V
𝑡
+ 𝑎(𝑢)V

𝑥




V=𝜙(𝑢) = 𝜙


(𝑢) [𝑢

𝑡
+ 𝑎 (𝑢) 𝑢

𝑥
] . (14)

This shows that (7) is quasi self-adjoint admitting an arbitrary
nonlinear substitution 𝜙 = 𝜙(𝑢). For further details and
discussion, see [19, 20].

Example 7. Consider KdV equation (9) again. Substituting
V = 𝜙(𝑢) into (10), we obtain V = 𝑐

1
𝑢 + 𝑐
2
, where 𝑐

1
and 𝑐
2
are

arbitrary constants.This lead us to two different substitutions:
V
1

= 𝑢 and V
2

= 1. Therefore, KdV equation is quasi self-
adjoint. For further details, see [4].

Example 8. Consider Harry-Dym equation (11). As it was
already pointed out, it is not strictly self-adjoint. However,
in [43] Ibragimov showed that the adjoint equation to (11) is
equivalent to the original one if the substitution is taken as
follows:

V
1
=

1

𝑢
3
. (15)

In [14], Torrisi and Tracinà discovered the new substitution:

V
2
=

1

𝑢
2
. (16)

Therefore, (11) is quasi self-adjoint.

Our next definition was formulated by Gandarias in [6].

Definition 9. Equation (3) is said to be weak self-adjoint
if the equation obtained from adjoint equation (4) by the
substitution V = 𝜙(𝑥, 𝑢) for a certain function 𝜙 such that
𝜙
𝑢

̸= 0 and 𝜙
𝑥
𝑖 ̸= 0, for some 𝑥

𝑖, is identical with the original
equation (3); that is,

𝐹
∗


V=𝜙(𝑥,𝑢) = 𝜆 (𝑥, 𝑢, . . .) 𝐹, (17)

for some 𝜆 ∈ A.

While strictly self-adjointness implies quasi self-
adjointness, weak self-adjointness does not imply neither
strictly nor quasi self-adjointness. In fact, Definition 9 is
stronger than both Definitions 1 and 5. We illustrate now this
fact.

Example 10. Consider again (7). Although it is clear that such
equation is strictly and quasi self-adjoint, neither V = 𝑢 nor
V = 𝜙(𝑢) are substitutions satisfying Definition 9. However,
let 𝜑 = 𝜑(𝑧) be a smooth real valued function and define V =

𝜑(𝑥 − 𝑡𝑎(𝑢)). Then, substituting this V into (10), we arrive at

V
𝑡
+ 𝑎 (𝑢) V

𝑥




V=𝜑(𝑥−𝑡𝑎(𝑢))

= −𝑎𝜑

(𝑥 − 𝑡𝑎 (𝑢)) + 𝑎𝜑 (𝑥 − 𝑡𝑎 (𝑢)) ≡ 0.

(18)

Thus, if 𝜑 ̸= 0, it means that V = 𝜑(𝑥 − 𝑡𝑎(𝑢)) is a substitution
satisfying Definition 9.
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Example 11. KdV equation (9) is weak self-adjoint. In fact,
one can take the substitution V = 𝑥 + 𝑡𝑢 and easily check
that (10) is equivalent to (9) with this substitution. For further
details, see [4, 16].

Example 12. Considering Harry-Dym equation, it is now
clear that it is not strictly self-adjoint, but it is quasi self-
adjoint. In [15], we proved that adjoint equation (12) to (11)
is also equivalent to itself by considering the substitutions:

V
3
=

𝑥

𝑢
3
, V

4
=

𝑥
2

𝑢
3
. (19)

While substitutions (15) and (16) show that (11) is quasi
self-adjoint, substitutions (19) are enough to prove weak self-
adjointness. On the other hand, neither (15) nor (16) are
substitutions that satisfy what is required in Definition 9.

Finally, we arrived at the state of the art in this field:
nonlinear self-adjointness.

Definition 13. Equation (3) is said to be nonlinearly self-
adjoint if the equation obtained from the adjoint equation
(4) by the substitution V = 𝜙(𝑥, 𝑢) with a certain function
𝜙(𝑥, 𝑢) ̸= 0 is identical with the original equation (3); that is,

𝐹
∗


V=𝜙(𝑥,𝑢) = 𝜆 (𝑥, 𝑢, . . .) 𝐹. (20)

for some 𝜆 ∈ A.
Definition 13 generalizes all of the previous ones. The

substitution required on Definition 13 can be generalized,
allowing dependence on the derivatives of function 𝑢, that is,
a substitution of the type V = 𝜙(𝑥, 𝑢, 𝑢

(1)
, . . .). In the last case,

condition (20) is replaced to

𝐹
∗


V=𝜙(𝑥,𝑢,𝑢(1) ,...)

= 𝜆 (𝑥, 𝑢, . . .) 𝐹 + 𝜆
𝑖1 ...𝑖𝑗

(𝑥, 𝑢, 𝑢
(1)

, . . .) 𝐷
𝑖1
. . . 𝐷
𝑖𝑗
𝐹,

(21)

where

𝐷
𝑖
=

𝜕

𝜕𝑥
𝑖
+ 𝑢
𝑖

𝜕

𝜕𝑢

+ 𝑢
𝑖𝑗

𝜕

𝜕𝑢
𝑗

+ ⋅ ⋅ ⋅ (22)

are the total derivative operators.

Example 14. It is clear that all of the previous discussed
equations provide examples of nonlinear self-adjointness. Let
us now give a different example due to Ibragimov [4], with
explicit dependence on the differential variables.

Consider the equation

𝑢
𝑥𝑦

− sin 𝑢 = 0. (23)

Its adjoint equations are given by

V
𝑥𝑦

− V cos 𝑢 = 0. (24)

Consider the differential function 𝜙 = 𝑢
𝑦
. Then, substituting

it into the left side of (24), the following is obtained:

V
𝑥𝑦

− V cos 𝑢
V=𝑢𝑦

= 𝐷
𝑦
(𝑢
𝑥𝑦

− sin 𝑢) . (25)

Finally, we would like to guide the interested reader to
[4], which is the real and complete reference on this subject.
Therefore, it is an obligatory reading for everyone interested
in this field.

3. Nonlinear Self-Adjoint Classification of (1)
Here, we follow Steps 1 and 2 of the algorithm presented at
the beginning of Section 2. We start obtaining the formal
Lagrangian that in this case is

L = V (𝑢
𝑡
− 𝑟 (𝑥, 𝑡, 𝑢) 𝑢

𝑥𝑥𝑥
− 𝑠 (𝑥, 𝑡, 𝑢) 𝑢

𝑥𝑥

−𝑓 (𝑥, 𝑡, 𝑢) 𝑢
𝑥
− ℎ (𝑥, 𝑡, 𝑢)) .

(26)

Since the easiest stepwas overcome, wemove on to Step 2.
Consider now Euler-Lagrange operators, given by the formal
sums,

𝛿

𝛿𝑢

=

𝜕

𝜕𝑢

+

∞

∑

𝑗=1

(−1)
𝑗
𝐷
𝑖1
⋅ ⋅ ⋅ 𝐷
𝑖𝑗

𝛿

𝛿𝑢
𝑖1 ⋅⋅⋅𝑖𝑗

,

𝛿

𝛿V
=

𝜕

𝜕V
+

∞

∑

𝑗=1

(−1)
𝑗
𝐷
𝑖1
⋅ ⋅ ⋅ 𝐷
𝑖𝑗

𝜕

𝜕V
𝑖1⋅⋅⋅𝑖𝑗

.

(27)

Considering the particular Lagrangian (26), our Euler-
Lagrange operators can be simplified to

𝛿

𝛿𝑢

=

𝜕

𝜕𝑢

− 𝐷
𝑡

𝜕

𝜕𝑢
𝑡

− 𝐷
𝑥

𝜕

𝜕𝑢
𝑥

+ 𝐷
2

𝑥

𝜕

𝜕𝑢
𝑥𝑥

− 𝐷
3

𝑥

𝜕

𝜕𝑢
𝑥𝑥𝑥

,

𝛿

𝛿V
=

𝜕

𝜕V
.

(28)

Then, we have

𝛿L

𝛿V
= 𝑢
𝑡
− 𝑟 (𝑥, 𝑡, 𝑢) 𝑢

𝑥𝑥𝑥
− 𝑠 (𝑥, 𝑡, 𝑢) 𝑢

𝑥𝑥

− 𝑓 (𝑥, 𝑡, 𝑢) 𝑢
𝑥
− ℎ (𝑥, 𝑡, 𝑢) ≡ 𝐹,

𝛿L

𝛿𝑢

= − V (𝑓
𝑢
𝑢
𝑥
+ 𝑠
𝑢
𝑢
𝑥𝑥

+ 𝑟
𝑢
𝑢
𝑥𝑥𝑥

+ ℎ
𝑢
)

− 𝐷
𝑡
(V) + 𝐷

𝑥
(V𝑓) − 𝐷

2

𝑥
(V𝑠) + 𝐷

3

𝑥
(V𝑟) ≡ 𝐹

∗
.

(29)

In order to avoid a tiring notation, we omit from now
the dependence on (𝑥, 𝑡, 𝑢) of the functions involved in the
calculations. Thus, the expression 𝐹

∗ is given by

𝐹
∗

= − V (𝑓
𝑢
𝑢
𝑥
+ 𝑠
𝑢
𝑢
𝑥𝑥

+ 𝑟
𝑢
𝑢
𝑥𝑥𝑥

+ ℎ
𝑢
)

− V
𝑡
+ V
𝑥
𝑓 + V𝑓

𝑥
+ V𝑓
𝑢
𝑢
𝑥
− V
𝑥𝑥

𝑠 − 2V
𝑥
𝑠
𝑥

− 2V
𝑥
𝑠
𝑢
𝑢
𝑥
− V𝑠
𝑥𝑥

− 2V𝑠
𝑥𝑢

𝑢
𝑥
− V𝑠
𝑢𝑢

𝑢
2

𝑥
− V𝑠
𝑢
𝑢
𝑥𝑥

+ V
𝑥𝑥𝑥

𝑟 + 3V
𝑥𝑥

𝑟
𝑥
+ 3V
𝑥𝑥

𝑟
𝑢
𝑢
𝑥
+ 3V
𝑥
𝑟
𝑥𝑥

+ 6V
𝑥
𝑟
𝑥𝑢

𝑢
𝑥
+ 3V
𝑥
𝑟
𝑢𝑢

𝑢
2

𝑥
+ 3V𝑟
𝑥𝑥𝑢

𝑢
𝑥
+ 3V𝑟
𝑥𝑢𝑢

𝑢
2

𝑥

+ 3V
𝑥
𝑟
𝑢
𝑢
𝑥𝑥

+ 3V𝑟
𝑢𝑢

𝑢
𝑥
𝑢
𝑥𝑥

+ 3V𝑟
𝑥𝑢

𝑢
𝑥𝑥

+ V𝑟
𝑥𝑥𝑥

+ V𝑟
𝑢𝑢𝑢

𝑢
3

𝑥
+ V𝑟
𝑢
𝑢
𝑥𝑥𝑥

.

(30)
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Replacing V = 𝜙(𝑥, 𝑡, 𝑢) into (30), we obtain

𝐹
∗
|V=𝜙(𝑥,𝑡,𝑢) = − 𝜙

𝑢
𝐹

+ (−𝜙
𝑡
− (𝜙ℎ)

𝑢
+ (𝜙𝑓)

𝑥
− (𝜙𝑠)

𝑥𝑥
+ (𝜙𝑟)

𝑥𝑥𝑥
)

+ (3(𝜙𝑟)
𝑥𝑥𝑢

− 2(𝜙𝑠)
𝑥𝑢

) 𝑢
𝑥

+ (3(𝜙𝑟)
𝑥𝑢𝑢

− (𝜙𝑠)
𝑢𝑢

) 𝑢
2

𝑥
+ (𝜙𝑟)

𝑢𝑢𝑢
𝑢
3

𝑥

+ (3(𝜙𝑟)
𝑥𝑢

− 2(𝜙𝑠)
𝑢
) 𝑢
𝑥𝑥

+ 3(𝜙𝑟)
𝑢𝑢

𝑢
𝑥
𝑢
𝑥𝑥

.

(31)

From Definition 13, in order to (1) be nonlinearly self-
adjoint, we must have 𝜆 = −𝜙

𝑢
and

(−𝜙
𝑡
− (𝜙ℎ)

𝑢
+ (𝜙𝑓)

𝑥
− (𝜙𝑠)

𝑥𝑥
+ (𝜙𝑟)

𝑥𝑥𝑥
)

+ (3(𝜙𝑟)
𝑥𝑥𝑢

− 2(𝜙𝑠)
𝑥𝑢

) 𝑢
𝑥

+ (3(𝜙𝑟)
𝑥𝑢𝑢

− (𝜙𝑠)
𝑢𝑢

) 𝑢
2

𝑥
+ (𝜙𝑟)

𝑢𝑢𝑢
𝑢
3

𝑥

+ (3(𝜙𝑟)
𝑥𝑢

− 2(𝜙𝑠)
𝑢
) 𝑢
𝑥𝑥

+ 3(𝜙𝑟)
𝑢𝑢

𝑢
𝑥
𝑢
𝑥𝑥

= 0.

(32)

Since the set {1, 𝑢
𝑥
, 𝑢
2

𝑥
, 𝑢
3

𝑥
, 𝑢
𝑥𝑥

, 𝑢
𝑥
𝑢
𝑥𝑥

} is linearly indepen-
dent, we obtain the following system of equations:

−𝜙
𝑡
− (𝜙ℎ)

𝑢
+ (𝜙𝑓)

𝑥
− (𝜙𝑠)

𝑥𝑥
+ (𝜙𝑟)

𝑥𝑥𝑥
= 0, (33)

3(𝜙𝑟)
𝑥𝑥𝑢

− 2(𝜙𝑠)
𝑥𝑢

= 0, (34)

3(𝜙𝑟)
𝑥𝑢𝑢

− (𝜙𝑠)
𝑢𝑢

= 0, (35)

(𝜙𝑟)
𝑢𝑢𝑢

= 0, (36)

3(𝜙𝑟)
𝑥𝑢

− 2(𝜙𝑠)
𝑢
= 0, (37)

3(𝜙𝑟)
𝑢𝑢

= 0. (38)

From (38) and (35), we conclude that (𝜙𝑠)
𝑢𝑢

= 0.
Equations (38) and (37) imply, respectively, (36) and (34).

Thus, we arrived at the following system:

(𝜙𝑟)
𝑢𝑢

= 0, 3(𝜙𝑟)
𝑥𝑢

− 2(𝜙𝑠)
𝑢
= 0, (𝜙𝑠)

𝑢𝑢
= 0,

(𝜙𝑓)
𝑥
− 𝜙
𝑡
− (𝜙ℎ)

𝑢
− (𝜙𝑠)

𝑥𝑥
+ (𝜙𝑟)

𝑥𝑥𝑥
= 0.

(39)

4. Examples of Nonlinearly Self-Adjoint
Equations of the Type (1)

In this section, we present two examples of nonlinearly self-
adjoint equations of type (1). We consider some particular
cases of the equations studied in [31]. First, let us consider
the equation

𝑢
𝑡
+ 𝑝 (𝑡) 𝑒

𝑘𝑥
𝑢𝑢
𝑥
+ 𝑞 (𝑡) 𝑢

𝑥𝑥𝑥
= 0, (40)

where 𝑝(𝑡) and 𝑞(𝑡) are nonzero functions and 𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.
From (39), we obtain

𝑞 (𝑡) 𝜙
𝑢𝑢

= 0, 𝑞 (𝑡) 𝜙
𝑥𝑢

= 0, (41)

(𝑝 (𝑡) 𝑒
𝑘𝑥

𝑢𝜙)
𝑥
+ 𝜙
𝑡
+ 𝑞 (𝑡) 𝜙

𝑥𝑥𝑥
= 0. (42)

From (41), since 𝑞(𝑡) is nonzero, we conclude that the
function 𝜙 = 𝜙(𝑥, 𝑡, 𝑢) is 𝜙 = 𝐴(𝑡)𝑢 + 𝐵(𝑥, 𝑡), for certain
functions 𝐴 = 𝐴(𝑡) and 𝐵 = 𝐵(𝑥, 𝑡). Substituting the
expression of 𝜙 into (42), we have

𝑘𝑝 (𝑡) 𝑒
𝑘𝑥

𝐴 (𝑡) 𝑢
2

+ [𝐴

(𝑡) + 𝑝 (𝑡) 𝑒

𝑘𝑥
𝐵
𝑥
(𝑥, 𝑡) + 𝑘𝑝 (𝑡) 𝑒

𝑘𝑥
𝐵 (𝑥, 𝑡)] 𝑢

+ 𝐵
𝑡
(𝑥, 𝑡) + 𝑞 (𝑡) 𝐵

𝑥𝑥𝑥
(𝑥, 𝑡) = 0.

(43)

Since the set {1, 𝑢, 𝑢2} is linearly independent, we have the
following system of equations:

𝑘𝑝 (𝑡) 𝑒
𝑘𝑥

𝐴 (𝑡) = 0, (44)

𝐴

(𝑡) + 𝑝 (𝑡) 𝑒

𝑘𝑥
𝐵
𝑥
(𝑥, 𝑡) + 𝑘𝑝 (𝑡) 𝑒

𝑘𝑥
𝐵 (𝑥, 𝑡) = 0, (45)

𝐵
𝑡
(𝑥, 𝑡) + 𝑞 (𝑡) 𝐵

𝑥𝑥𝑥
(𝑥, 𝑡) = 0. (46)

Considering the case 𝑘 = 0 and𝑝(𝑡)𝐴(𝑡) ̸= 0 in (44).Thus,
(45) is simplified to

𝐴

(𝑡) + 𝑝 (𝑡) 𝐵

𝑥
(𝑥, 𝑡) = 0, (47)

and, therefore,

𝐵 (𝑥, 𝑡) = −

𝐴

(𝑡)

𝑝 (𝑡)

𝑥 + 𝐶 (𝑡) . (48)

Equation (48) implies that 𝐵
𝑥𝑥𝑥

(𝑥, 𝑡) = 0. Then, from
(46), we conclude that

𝐴 (𝑡) = 𝑐
1
∫𝑝 (𝑡) 𝑑𝑡 + 𝑐

2
, 𝐵 (𝑥, 𝑡) = −𝑐

1
𝑥 + 𝑐
3
, (49)

where 𝑐
1
, 𝑐
2
and 𝑐

3
are arbitrary constants. Therefore, we

obtain

𝜙 (𝑥, 𝑡, 𝑢) = 𝑐
1
[(∫𝑝 (𝑡) 𝑑𝑡) 𝑢 − 𝑥] + 𝑐

2
𝑢 + 𝑐
3
. (50)

Whenever 𝑝 = 𝑞 = −1, and under the change 𝑐
1

→ −𝑐
1
,

it is concluded that 𝜙 = 𝑐
1
(𝑥 + 𝑡𝑢) + 𝑐

2
𝑢 + 𝑐
3
, a well-known

result on KdV equation; see [4, 16].
Now consider the case 𝑘 ̸= 0.Thenwemust consider three

subcases: 𝐴 = 0 and 𝑝 ̸= 0, 𝐴 ̸= 0 and 𝑝 = 0, and 𝐴 = 𝑝 = 0.

Case 𝐴 = 0 and 𝑝 ̸= 0. From (44)–(46), we conclude that
𝐵(𝑥, 𝑡) = 𝑏

0
𝑒
−𝑘𝑥+𝑘

3
𝑄(𝑡), with 𝑄


(𝑡) = 𝑞(𝑡), and then, choose

𝑏
0
= 1;

𝜙 (𝑥, 𝑡, 𝑢) = 𝑒
−𝑘𝑥+𝑘

3
𝑄(𝑡)

. (51)
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Case𝐴 ̸= 0 and 𝑝 = 0. From (45), we easily arrive at𝐴(𝑡) = 𝑐
1
.

Then, the substitution is

𝜙 (𝑥, 𝑡, 𝑢) = 𝑐
1
𝑢 + 𝐵 (𝑥, 𝑡) , (52)

where 𝐵 is a solution of (46). The third subcase 𝐴 = 𝑝 = 0 is
a particular case of this last one taking 𝑐

1
= 0 into (52).

As a second example, consider the equation

𝑢
𝑡
+

1

𝑥

𝑢𝑢
𝑥
+ 𝑔 (𝑡) 𝑢

𝑥𝑥𝑥
= 0 (53)

with 𝑔(𝑡) ̸= 0. In this case, system (39) reads

𝑔 (𝑡) 𝜙
𝑢𝑢

= 0, 𝑔 (𝑡) 𝜙
𝑥𝑢

= 0, (54)

(

𝑢

𝑥

𝜙)

𝑥

+ 𝜙
𝑡
+ 𝑔 (𝑡) 𝜙

𝑥𝑥𝑥
= 0. (55)

From (54), we again obtain

𝜙 = 𝐴 (𝑡) 𝑢 + 𝐵 (𝑥, 𝑡) . (56)

Replacing the function expression in (55) and grouping in
terms of 𝑢 and 𝑢

2 we have

−

𝐴 (𝑡)

𝑥
2

𝑢
2
+ (𝐴

(𝑡) +

𝐵
𝑥
(𝑥, 𝑡)

𝑥

−

𝐵 (𝑥, 𝑡)

𝑥
2

)𝑢

+ 𝐵
𝑡
(𝑥, 𝑡) + 𝑔 (𝑡) 𝐵

𝑥𝑥𝑥
(𝑥, 𝑡) = 0.

(57)

The system

−

𝐴 (𝑡)

𝑥
2

= 0, (58)

𝐴

(𝑡) +

𝐵
𝑥
(𝑥, 𝑡)

𝑥

−

𝐵 (𝑥, 𝑡)

𝑥
2

= 0, (59)

𝐵
𝑡
(𝑥, 𝑡) + 𝑔 (𝑡) 𝐵

𝑥𝑥𝑥
(𝑥, 𝑡) = 0 (60)

follows from (57). Equation (58) implies 𝐴(𝑡) = 0. From (59)
and (60), we conclude that

𝜙 (𝑥, 𝑡, 𝑢) = 𝑐𝑥, (61)

with 𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

5. Conclusion

In this paper we discussed about some ideas introduced in
[1, 3, 4, 6, 43]. These ideas are very recent and until now
the applications are mainly restricted to the obtainment of
local conservation laws using the approach suggested in [1].
However, some recent facts show that there is more to self-
adjointness than meets the eye.

In fact, in [4], Ibragimov began to consider the con-
cept of approximated nonlinear self-adjointness. Recently
[44] explored deeper these concepts. In [45] approximate
conservation laws for a nonlinear filtration equation were
established.

Nowadays, the fractional calculus seems to be a new
branch in Mathematics. In [46] fractional conservation laws

using the approach proposed in [1] were presented, which
means that the concepts of self-adjoint differential equations
must be considered in the sense of fractional differential
equations.

Finally, we would like to mention that recently some
possible connections between integrable equations, strictly
self-adjointness and scale invariance have been reported in
[47], although this relation is not clear yet.
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