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We apply the homotopy perturbationmethod to obtain the solution of partial differential equations of fractional order.Thismethod
is powerful tool to find exact and approximate solution ofmany linear andnonlinear partial differential equations of fractional order.
Convergence of the method is proved and the convergence analysis is reliable enough to estimate the maximum absolute truncated
error of the series solution. The fractional derivatives are described in the Caputo sense. Some examples are presented to verify
convergence hypothesis and simplicity of the method.

1. Introduction

Recently, the partial differential equations of fractional order
have attracted much attention. This is mostly due to their
frequent appearance inmany applications in fluidmechanics,
viscoelastic, biology, engineering, and physics [1, 2].

Most of partial differential equations of fractional order
do not have exact analytical solution, so approximations and
numerical techniques must be used. Some of these methods
are series solution methods which include Adomain decom-
position method [3], homotopy analysis method [4, 5], vari-
ationalmiteration method [6], and homotopy perturbation
method [7–9]. The homotopy perturbation method [10] pro-
posed by He in 1998.This method is useful tool for obtaining
exact and approximate solution of linear and nonlinear par-
tial differential equations of fractional order.There is no need
for a small parameter or linearization, the solution procedure
is very simple, and only few iterations lead to high accurate
solutions which are valid for the all solution domains. The
solution is expressed as the summation of an infinite series
which is supposed to be convergent to the exact solution.
This method has been used to solve effectively, easily, and
accurately many types of fractional equations of linear and
nonlinear problems with approximations. For example, [11]

applied HPM to solve a class of initialboundary value prob-
lems of fractional partial differential equations over finite
domain. [12] used HPM for solving the Klein-Gordon partial
differential equations of fractional order. Furthermore, many
authors applied HPM for solving and investigating linear and
nonlinear partial differential equations of fractional ordering;
see [13, 14]. For more details about homotopy perturbation
method and its applications, we refer to [15, 16].

Our aim in this study is to extend the applications ofHPM
to obtain approximate solution of some partial differential
equations of fractional order such as Burgers’ equation of
fractional order and fractional fourth-order parabolic partial
differential equation and obtain the convergence of this
method.

The paper is organized as follows. In Section 2, some basic
definitions and properties of fractional calculus theory are
given. In Section 3, the basic idea of HPM is presented. In
Section 4, analysis of HPM is given. Some examples are given
in Section 5. Concluding remarks are listed in Section 6.

2. Preliminaries

In this section, we give some basic definitions and properties
of fractional calculus theory which are used in this paper.
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2 Abstract and Applied Analysis

Definition 1. A real function 𝑓(𝑥), 𝑥 > 0 is said to be in space
𝐶𝜇,𝜇 ∈ 𝑅 if there exists a real number𝑝 > 𝜇, such that𝑓(𝑥) =
𝑥𝑝𝑓1(𝑥) where 𝑓1(𝑥) ∈ 𝐶(0,∞), and it is said to be in the
space 𝐶𝑛

𝜇
if 𝑓𝑛 ∈ 𝐶𝜇, 𝑛 ∈ 𝑁.

Definition 2. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0 of a function 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1 is defined
as

𝐽𝛼𝑓 (𝑥) =
1

Γ (𝛼)
∫
𝑥

0

(𝑥 − 𝑡)
𝛼−1𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0, 𝑡 > 0 (1)

in particular 𝐽0𝑓(𝑥) = 𝑓(𝑥).
For 𝛽 ≥ 0 and 𝛾 ≥ −1. The operator 𝐽𝛼 has the following

properties

(1) 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛼+𝛽𝑓(𝑥),
(2) 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛽𝐽𝛼𝑓(𝑥),

(3) 𝐽𝛼𝑥𝛾 = Γ(𝛾 + 1)/Γ(𝛼 + 𝛾 + 1)𝑥
𝛼+𝛾

.

Definition 3. The Caputo fractional derivative of 𝑓 ∈ 𝐶𝑚
−1
,

𝑚 ∈ 𝑁, is defined as

𝐷𝛼𝑓 (𝑥) =
1

Γ (𝑚 − 𝛼)
∫
𝑥

0

(𝑥 − 𝑡)
𝑚−𝛼−1𝑓𝑚 (𝑡) 𝑑𝑡,

𝑚 − 1 < 𝛼 ≤ 𝑚.

(2)

Lemma 4. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑁, 𝑓 ∈ 𝐶𝑚
𝜇
, 𝜇 > −1, then

the following two properties hold

(1) 𝐷𝛼[𝐽𝛼𝑓(𝑥)] = 𝑓(𝑥),
(2) 𝐽𝛼[𝐷𝛼𝑓(𝑥)] = 𝑓(𝑥) − ∑

𝑚−1

𝑘=1
𝑓𝑘(0)(𝑥𝑘/𝑘!).

3. Homotopy Perturbation Method

To illustrate the basic idea of this method, we consider the
following nonlinear differential equation:

𝐴 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω (3)

with boundary conditions

𝐵(𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑟 ∈ Γ, (4)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) is a known analytic function, and Γ is the
boundary of the domainΩ.

In general, the operator𝐴 can be divided into two parts 𝐿
and 𝑁, where 𝐿 is linear, while 𝑁 is nonlinear. Equation (3)
therefor can be rewritten as follows:

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (5)

By the homotopy technique [10, 17] we construct a homotopy
V(𝑟, 𝑝) : Ω × [0, 1] → 𝑅 which satisfies

𝐻(V, 𝑝) = (1 − 𝑝) [𝐿 (V) − 𝐿 (𝑢0)] + 𝑝 [𝐴 (V) − 𝑓 (𝑟)] = 0

𝑝 ∈ [0, 1] , 𝑟 ∈ Ω

(6)

or

𝐻(V, 𝑝) = 𝐿 (V) − 𝐿 (𝑢0) + 𝑝𝐿 (𝑢0) + 𝑝 [𝑁 (V) − 𝑓 (𝑟)] = 0,
(7)

where 𝑝 ∈ [0, 1] is an embedding parameter and 𝑢0 is an
initial approximation of (3) which satisfies the boundary
conditions.

From (6) and (7), we have

𝐻(V, 0) = 𝐿 (V) − 𝐿 (𝑢0) = 0,

𝐻 (V, 1) = 𝐴 (V) − 𝑓 (𝑟) = 0.
(8)

The change in the process of 𝑝 from zero to unity is just
that of V(𝑟, 𝑝) from 𝑢0(𝑟) to 𝑢(𝑟). In topology, this is called
deformation and 𝐿(V) − 𝐿(𝑢0), and 𝐴(V) − 𝑓(𝑟) are called
homotopic.

Now, assume that the solution of (6) and (7) can be
expressed as

V = V0 + 𝑝V1 + 𝑝2V2 + ⋅ ⋅ ⋅ . (9)

The approximate solution of (3) can be obtained by setting
𝑝 = 1:

𝑢 = lim
𝑝→1

V = V0 + V1 + V2 + ⋅ ⋅ ⋅ . (10)

4. Analysis on Convergence and Solution

Consider the following fractional partial differential equa-
tions:
𝑐
𝐷𝛼
𝑡
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷

𝑛
1𝑢 (𝑡) , 𝐷

𝑛
2𝑢 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑢 (𝑡)) ,

𝑡 ∈ [0, 𝑇]

(11)

𝑢𝑘 (0) = 𝑏𝑘, 𝑢 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) , 𝑘 = 0, 1, 2, . . . , (12)

where 𝐷𝛼
𝑡
= 𝜕𝛼/𝜕𝑡𝛼 is Caputo fractional derivative of order

𝛼, 𝑚 − 1 ≤ 𝛼 ≤ 𝑚, 𝑛𝑖 ∈ N for every 𝑖. Consider that
𝑓 : [0, 𝑇] × 𝑅 × 𝑅 × ⋅ ⋅ ⋅ × 𝑅 → 𝑅 is a continuous map-
ping. 𝑓(𝑡, 𝑢1, 𝑢2, . . . , 𝑢𝑛) exists with continuous and bounded
derivatives 𝜕𝑓/𝜕𝑢𝑖 satisfing the Lipschitz condition

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢1 (𝑡) , 𝐷
𝑛
1𝑢1 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑢1 (𝑡))

−𝑓 (𝑡, 𝑢2 (𝑡) , 𝐷
𝑛
1𝑢2 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑢2 (𝑡))

󵄨󵄨󵄨󵄨

≤ 𝐿
󵄨󵄨󵄨󵄨(𝑢1, 𝐷

𝑛
1𝑢1, 𝐷

𝑛
2𝑢1, . . . , 𝐷

𝑛
𝑞𝑢1)

− (𝑢2, 𝐷
𝑛
1𝑢2, 𝐷

𝑛
2𝑢2, . . . , 𝐷

𝑛
𝑞𝑢2)

󵄨󵄨󵄨󵄨 , 𝑡 ≥ 0,

(13)

where 𝐿 is Lipschitz constant.
To illustrate the basic concepts of HPM for fractional

partial differential equation (11) with the initial conditions
(12), we construct the following homotopy for (11):

(1 − 𝑝)
𝑐

𝑎
𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡)

+ 𝑝 (
𝑐

𝑎
𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) − 𝑓 (𝑡 , 𝑢 (𝑡) , 𝐷

𝑛
1𝑢,

𝐷𝑛2𝑢 (𝑡) , . . . , 𝐷
𝑛
𝑞𝑢 (𝑡) ) = 0

(14)
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or
𝑐

𝑎
𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡)

= 𝑝 (𝑓 (𝑡 , 𝑢 (𝑡) , 𝐷
𝑛
1𝑢 (𝑡) , 𝐷

𝑛
2𝑢 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑢 (𝑡)) .

(15)

Substituting (9) into (15) and equating the terms with having
identical power of 𝑝, we obtain the following series of
equations:

𝑝0 :
𝑐

𝑎
𝐷𝛼
𝑡
𝑢0 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) ,

𝑝1 :
𝑐

𝑎
𝐷𝛼
𝑡
𝑢1 (𝑥, 𝑡)

= 𝑓 (𝑡, 𝑢0, 𝐷
𝑛
1𝑢0 (𝑡) , 𝐷

𝑛
2𝑢0 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑢0 (𝑡)) ,

𝑝2 :
𝑐

𝑎
𝐷𝛼
𝑡
𝑢2 (𝑥, 𝑡)

= 𝑓 (𝑡, 𝑢1, 𝐷
𝑛
1𝑢1 (𝑡) , 𝐷

𝑛
2𝑢1 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑢1 (𝑡)) ,

...

𝑝𝑛 :
𝑐

𝑎
𝐷𝛼
𝑡
𝑢𝑛 (𝑥, 𝑡)

= 𝑓 (𝑡, 𝑢𝑛−1, 𝐷
𝑛
1𝑢𝑛−1 (𝑡) , 𝐷

𝑛
2𝑢𝑛−1 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑢𝑛−1 (𝑡))

...
(16)

Operating with Riemann-Liouville fractional operator 𝐽𝛼,
which is the inverse operator of Caputo derivative 𝐶𝐷𝛼

𝑎
in

both sides of (16) the solution

𝑢0 (𝑥, 𝑡) =
𝑛−1

∑
𝑘=0

𝑏𝑘𝑡𝑘

𝑘!
+ 𝐽𝛼 (𝑓 (𝑥, 𝑡)) ,

𝑢1 (𝑥, 𝑡)

= 𝐽𝛼 (𝑓 (𝑡, 𝑢0, 𝐷
𝑛
1𝑢0 (𝑡) , 𝐷

𝑛
2𝑢0 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑢0 (𝑡)))

𝑢2 (𝑥, 𝑡)

= 𝐽𝛼 (𝑓 (𝑡, 𝑢1, 𝐷
𝑛
1𝑢1 (𝑡) , 𝐷

𝑛
2𝑢1 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑢1 (𝑡))) ,

...

𝑢𝑛 (𝑥, 𝑡)

= 𝐽𝛼 (𝑓 (𝑡, 𝑢𝑛−1, 𝐷
𝑛
1𝑢𝑛−1 (𝑡) , 𝐷

𝑛
2𝑢𝑛−1,

. . . , 𝐷𝑛𝑞𝑢𝑛−1 (𝑡))

...
(17)

The solution of (11) in series form is given by
𝑢 (𝑥, 𝑡) = 𝑢1 (𝑥, 𝑡) + 𝑢2 (𝑥, 𝑡) + 𝑢3 (𝑥, 𝑡) + ⋅ ⋅ ⋅ . (18)

Define that (𝐶[0, 𝑇], ‖ ⋅ ‖) is the Banach space, the space of all
continuous functions on [0, 𝑇] with the norm

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩 = max
∀𝑡∈ [0,𝑇]

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 . (19)

4.1. Existence and Uniqueness of Solutions

Theorem 5. Let 𝑓 satisfy the Lipschitz condition (13) and then
the problem (11) has unique solution 𝑢(𝑥, 𝑡), whenever 0 < 𝛾 <
1.

Proof. Let 𝑦 and 𝑧 be two different solutions of (11), and
for All 𝑡 ∈ [0, 𝑇] and 𝜏 ∈ [0, 𝑡] is bounded. Let 𝑀 =
max0≤𝜏≤𝑡,0≤𝑡≤𝑇|(𝑡 − 𝜏)𝛼−1|; then,

𝑦 − 𝑧 = 𝐽𝛼 (𝑓 (𝑡) , 𝑦 (𝑡) , 𝐷
𝑛
1𝑦 (𝑡) , 𝐷

𝑛
2𝑦 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑦 (𝑡))

− 𝐽𝛼 (𝑓 (𝑡) , 𝑧 (𝑡) , 𝐷
𝑛
1𝑧 (𝑡) , 𝐷

𝑛
2𝑧 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑧 (𝑡)) ,

𝑦 − 𝑧 =
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝜏)
𝛼−1𝑓 (𝜏, 𝑦 (𝑡) , 𝐷

𝑛
1𝑦 (𝑡) , 𝐷

𝑛
2𝑦,

. . . , 𝐷𝑛𝑞𝑦 (𝑡)) 𝑑𝜏

−
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝜏)
𝛼−1

× 𝑓 (𝜏, 𝑧 (𝑡) , 𝐷
𝑛
1𝑧 (𝑡) , 𝐷

𝑛
2𝑧 (𝑡) , . . . , 𝐷

𝑛
𝑞𝑧 (𝑡)) 𝑑𝜏,

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝜏)
𝛼−1𝑓 (𝜏, 𝑦 (𝑡) , 𝐷

𝑛
1𝑦 (𝑡) , 𝐷

𝑛
2𝑦,

. . . , 𝐷𝑛𝑞𝑦 (𝑡)) 𝑑𝜏

−
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝜏)
𝛼−1𝑓 (𝜏, 𝑧 (𝑡) , 𝐷

𝑛
1𝑧,

𝐷𝑛2𝑧 (𝑡) ,

. . . , 𝐷𝑛𝑞𝑧 (𝑡)) 𝑑𝜏
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐿

Γ (𝛼)
∫
𝑡

0

󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝜏)
𝛼−1󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨 𝑑𝜏,

max 󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨 ≤

𝐿

Γ (𝛼)
max∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝜏)
𝛼−1󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨 𝑑𝜏,

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩 ≤ [

𝐿𝑀𝑇

Γ (𝛼)
]
𝑛

⋅
1

𝑛!

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩 ≤ 𝛾

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩 ,

(1 − 𝛾)
󵄩󵄩󵄩󵄩𝑦 − 𝑧

󵄩󵄩󵄩󵄩 ≤ 0.

(20)

Since 1 − 𝛾 ̸= 0, then ‖𝑦 − 𝑧‖ = 0; therefore, 𝑦 = 𝑧, and this
completes the proof.

4.2. Proof of the Convergence

Theorem6. Let𝑢𝑛(𝑥, 𝑡) and𝑢(𝑥, 𝑡) be defined in Banach space
(𝐶[0, 𝑇], ‖ ⋅ ‖). Then the series solution {𝑢𝑛(𝑥, 𝑡)}

∞

𝑛=1
defined by

(18) converges to the solution of (11), if 0 < 𝛾 < 1.
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Proof. Suppose that {𝑠𝑛} is the sequence of partial sums of the
series (18) andweneed to show that 𝑠𝑛(𝑡) is aCauchy sequence
in Banach space (𝐶[0, 𝑇, ‖ ⋅ ‖]). For this, we consider

󵄩󵄩󵄩󵄩𝑠𝑛+1 (𝑡) − 𝑠𝑛 (𝑡)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑢𝑛+1 (𝑡)
󵄩󵄩󵄩󵄩

≤ 𝛾
󵄩󵄩󵄩󵄩𝑢𝑛 (𝑡)

󵄩󵄩󵄩󵄩

≤ 𝛾2
󵄩󵄩󵄩󵄩𝑢𝑛−1 (𝑡)

󵄩󵄩󵄩󵄩

≤ ⋅ ⋅ ⋅ ≤ 𝛾𝑛+1
󵄩󵄩󵄩󵄩𝑢0 (𝑡)

󵄩󵄩󵄩󵄩 .

(21)

Now, for every 𝑛,𝑚 ∈ 𝑁, 𝑛 ≥ 𝑚, there are two arbitrary
partial sums 𝑠𝑛 and 𝑠𝑚; by using (21) and triangle inequality
successively, we have

󵄩󵄩󵄩󵄩𝑠𝑛 − 𝑠𝑚
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩(𝑠𝑛 (𝑡) − 𝑠𝑛−1 (𝑡))

+ (𝑠𝑛−1 (𝑡) − 𝑠𝑛−2 (𝑡)) + ⋅ ⋅ ⋅ + (𝑠𝑚+1 (𝑡) − 𝑠𝑚 (𝑡))
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑠𝑛 − 𝑠𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑠𝑛−1 − 𝑠𝑛−2

󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩𝑠𝑚+1 − 𝑠𝑚

󵄩󵄩󵄩󵄩

≤ [𝛾𝑛 + 𝛾𝑛−1 + 𝛾𝑛−2 + ⋅ ⋅ ⋅ + 𝛾𝑚+1]

×
󵄩󵄩󵄩󵄩𝑢0 (𝑡)

󵄩󵄩󵄩󵄩

≤ 𝛾𝑚+1 [𝛾𝑛−𝑚−1 + 𝛾𝑛−𝑚−2 + ⋅ ⋅ ⋅ + 𝛾 + 1]
󵄩󵄩󵄩󵄩𝑢0 (𝑡)

󵄩󵄩󵄩󵄩

≤ 𝛾𝑚+1 (
1 − 𝛾𝑛−𝑚

1 − 𝛾
)
󵄩󵄩󵄩󵄩𝑢0 (𝑡)

󵄩󵄩󵄩󵄩 .

(22)

Since 0 < 𝛾 < 1, we have (1 − 𝛾𝑛−𝑚) < 1; then,

󵄩󵄩󵄩󵄩𝑠𝑛 − 𝑠𝑚
󵄩󵄩󵄩󵄩 ≤

𝛾𝑚+1

(1 − 𝛾)
max
∀𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑢0 (𝑡)
󵄨󵄨󵄨󵄨 . (23)

Since 𝑢0 is bounded,

lim
𝑛,𝑚→∞

󵄩󵄩󵄩󵄩𝑠𝑛 (𝑡) − 𝑠𝑚 (𝑡)
󵄩󵄩󵄩󵄩 = 0. (24)

Therefore, 𝑠𝑛(𝑡) is a Cauchy sequence in 𝐶[0, 𝑇], so the series
converges and the proof complete.

4.3. Error Estimate

Theorem 7. The maximum absolute truncation error of the
series solution (18) of the problem (11) is estimated to be

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑥, 𝑡) −

𝑚

∑
𝑖=0

𝑢𝑖 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝛾𝑚+1

(1 − 𝛾)

󵄩󵄩󵄩󵄩𝑢0 (𝑡)
󵄩󵄩󵄩󵄩 . (25)

Proof. FromTheorem 6 and inequality (22), we have

󵄩󵄩󵄩󵄩𝑢 (𝑡) − 𝑠𝑚
󵄩󵄩󵄩󵄩 ≤ 𝛾𝑚+1 (

1 − 𝛾𝑛−𝑚

1 − 𝛾
)
󵄩󵄩󵄩󵄩𝑢0 (𝑡)

󵄩󵄩󵄩󵄩 . (26)

Since 0 < 𝛾 < 1, we have 1−𝛾𝑛−𝑚 < 1; thus, we get the formula
(25)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑥, 𝑡) −

𝑚

∑
𝑖=0

𝑢𝑖 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝛾𝑚+1

(1 − 𝛾)

󵄩󵄩󵄩󵄩𝑢0 (𝑡)
󵄩󵄩󵄩󵄩 . (27)

This completes the proof.

5. Applications

Example 8. Consider the following fractional partial differ-
ential equations with initial condition:

𝜕𝛼𝑢

𝜕𝑡𝛼
+ 𝑢

𝜕𝑢

𝜕𝑥
=

𝜕2𝑢

𝜕𝑥2
, (𝑥, 𝑡) ∈ 𝑅 × [0,

1

2
) (28)

𝑢 (𝑥, 0) = 2𝑥 (29)

with the exact solution at special case 𝛼 = 1

𝑢 (𝑥, 𝑡) =
2𝑥

1 + 2𝑡
. (30)

To solve (28) with initial condition (29), according to the
homotopy perturbation technique, we construct the follow-
ing homotopy:

(1 − 𝑝) (
𝜕𝛼𝑢

𝜕𝑡𝛼
−
𝜕𝛼𝑢0
𝜕𝑡𝛼

) = 𝑝(
𝜕2𝑢

𝜕𝑥2
− 𝑢

𝜕𝑢

𝜕𝑥
−
𝜕𝛼𝑢

𝜕𝑡𝛼
) (31)

or

𝜕𝛼𝑢

𝜕𝑡𝛼
−
𝜕𝛼𝑢0
𝜕𝑡𝛼

= 𝑝(
𝜕2𝑢

𝜕𝑥2
− 𝑢

𝜕𝑢

𝜕𝑥
−
𝜕𝛼𝑢0
𝜕𝑡𝛼

) . (32)

Substituting of (9) in (32) and then equating the terms with
same powers of 𝑝, we get the series

𝑝0 :
𝜕𝛼𝑢0
𝜕𝑡𝛼

= 0,

𝑝1 :
𝜕𝛼𝑢1
𝜕𝑡𝛼

=
𝜕2𝑢0
𝜕𝑥2

− 𝑢0
𝜕𝑢0
𝜕𝑥

−
𝜕𝛼𝑢0
𝜕𝑡𝛼

,

𝑝2 :
𝜕𝛼𝑢2
𝜕𝑡𝛼

=
𝜕2𝑢1
𝜕𝑥2

− 𝑢1
𝜕𝑢0
𝜕𝑥

− 𝑢0
𝜕𝑢1
𝜕𝑥

,

𝑝3 :
𝜕𝛼𝑢3
𝜕𝑡𝛼

=
𝜕2𝑢2
𝜕𝑥2

− 𝑢2
𝜕𝑢0
𝜕𝑥

− 𝑢1
𝜕𝑢1
𝜕𝑥

− 𝑢0
𝜕𝑢2
𝜕𝑥

,

...

𝑝𝑖 :
𝜕𝛼𝑢𝑖
𝜕𝑡𝛼

=
𝜕2𝑢𝑖−1
𝜕𝑥2

−
𝑖−1

∑
𝑗=0

𝑢𝑗
𝜕𝑢𝑖−𝑗−1

𝜕𝑥
.

(33)
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Operating with Riemann-Liouville fractional operator 𝐽𝛼,
which is the inverse operator of Caputo derivative 𝑐𝐷𝑎𝑎 in
both sides of (28), the solution reads

𝑢0 (𝑥, 𝑡) = 2𝑥,

𝑢1 (𝑥, 𝑡) =
−4𝑥𝑡𝛼

Γ (𝛼 + 1)
,

𝑢2 (𝑥, 𝑡) =
16𝑥𝑡2𝛼

Γ (2𝛼 + 1)
,

𝑢3 (𝑥, 𝑡) =
−16𝑥𝑡3𝛼

Γ (23𝛼 + 1)
(4 +

Γ (2𝛼 + 1)

Γ2 (𝛼 + 1)
) ,

...

(34)

Since 𝑡 ≤ 𝛾/2, 0 < 𝛾 < 1 and 𝛼 = 1, and according to
Theorem 6, we have

󵄩󵄩󵄩󵄩𝑠1 − 𝑠0
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−4𝑥𝑡𝛼

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(2𝑥) (

−2𝑡𝛼

Γ (𝛼 + 1)
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 4 (
𝛾

2
) ‖2𝑥‖ = 𝛾

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑠2 − 𝑠0
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑠2 − 𝑠1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑠1 − 𝑠0
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

16𝑥𝑡2𝛼

Γ (2𝛼 + 1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−4𝑥𝑡𝛼

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(2𝑥) (

8𝑡2𝛼

Γ (2𝛼+)
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(2𝑥) (

−2𝑡𝛼

Γ (𝛼 + 1)
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= ‖2𝑥‖ (8(
𝛾

2
)
2

+ 2 (
𝛾

2
))

≤ 16(
𝛾

2
)
2

‖2𝑥‖ = 𝛾2
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑠3 − 𝑠1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑠3 − 𝑠2
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑠2 − 𝑠1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−16𝑥𝑡3𝛼

Γ (3𝛼 + 1)
(4 +

Γ (2𝛼 + 1)

Γ2 (𝛼 + 1)
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

16𝑥𝑡2𝛼

Γ (2𝛼 + 1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(2𝑥) (

−8𝑡3𝛼

Γ (3𝛼+)
)(4 +

Γ (2𝛼)

Γ2 (𝛼 + 1)
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(2𝑥) (

8𝑡2𝛼

Γ (3𝛼)
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (8(
𝛾

2
)
3

+ 8(
𝛾

2
)
2

)

≤ 32(
𝛾

2
)
3

‖2𝑥‖ = 𝛾3
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 .

(35)

And so on, finally we get

󵄩󵄩󵄩󵄩𝑠𝑛 − 𝑠𝑚
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑠𝑛 − 𝑠𝑛−1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑠𝑛−1 − 𝑠𝑛−2
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑠𝑚+1 − 𝑠𝑚

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=0

𝑢𝑗 −
𝑛−1

∑
𝑖=0

𝑢𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛−1

∑
𝑗=0

𝑢𝑗 −
𝑛−2

∑
𝑖=0

𝑢𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚+1

∑
𝑗=0

𝑢𝑗 −
𝑚

∑
𝑖=0

𝑢𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛−1

󵄩󵄩󵄩󵄩 + ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩𝑢𝑚

󵄩󵄩󵄩󵄩

≤ 22𝑛+2(
𝛾

2
)
𝑛+1 󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 = 𝛾𝑛
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 .

(36)

Therefore, lim𝑛,𝑚→∞‖𝑠𝑛 − 𝑠𝑚‖ ≤ lim𝑛→∞𝛾
𝑛‖𝑢0‖ = 0; that is,

𝑠𝑛 is, a Cauchy sequence.
Then the approximate solution in a series form is

𝑢 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) + 𝑢1 (𝑥, 𝑡) + 𝑢2 (𝑥, 𝑡) + 𝑢3 (𝑥, 𝑡) + ⋅ ⋅ ⋅

= 2𝑥 −
4𝑥𝑡𝛼

Γ (𝛼 + 1)
+

16𝑥𝑡2𝛼

Γ (2𝛼 + 1)
−

16𝑥𝑡3𝛼

Γ (3𝛼 + 1)

× (4 +
Γ (2𝛼 + 1)

Γ2 (𝛼 + 1)
) + ⋅ ⋅ ⋅ .

(37)

Example 9. Consider the fourth-order parabolic partial dif-
ferential equation of fractional order

𝜕𝛼𝑢

𝜕𝛼𝑡
+ (

𝑦 + 𝑧

2 cos𝑥
− 1)

𝜕4𝑢

𝜕𝑥4
+ (

𝑧 + 𝑥

2 cos𝑦
− 1)

𝜕4𝑢

𝜕𝑦4

+ (
𝑥 + 𝑦

2 cos 𝑧
− 1)

𝜕4𝑢

𝜕𝑧4
= 0, 0 < 𝑥, 𝑦, 𝑧 <

𝜋

3
,

𝑡 ∈ [0, 1] , 1 < 𝛼 ≤ 2

(38)

subject to the initial conditions

𝑢 (𝑥, 𝑦, 𝑧, 0) = −
𝜕𝑢

𝜕𝑡
(𝑥, 𝑦, 𝑧, 0)

= 𝑥 + 𝑦 + 𝑧 − (cos𝑥 + cos𝑦 + cos 𝑧) .
(39)

The exact solution for special case 𝛼 = 2 is

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = (𝑥 + 𝑦 + 𝑧 − cos𝑥 − cos𝑦 − cos 𝑧) 𝑒−𝑡.
(40)
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For solving (38), according the homotopy perturbation
method, we have

𝜕𝛼𝑢0
𝜕𝑡𝛼

= 0,

𝜕𝛼𝑢1
𝜕𝑡𝛼

= − (
𝑦 + 𝑧

2 cos𝑥
− 1)

𝜕4𝑢0
𝜕𝑥4

− (
𝑧 + 𝑥

2 cos𝑦
− 1)

𝜕4𝑢0
𝜕𝑦4

− (
𝑥 + 𝑦

2 cos 𝑧
− 1)

𝜕4𝑢0
𝜕𝑧4

−
𝜕𝛼𝑢0
𝜕𝛼𝑡

,

𝜕𝛼𝑢2
𝜕𝑡𝛼

= − (
𝑦 + 𝑧

2 cos𝑥
− 1)

𝜕4𝑢1
𝜕𝑥4

− (
𝑧 + 𝑥

2 cos𝑦
− 1)

𝜕4𝑢1
𝜕𝑦4

− (
𝑥 + 𝑦

2 cos 𝑧
− 1)

𝜕4𝑢1
𝜕𝑧4

...

(41)

By applying 𝐽𝛼 in both sides of (41), we got

𝑢0 (𝑥, 𝑦, 𝑧, 𝑡)

= 𝑥 + 𝑦 + 𝑧 − (cos𝑥 + cos𝑦 + cos 𝑧) (1 − 𝑡) ,

𝑢1 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑥 + 𝑦 + 𝑧 − (cos𝑥 + cos𝑦 + cos 𝑧)

× (
𝑡𝛼

Γ (𝛼 + 1)
−

𝑡𝛼+1

Γ (𝛼 + 2)
) ,

𝑢1 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑥 + 𝑦 + 𝑧 − (cos𝑥 + cos𝑦 + cos 𝑧)

× (
𝑡2𝛼

Γ (2𝛼 + 1)
−

𝑡2𝛼+1

Γ (2𝛼 + 2)
) ,

...

𝑢𝑛 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑥 + 𝑦 + 𝑧 − (cos𝑥 + cos𝑦 + cos 𝑧)

× (
𝑡𝑛𝛼

Γ (𝑛𝛼 + 1)
−

𝑡𝑛𝛼+1

Γ (𝑛𝛼 + 2)
)

...

(42)

According toTheorem 6, we have
󵄩󵄩󵄩󵄩𝑠2 − 𝑠1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑠2 − 𝑠1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑠1 − 𝑠0

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡2𝛼

Γ (2𝛼 + 1)
−

𝑡2𝛼+1

Γ (2𝛼 + 2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡𝛼

Γ (𝛼 + 1)
−

𝑡𝛼+1

Γ (𝛼+)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 − 𝑡) (

𝑡2𝛼/Γ (2𝛼 + 1) − 𝑡(2𝛼+1)/Γ (2𝛼 + 2)

1 − 𝑡
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 − 𝑡) (

𝑡𝛼/Γ (𝛼 + 1) + 𝑡(𝛼+1)/Γ (𝛼 + 2)

1 − 𝑡
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
.

(43)

But for all 𝑡 ∈ [0, 1] and 𝛼 = 2, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡2𝛼/Γ (2𝛼 + 1) − 𝑡(2𝛼+1)/Γ (2𝛼 + 2)

1 − 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝛾 = 0.0047 < 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡𝑎/Γ (𝛼 + 1) − 𝑡(𝛼+1)/Γ (𝛼 + 2)

1 − 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝛾 = 0.21 < 1.

(44)

Thus, ‖𝑠2 − 𝑠1‖ ≤ 𝛾2‖𝑢0‖

󵄩󵄩󵄩󵄩𝑠3 − 𝑠1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑠3 − 𝑠2
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑠2 − 𝑠1
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡3𝛼

Γ (3𝛼 + 1)
−

𝑡3𝛼+1

Γ (3𝛼 + 2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡2𝛼

Γ (2𝛼 + 1)
−

𝑡2𝛼+1

Γ (2𝛼 + 2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 − 𝑡) (

𝑡3𝛼/Γ (3𝛼 + 1) − 𝑡(3𝛼+1)/Γ (3𝛼 + 2)

1 − 𝑡
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 − 𝑡) (

𝑡2𝛼/Γ (2𝛼 + 1) − 𝑡(2𝛼+1)/Γ (2𝛼 + 2)

1 − 𝑡
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ‖1 − 𝑡‖ (
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡3𝛼/Γ (3𝛼 + 1) − 𝑡(3𝛼+1)/Γ (3𝛼 + 2)

1 − 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡2𝛼/Γ (2𝛼 + 1) − 𝑡(2𝛼+1)/Γ (2𝛼 + 2)

1 − 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
) .

(45)

Since, for all 𝑡 ∈ [0, 1], 0 < 𝛾 < 1, and 𝛼 = 2, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡3𝛼/Γ (3𝛼 + 1) − 𝑡(3𝛼+1)/Γ (3𝛼 + 2)

1 − 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝛾 = 0.0004 < 1,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡2𝛼/Γ (2𝛼 + 1) − 𝑡(2𝛼+1)/Γ (2𝛼 + 2)

1 − 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝛾 = 0.0047 < 1.

(46)

Thus

󵄩󵄩󵄩󵄩𝑠3 − 𝑠1
󵄩󵄩󵄩󵄩 ≤ 𝛾3

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 , (47)

where 𝛾3 = ((1 − 𝛾2)/(1 − 𝛾))𝛾2.
And so on, finally we get

󵄩󵄩󵄩󵄩𝑠𝑛 − 𝑠𝑚
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑠𝑛 − 𝑠𝑛−1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑠𝑛−1 − 𝑠𝑛−2
󵄩󵄩󵄩󵄩 + ⋅ ⋅ ⋅ +

󵄩󵄩󵄩󵄩𝑠𝑚+1 − 𝑠𝑚
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡𝑛𝛼

Γ (𝑛𝛼 + 1)
−

𝑡𝑛𝛼+1

Γ (𝑛𝛼 + 2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡(𝑛−1)𝛼

Γ ((𝑛 − 1) 𝛼 + 1)
−

𝑡(𝑛−1)𝛼+1

Γ ((𝑛 − 1) 𝛼 + 2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡(𝑚+1)𝛼

Γ ((𝑚 + 1) 𝛼 + 1)
−

𝑡(𝑚+1)𝛼+1

Γ ((𝑚 + 1) 𝛼 + 2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
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≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝑡)(
(𝑡𝑛𝛼/Γ (𝑛𝛼 + 1)) − (𝑡𝑛𝛼+1/Γ (𝑛𝛼 + 2))

1 − 𝑡
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝑡)(
(𝑡(𝑛−1)𝛼/Γ ((𝑛 − 1) 𝛼 + 1))

1 − 𝑡

−
(𝑡(𝑛−1)𝛼+1/Γ ((𝑛 − 1) 𝛼 + 2))

1 − 𝑡
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝑡) (
(𝑡(𝑚+1)𝛼/Γ ((𝑚 + 1) 𝛼 + 1))

1 − 𝑡

−
(𝑡(𝑚+1)𝛼+1/Γ ((𝑚 + 1) 𝛼 + 2))

1 − 𝑡
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ‖1 − 𝑡‖(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑡𝑛𝛼/Γ (𝑛𝛼 + 1)) − (𝑡𝑛𝛼+1/Γ (𝑛𝛼 + 2))

1 − 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑡(𝑛−1)𝛼/Γ ((𝑛 − 1) 𝛼 + 1))

1 − 𝑡

−
(𝑡(𝑛−1)𝛼+1/Γ ((𝑛 − 1) 𝛼 + 2))

1 − 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑡(𝑚+1)𝛼/Γ ((𝑚 + 1) 𝛼 + 1))

1 − 𝑡

−
(𝑡(𝑚+1)𝛼+1/Γ ((𝑚 + 1) 𝛼 + 2))

1 − 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

(48)

Since, for all 𝑡 ∈ [0, 1], 0 < 𝛾 < 1, and 𝛼 = 2, we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑡𝑛𝛼/Γ (𝑛𝛼 + 1)) − (𝑡𝑛𝛼+1/Γ (𝑛𝛼 + 2))

1 − 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛾𝑛 < 1,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑡(𝑛−1)𝛼/Γ ((𝑛 − 1) 𝛼 + 1)) − (𝑡(𝑛−1)𝛼+1/Γ ((𝑛 − 1) 𝛼 + 2))

1 − 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛾𝑛−1 < 1,

...
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡(𝑚+1)𝛼

Γ ((𝑚 + 1) 𝛼 + 1)
−

𝑡(𝑚+1)𝛼+1

Γ ((𝑚 + 1) 𝛼 + 2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝛾𝑚+1 < 1.

(49)

Thus,
󵄩󵄩󵄩󵄩𝑠𝑛 − 𝑠𝑚

󵄩󵄩󵄩󵄩 ≤ 𝛾𝑛
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 , (50)

where 𝛾𝑛 = ((1 − 𝛾𝑛−𝑚)/(1 − 𝛾))𝛾𝑚+1. Therefore,

lim 󵄩󵄩󵄩󵄩𝑠𝑛 − 𝑠𝑚
󵄩󵄩󵄩󵄩

𝑛,𝑚→∞

≤ 𝛾𝑛
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 = 0. (51)

That is {𝑠𝑛} is a Cauchy sequence.

The series of the solution is

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = (𝑥 + 𝑦 + 𝑧 − cos𝑥 − cos𝑦 − cos 𝑧)

× (1 − 𝑡 +
𝑡𝛼

Γ (𝛼 + 1)
−

𝑡𝛼+1

Γ (𝛼 + 2)

+
𝑡2𝛼

Γ (2𝛼 + 1)
−

𝑡2𝛼+1

Γ (2𝛼 + 2)
+ ⋅ ⋅ ⋅ ) .

(52)

6. Conclusion

In this paper, we applied the HPM for fractional partial
differential equations and obtained highly approximate solu-
tions with few iterations. Further, we introduce the study
problem of convergence of HPM. The sufficient condition
for convergence of this method has been presented. In this
paper, we studied the convergence analysis of homotopy per-
turbationmethod for fractional partial differential equations,
Further, we consider the convergence analysis of homotopy
perturbation method for fractional integro-differential equa-
tions as future work.

The convergence analysis is reliable enough to estimate
themaximumabsolute truncation error of the series solution.
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