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Steel catenary riser (SCR) is a cost-effective riser system that is widely used in deepwater offshore oilfields development. During
SCR J-lay installation, themovement of pull-headmust be carefully controlled to ensure riser safety. Since the SCR installation path
calculation through numerical simulation software is usually time-consuming, this paper has established a mechanical model for
SCR installation by making use of homotopy analysis method (HAM) to simplify its analytical solution, and dimensional analysis
was considered in making initial guess solution. Based on this analytical solution, a program within the framework of MATLAB
was developed to predict the two-dimensional riser behavior during installation, and a sensitivity analysis for different values of
the control variables was carried out. Engineers may efficiently optimize the installation path by the application of this technique.

1. Introduction

In response to increasing global demand of energy from fossil
fuels and the replacement of depleting oil and gas reserves in
most matured fields in the world, operating companies in the
oil industry are expanding their exploration and production
operations into deepwater. In deepwater exploration, SCRs
are widely used as a cost-effective riser system which is con-
necting offshore platforms and subsea production systems.
During SCR installation as shown in Figure 1, the pull-head is
transferred from installation vessel to platform by Abandon
& Recovery (A&R) wire from installation vessel and pull-
in wire from the platform. The transfer process is usually
carried out by J-lay vessel, since the S-lay vessel cannot install
SCR independently [1, 2].The transfer process is divided into
prelay and postlay, depending on whether the offshore plat-
form is on site [3].

The shape of SCRwill be affected by the route of pull-head
during installation controlled by both the A&R and the pull-
in wire, and the maximum stresses to be encountered during
the transfer process must be obtained before installation [4].
A large number of papers have been published on this issue.
The catenary theory is a simple model for evaluating the

tension and curvature of SCR [5], but it cannot simulate
the rapid change of the inclination angle because it ignores
the bending stiffness [6]. The nonlinear large deformation
beam theory is more appropriate for simulating the riser
near touchdown point (TDP) considering the large-angle
deformation [7, 8]. Dixon and Rultledge [9] applied Plun-
kett’s expansions in analyzing J-lay method. Guarracino and
Mallardo [10] developed the expansions to analyze the S-lay
method. Dai et al. [11] used line integration technique to ana-
lyze the tensions of A&R wire while considering the move-
ment of installation vessel. Xing et al. [12] established a non-
linear mechanical model to analyze the pipeline lifting pro-
cess and applied a shooting method in solving the moving
boundary problem. Lenci and Callegari [13] investigated
some analytical models to analyze the J-lay method, but
the solution is not easy to obtain because the equations are
highly nonlinear. Garćıa-Palacios et al. [14] used two-dimen-
sional Navier-Bernoulli beam to analyze pipeline laying pro-
cess, and an updated Lagrangian formulation for the nonlin-
ear analysis was obtained. Nowadays, finite element software
such as OrcaFlex is commonly used to solve optimal installa-
tion path problem. But it might be time-consuming depend-
ing on the performance of computer. Therefore, a simple and
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Figure 1: SCR installation procedure.
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Figure 2:Mechanicalmodel for transfer process of SCR installation.

effective SCR installation model is still important for engi-
neers to understand the nature and relevance of the complex
phenomena during installation. Thus, an analytical solution
for SCR installation can substantially reduce design time and
provide a quick evaluation of actual installation setting.

The structural model presented in this paper is a simple
and practical method to obtain the static configuration and
themechanical load parameters for SCR transfer process.The
bending stiffness and large deformation of the part suspended
inwater are taken into consideration.The governing equation
system is derived and the analytical approximate solution is
obtained by means of HAM. Compared with the available
commercial software such as OrcaFlex, the calculation of the
present model has the advantage of high stability and being
time-saving. A series of parameters such as initial installation
angle, maximum lower depth of pull-head, water depth, and
distance between installation vessel and offshore platform are
considered during the stress analysis of SCR installation.

2. Nonlinear Model of SCR Installation

The mechanical model used to simulate the behavior of
transfer process during SCR installation is composed of two
parts, as presented in Figure 2. In pull-head control part, the
catenary theory is used to simulate the A&R wire and pull-
in wire [15]. In SCR part, the nonlinear large deformation
beam theory is used to simulate the suspended segment [16].
The hypotheses considered in the model are summarized as
follows.
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Figure 3: Catenary axis and forces.

(1) The dynamic movement of the installation vessel and
platform are not considered.

(2) The gravitational and hydrostatic forces are the only
loads upon the riser during installation operations.

(3) The SCRmaterial is linear elastic, and the behavior of
SCR ismodeled as a two-dimensional beam subjected
to axial and bending deformations. Torsional and
shear deformation are not considered.

(4) The seabed is rigid. Two parts of the model are solved
in the local coordinate system XOY, respectively
and transformed to the global coordinate system
XOY, finally. The TDP of SCR is the origin of local
coordinate system XOY.

2.1. Pull-Head Control Part. The location of pull-head is
important for SCR shape control. It is controlled by the length
of A&R wire from installation vessel and pull-in wire from
platform. Based on catenary theory as shown in Figure 3, the
following equations can be obtained:

𝑆 = √𝑦2 + 2
𝑇
𝑠

𝑤
𝑦 (1)

𝑥 =
𝑇
𝑆

𝑤
ln[

[

𝑤

𝑇
𝑆

𝑦 + 1 + √(
𝑤

𝑇
𝑆

𝑦 + 1)

2

− 1]

]

, (2)

where 𝑇 is axial tension at pull-head, 𝑇
𝑠
is axial tension at

TDP, 𝑤 is the submerged weight per unit length of the riser,
and 𝑆 is the length of SCR.

The transfer process is typically carried out by two steps.
Thefirst step is to lower the pull-head by increasing the length
of A&Rwire from installation vessel, and the second step is to
pull-in the pull-head by decreasing the length of pull-in wire
from platform.

The geometrical relationship in lowering step is shown in
Figure 4. Assuming the initial position of pull-head before
transfer process is at (𝑥

0
, 𝑦
0
), the increasing length of A&R

wire Δ𝐿 will change the pull-head position to (𝑥
1
, 𝑦
1
), 𝑆
0

is the suspended segment length of the SCR at the initial
position, 𝑆

1
is the suspended segment length of the SCR after

lowering, Δ𝑥 is the horizontal position’s change of TDP, Δ𝑥
1



Journal of Applied Mathematics 3

Y

Ts0 Ts1

S0

S1

Δx

Δy

Δx1 Δx2

T1

T0

𝜃1

𝜃0

X

(x1, y1)

(x0, y0)

Figure 4: Geometrical relationship for lowering step.
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Figure 5: Geometrical relationship for pull-in step.

is the horizontal length of 𝑆
1
, Δ𝑥
2
is the horizontal position

change of pull-head, and Δ𝑦 is the vertical position change of
pull-head. The following relations can be obtained:

𝑥
0
= Δ𝑥 + Δ𝑥

1
+ Δ𝑥
2

(3)

𝑠
0
= Δ𝑥 + 𝑠

1
. (4)

Based on (1)–(4), the pull-head control model for the
lowering step can be obtained:

𝑥
1
= 𝑦
0
√1 + 2𝐴 − 𝑦

1
√1 + 2𝐵

+ 𝑦
1
𝐵 ln[

[

1

𝐵
+ 1 + √(

1

𝐵
+ 1)

2

− 1]

]

+ Δ𝐿 cos 𝜃
1
,

(5)

where 𝐴 = cos 𝜃
0
/(1 − cos 𝜃

0
), 𝐵 = (1 − cos 𝜃

1
)/ cos 𝜃

1
.

The geometrical relationship in pull-in step is shown in
Figure 5. Assuming the initial position of the installation
vessel is at (𝑥

𝑠
, 𝑦
𝑠
), with the initial position of platform being

at (𝑥V, 𝑦V), while the initial position of pull-head is at (𝑥0, 𝑦0),
the increasing length of pull-in wire Δ𝐿 will change the pull-
head position to (𝑥

1
, 𝑦
1
). 𝑆
0
is the suspended segment length

of the SCR at initial position, and 𝑆
1
is the suspended segment

length of the SCR after pull-in, whereas Δ𝑥 is the horizontal
position’s change of TDP, Δ𝑥

1
is horizontal length of 𝑆

1
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Figure 6: Forces on a large deformation beam segment 𝛿𝑠.

Δ𝑥
2
is horizontal position’s change of pull-head. Therefore,

the following equations can be obtained:

𝐿
𝑆
= √(𝑥

𝑆
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0
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2

+ (𝑦
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2
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2

+ (𝑦
𝑆
− 𝑦
1
)
2

(6)

Δ𝐿 = √(𝑥V − 𝑥0)
2

+ (𝑦V − 𝑦0)
2

− √(𝑥V − 𝑥1)
2
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2

(7)

𝑥
0
= Δ𝑥 + Δ𝑥

1
+ Δ𝑥
2
. (8)

By combining (1), (2), and (6) in (8), the pull-head control
model for the pull-in step can be obtained:

𝑥
1
= 𝑦
0
√1 + 2𝐴 − 𝑦

1
√1 + 2𝐵

+ 𝑦
1
𝐵 ln[

[

1

𝐵
+ 1 + √(

1

𝐵
+ 1)

2

− 1]

]

.

(9)

2.2. SCR Part. An infinitesimal element with length 𝑑𝑠 based
on the nonlinear large deformation beam theory is presented
in Figure 6. The force equilibrium equation normal to the
segment’s axial direction is established by (10), and the
force equilibrium equation in the segment’s axial direction is
established by (11). Consider

𝛿𝐹 − 𝑇𝛿𝜃 + 𝑤𝛿𝑠 cos 𝜃 = 0 (10)

𝛿𝑇 = 𝑤𝛿𝑠 sin 𝜃, (11)

where 𝐹 is shear force (𝐹 = 𝑑𝑀/𝑑𝑠), 𝑇 is axial tension, and
𝑀 is bending moment. Then, (10) can be written as follows:

𝑑
2
𝑀

𝑑𝑠2
− 𝑇

𝑑𝜃

𝑑𝑠
+ 𝑤 cos 𝜃 = 0. (12)

According to large deformation beam theory, the curva-
ture 1/𝑅 = 𝑀/EI = 𝑑𝜃/𝑑𝑠, where EI is the flexural rigidity.
Therefore, (12) can be written in the following form:

𝑑
2

𝑑𝑠2
(EI𝑑𝜃

𝑑𝑠
) − 𝑇

𝑑𝜃

𝑑𝑠
+ 𝑤 cos 𝜃 = 0. (13)
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By simplifying (11) and (13), the mechanical model for
large deformation beam can be obtained as follows:

EI𝑑
3
𝜃

𝑑𝑠3
− 𝑇

𝑑𝜃

𝑑𝑠
+ 𝑤 cos 𝜃 = 0 (14)

𝑑𝑇

𝑑𝑠
= 𝑤 sin 𝜃. (15)

The boundary condition at top point of riser is 𝑑𝜃
𝑇
/𝑑𝜀 =

0, and the boundary conditions at TDPare 𝜃
𝐷
= 𝜃
∗,𝑑𝜃
𝐷
/𝑑𝜀 =

sin 𝜃∗, and 𝑇(𝜀) = 𝐹
𝑇
cos𝜔
𝑇
cos 𝜃∗, where 𝐹

𝑇
is the lifting

load at the top of riser, 𝜔
0
is the angel between lifting load

and the 𝑥-axis, 𝜃∗ is the angel between riser and the 𝑥-axis at
TDP.

Equation (14) is a third-order nonlinear differential equa-
tion with an unknown variable 𝜃. It can be solved using
numerical method such as the finite element method [17] or
the finite difference method [18]. However, we provide the
analytical solution by HAM in this paper.

3. HAM Solution for SCR Installation Model

3.1. Basic Idea of HAM. Perturbation technique has been
widely used for nonlinear problem [19] which is dependent
on small physical parameters. Liao [20] proposed a general
analytical method known as HAM for nonlinear problems
by using the basic ideas of the homotopy in topology. HAM
provides uswith great freedom to select proper base functions
for approximate solutions of nonlinear problems and a simple
way to get enough accurate analytical approximations.

For the nonlinear differential equations with general
form:

𝐴 [𝑢 (𝑥)] = 0 𝑥 ∈ 𝑅
𝑛
. (16)

𝐴 is the nonlinear operator for all equations, 𝑢(𝑥) is an
unknown solution for all equations, and 𝑥 is the independent
variables. Based on the basic concept of HAM, the embedded
parameter 𝑝 ∈ [0, 1] and the initial guess of the exact solu-
tion 𝑢

0
(𝑥) are introduced. The homotopy which is the so-

called zero-order deformation equation can be constructed
as follows:

(1 − 𝑝) 𝐿 [𝜙 (𝑥; 𝑝) − 𝑢
0
(𝑥)]

= 𝑝ℎ𝐻 (𝑥)𝐴 [𝜙 (𝑥; 𝑝)] 𝑝 ∈ [0, 1] ,

(17)

where ℎ is a nonzero auxiliary parameter, 𝐻(𝑥) is a nonzero
auxiliary function, 𝐿 is an auxiliary linear operator that
satisfies the property 𝐿[0] = 0, and 𝜙(𝑥; 𝑝) is an unknown
function. It is obvious that, when 𝑝 = 0 and 𝑝 = 1, the
following relations hold, respectively:

𝜙 (𝑥; 0) = 𝑢
0
(𝑥) , 𝜙 (𝑥; 1) = 𝑢 (𝑥) . (18)

Thus, as𝑝 increases from 0 to 1, the solution𝜙(𝑥; 𝑝) varies
from the initial guess 𝑢

0
(𝑥) to the accurate solution 𝑢(𝑥).

Expand 𝜙(𝑥; 𝑝) by Taylor’s theorem in a power series of 𝑝:

𝜙 (𝑥; 𝑝) = 𝑢
0
(𝑥) +

+∞

∑

𝑘=1

𝑢
𝑘
(𝑥) 𝑝
𝑘
, (19)

where 𝑢
𝑘
(𝑥) = (1/𝑘!)(𝜕

𝑘
𝜙(𝑥; 𝑝)/𝜕𝑝

𝑘
)|
𝑝=0

.

Assuming that 𝐿, 𝑢
0
(𝑥), ℎ, and𝐻(𝑥) are properly chosen;

the power series (19) converges at 𝑝 = 1, and the solution
series can be obtained as follows:

𝑢 (𝑥) = 𝑢
0
(𝑥) +

+∞

∑

𝑘=1

𝑢
𝑘
(𝑥) . (20)

Differentiating the zero-order deformation equation (17)
𝑚 times with respect to 𝑝, dividing by 𝑚!, and setting 𝑝 = 0,
𝑚th-order deformation equation can be obtained:

𝐿 [𝑢
𝑘
(𝑥) − 𝜒

𝑘
𝑢
𝑘−1

(𝑥)] = ℎ𝐻 (𝑥) 𝑅
𝑘
(𝑥) , (21)

where

𝜒
𝑘
= {

0, 𝑘 ⩽ 1

1, 𝑘 > 1,

𝑅
𝑘
(𝑥) =

1

(𝑘 − 1)!

𝜕
𝑘−1
𝐴 [𝜙 (𝑥; 𝑝)]

𝜕𝑝𝑘−1

𝑝=0

.

(22)

3.2. Solution of the Mechanical Model for SCR Part by HAM.
A dimensionless parameter 𝜀 = 𝑠/𝑙 is introduced to (14) and
(15), and HAM is used to obtain the analytical approximation
of this mechanical model.

Assuming that 𝜑𝜃(𝜀, 𝑞) is the homotopy which is con-
nected to the original equation, solution 𝜃(𝜀), and the initial
guess solution 𝜃

0
(𝜀), 𝜑𝑇(𝜀, 𝑞) is the homotopy which is con-

nected to the original equation solution 𝑇(𝜀) and the initial
guess solution 𝑇

0
(𝜀). The embedded parameter 𝑞 ∈ [0, 1], the

nonzero auxiliary parameters ℎ
𝜃
and ℎ

𝑇
, the auxiliary linear

operators 𝐿
𝜃
and 𝐿

𝑇
, and the nonzero auxiliary functions

𝐻
𝜃
(𝜀) and𝐻

𝑇
(𝜀) are introduced. The nonlinear operators for

(14) and (15) are

𝑁
𝜃
[𝜑
𝜃
(𝜀, 𝑞) , 𝜑

𝑇
(𝜀, 𝑞)]

=
𝜕
3
𝜑
𝜃
(𝜀, 𝑞)

𝜕𝜀3
−
𝑙
2

EI
𝜑
𝑇
(𝜀, 𝑞)

𝜕𝜑
𝜃
(𝜀, 𝑞)

𝜕𝜀

+
𝑤𝑙
3

EI
cos [𝜑𝜃 (𝜀, 𝑞)]

𝑁
𝑇
[𝜑
𝜃
(𝜀, 𝑞) , 𝜑

𝑇
(𝜀, 𝑞)]

=
𝜕𝜑
𝑇
(𝜀, 𝑞)

𝜕𝜀
− 𝑙𝑤 sin [𝜑𝜃 (𝜀, 𝑞)] .

(23)

Thus, zero-order deformation equations can be obtained
as follows:

(1 − 𝑞) 𝐿
𝜃
[𝜑
𝜃
(𝜀, 𝑞) − 𝜃

0
(𝜀)]

= ℎ
𝜃
𝐻
𝜃
(𝜀) 𝑞𝑁

𝜃
[𝜑
𝜃
(𝜀, 𝑞) , 𝜑

𝑇
(𝜀, 𝑞)]

(1 − 𝑞) 𝐿
𝑇
[𝜑
𝑇
(𝜀, 𝑞) − 𝑇

0
(𝜀)]

= ℎ
𝑇
𝐻
𝑇
(𝜀) 𝑞𝑁

𝑇
[𝜑
𝜃
(𝜀, 𝑞) , 𝜑

𝑇
(𝜀, 𝑞)]

(24)
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which satisfies the initial conditions 𝜑𝜃(𝜀, 0) = 𝜃
0
(𝜀) and

𝜑
𝑇
(𝜀, 0) = 𝑇

0
(𝜀).

Applying (20) to this case, we can write

𝜃 (𝜀) = 𝜑
𝜃

(𝜀, 1) = 𝜑
𝜃
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+∞
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𝜕
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𝑞=0
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∑
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∑
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1
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𝜕
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𝜑
𝑇
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= 𝑇
0
(𝜀) +

+∞

∑

𝑚=1

𝑇
𝑚
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(25)

where 𝜃
𝑚
(𝜀) = (1/𝑚!)(𝜕

𝑚
/𝜕𝑞
𝑚
)𝜑
𝜃
(𝜀, 𝑞)|

𝑞=0
and 𝑇

𝑚
(𝜀) =
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𝑚
/𝜕𝑞
𝑚
)𝜑
𝑇
(𝜀, 𝑞)|

𝑞=0
.

The𝑚th-order deformation equations (21) for this partic-
ular case are

𝐿
𝜃
[𝜃
𝑚
(𝜀) − 𝜒

𝑚
𝜃
𝑚−1

(𝜀)]

= ℎ
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𝜃
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where
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𝑅
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= 𝜃
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𝑙
2
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∑

𝑘=0

𝑇
𝑘
(𝜀) 𝜃


𝑚−1−𝑘
(𝜀)
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3
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𝜕
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𝑅
𝑇

𝑚
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𝑚−1

(𝜀) , 𝑇
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sin [𝜑𝜃 (𝜀, 𝑞)]𝑞=0.

(27)

We select the nonzero auxiliary function as

𝐻
𝜃
(𝜀) =

𝑠
2

EI𝑇
, 𝐻

𝑇
(𝜀) =

1

EI𝑇
. (28)

Referring to the catenary equation, we select the initial
guess solution 𝜃

0
(𝜀) and 𝑇

0
(𝜀) as

𝜃
0
(𝜀) = arctan(𝑎𝑤𝑙𝜀

𝑘

𝐺
) , 𝑇

0
(𝜀) = √(𝑙𝑤𝜀)

2
+ 𝐺2,

(29)

where 𝐺 = 𝐹
0
cos𝜔
0
and 𝑎 and 𝑘 are adjustment parameters

which is related to the length of riser 𝑙. Through dimensional
analysis, the following relationship can be obtained:

𝑙

𝑙
0

= (
EI𝑤
0

EI
0
𝑤
)

1/3

. (30)

If we select the length of riser 𝑙
0
under the condition EI

0
=

50 and 𝑤
0
= 350.59, the adjustment parameters 𝑎 and 𝑘 can

be expressed with respect to 𝑙
0
:

𝑎 =

{{{{{{{{{{{

{{{{{{{{{{{

{

1.02755 − 1.84502𝑒
−𝑙0/1.43616 𝑙

0
≤ 6

0.947 + 0.009𝑙
0

𝑙
0
≤ 10

1.035 𝑙
0
≤ 14

1.08931 − 0.00385𝑙
0

𝑙
0
≤ 23

0.98683 + 688.37803𝑒
−𝑙0/2.11687 𝑙

0
≤ 26

0.96059 + 0.00113𝑙
0

𝑙
0
≤ 40

1 𝑙
0
> 40

𝑘 =

{{

{{

{

0.00541𝑒
𝑙0/0.48212 + 1.35738 𝑙

0
≤ 2

1.28217𝑒
−𝑙0/2.36014 − 0.00781𝑙

0
+ 1.19157 𝑙

0
≤ 25

1 𝑙
0
> 25.

(31)

Considering the boundary conditions at TDP (𝜀 = 0) and
top point of riser (𝜀 = 1) in mechanical model for part I, the
following boundary conditions can be obtained:

𝜀 = 0: 𝜃 (𝜀) = 0, 𝑑𝜃 (𝜀)

𝑑𝜀
= 0, 𝑇 (𝜀) = 𝐹

0
cos𝜔
0

𝜀 = 1: 𝑑𝜃 (𝜀)
𝑑𝜀

= 0.

(32)

When the nonzero auxiliary parameters are selected as
ℎ
𝜃
= 0.1 and ℎ

𝑇
= 1, the analytical approximate solution of

𝜃(𝜀) and 𝑇(𝜀) can be written as

𝜃 (𝜀) = arctan(
𝑎𝑤𝑙
0
𝜀
𝑘

𝐺
) +

ℎ
𝜃
𝜀
2

EI
0
𝑇

×
{

{

{

𝐶

𝐷
−
3𝐶

𝑘𝐷
−
8𝑎
2
𝜀
2𝑘
𝑙
2

0
𝑤
2

0
𝐶

𝐺2𝐷2
+
2𝐶

𝑘2𝐷

+
6𝑎
2
𝑠
3𝑘
𝑙
2

0
𝑤
2

0
𝐶

𝜀𝑘𝑘𝐺2𝐷2
+
8𝑎
4
𝑠
5𝑘
𝑙
4

0
𝑤
4

0
𝐶

𝜀𝑘𝐺4𝐷3

+

𝑙
3

0
[(𝑙
0
𝑤
0
𝑠)
2

+ 𝐺
2
]
0.5

𝜀
2
𝐶

EI
0
𝑘2𝑙
0
𝐷

+
𝑙
3

0
𝑤
0

EI
0
𝐷0.5

}

}

}

𝑇 (𝜀) = √(𝑙𝑤𝜀)
2
+ 𝐺2 +

ℎ
𝑇

EI𝑇

×
{

{

{

𝑙
2
𝑤
2
𝜀

[(𝑙𝑤𝜀)
2
+ 𝐺2]

0.5
− 𝑙𝑤 sin [arctan(𝑤𝑙𝜀

𝐺
)]
}

}

}

,

(33)

where 𝐶 = 𝑎𝜀𝑘𝑘3𝑙
0
𝑤
0
/𝜀
3
𝐺,𝐷 = 1 + (𝑎

2
𝜀
2𝑘
𝑙
2

0
𝑤
2

0
/𝐺
2
).
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Table 1: Parameters of SCR.

Parameter Value
Outer diameter (m) 0.3048
Inner diameter (m) 0.2743
Flexural rigidity (N⋅m2) 3.1340𝐸07

Weight submerged (N/m) 350.59
Density (kg/m3) 7850
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Figure 7: Configuration results comparison between HAM and
OrcaFlex in different water depth.

4. Results and Discussion

In order to implement the SCR installation model as
described above, a computer program has been developed
within the framework of MATLAB language program. The
efficiency and accuracy of this model is verified by compari-
sonwith the numerical results of OrcaFlex.The parameters of
SCR used for verification and analysis are detailed in Table 1.

The overall configuration and axial tension calculated by
the proposed method and OrcaFlex are compared as shown
in Figures 7 and 8, respectively. In different water depth
conditions, the results are well coincided, which prove that
the analytical method is accurate and can be used to analyze
SCR installation problem. Some critical parameters are sum-
marized in Table 2, where𝑋 is horizontal distance from TDP
to the top point of riser, 𝑌top is vertical distance from seabed,
and 𝑇max is maximum axial tension at the top point of riser.

Postlay method is selected for SCR installation parame-
ters analysis. In this method, the offshore platform is on site.
When SCR is laid near to the offshore platform by installation
vessel, SCR pull-head is firstly connected to the A&R wire
and the cable from offshore platform, which is lifted only by
the A&R wire. Increase the length of A&R wire to lower pull-
head to the maximum depth and then decrease the length of
cable from offshore platform until pull-head is finally lifted
to the hang-off position. Note that the dynamic positioning
(DP) system always maintains the installation vessel and
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Figure 8: Axial tension results comparison between HAM and
OrcaFlex in different water depth.

offshore platform position in the original place during SCR
installation.

The safety of SCR during installation is affected by many
factors. The most important one is that the variation of SCR
maximum stress caused by the change of installation shape
should be within the allowable stress. In order to investi-
gate the influence of the initial installation angle, the max-
imum lower depth of pull-head, water depth, and the dis-
tance between installation vessel and offshore platform, the
parameters shown in Table 1 are used for SCR, with following
hypotheses.

(1) Assume that the initial installation angle is 𝜃
𝐼
, the

maximum lower depth of pull-head is𝐷
𝐿
, water depth

is𝐷, and the distance between installation vessel and
offshore platform is𝐷

𝑉
.

(2) Assume that the horizontal position of pull-head is
𝑋ph, which has zero value at the position of the
installation vessel and has maximum value at the
position of the offshore platform.

(3) Assume that the vertical position of pull-head is 𝑌ph,
which has zero value at sea level and has maximum
value at𝐷

𝐿
.

The maximum stress results under different conditions are
summarized in Table 3.

4.1. Influence of 𝜃
𝐼
. Usually, deepwater SCR is installed by J-

lay vessel, and the installation angle (the angle between the
J-lay tower and the vertical direction) will affect the SCR
installation shape. Under the conditions that 𝐷

𝐿
is 30m, 𝐷

𝑉

is 35m, 𝐷 is 1000m, and 𝜃
𝐼
is 8∘, 10∘ and 12∘, respectively,

the maximum stresses of SCR during installation are shown
in Figure 9. It clearly shows that, with the small rise of 𝜃

𝐼
, the

maximumstresses on SCR increase rapidly. It can be observed
that the J-lay method is more suitable for deepwater SCR
installation than S-lay method, since it can control the 𝜃

𝐼

nearly to zero.
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Table 2: Critical results.

Item 𝐷 = 500m 𝐷 = 1000m 𝐷 = 2000m
𝑋 (m) 𝑌top (m) 𝑇max (N) 𝑋 (m) 𝑌top (m) 𝑇max (N) 𝑋 (m) 𝑌top (m) 𝑇max (N)

HAM 297.97 499.41 217071 545.43 1004.09 429937 1050.67 2006.54 859997
OrcaFlex 299.89 499.91 214430 546.57 1002.77 428228 1056.20 2003.68 853240
Difference 0.64% −0.1% −1.23% 0.21% −0.13% −0.4% 0.53% −0.14% −0.79%

Table 3: Maximum stress results.

𝜃
𝐼
(∘) 𝐷

𝐿
(m) 𝐷 (m) 𝐷

𝑉
(m) 𝜎max (MPa)

8 30 1000 35 169.37
10 30 1000 35 215.15
12 30 1000 35 273.91
10 33 1000 35 218.09
10 36 1000 35 221.10
10 35 1000 35 219.98
10 35 1500 35 135.79
10 35 2000 35 100.23
10 35 1000 30 217.84
10 35 1000 40 222.21
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Figure 9: Maximum stresses in different 𝜃
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.

4.2. Influence of𝐷
𝐿
. Under the condition that 𝜃

𝐼
is 10∘,𝐷

𝑉
is

35m, 𝐷 is 1000m, and 𝐷
𝐿
is 30m, 33m, and 36m, respect-

ively, the maximum stresses of SCR during installation are
shown in Figure 10.The calculated results show that, with the
rise of 𝐷

𝐿
, the maximum stresses on SCR increase accord-

ingly. It is necessary to control 𝐷
𝐿
at its minimum value in

order to avoid the interference of auxiliary installation equip-
ment to keep SCR under safe condition.
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4.3. Influence of 𝐷. Under the condition that 𝜃
𝐼
is 10∘, 𝐷

𝑉

is 35m, 𝐷
𝐿
is 35m, and 𝐷 is 1000m, 1500m, and 2000m,

respectively, the maximum stresses on SCR during installa-
tion are shown in Figure 11. The calculated results show
that, with the decrease of 𝐷, the maximum stresses on SCR
increase rapidly. It is necessary to pay more attention to the
control of installation path in shallow water. This is because
the SCR length increases as water depth increases, and the
relative change in installation shape is greater in shallowwater
than in deep water.

4.4. Influence of 𝐷
𝑉
. Under the condition that 𝜃

𝐼
is 10∘, 𝐷

is 1000m, 𝐷
𝐿
is 35m, and 𝐷

𝑉
is 30m, 35m, and 40m,

respectively, the maximum stresses on SCR during installa-
tion are shown in Figure 12. The calculated results show that,
with the rise of 𝐷

𝑉
, the maximum stresses on SCR increase

accordingly. It can be inferred that, for the safety of installa-
tion vessel and offshore platform, smaller values of 𝐷

𝑉
are

preferred for SCR installation.

5. Conclusion

A simple model for analyzing the static behavior of the deep-
water SCR during installation is proposed, while the non-
linear large deformation beam theory is applied and HAM



8 Journal of Applied Mathematics

240

220

200

180

160

140

120

100

80

0

St
re

ss
 (M

pa
)

35
30

25
20

15
10

5

Xph (m)

0
5
10

15
20

25
30

35

Yph (m)

D = 2000m
D = 1500m
D = 1000m

Figure 11: Maximum stresses in different𝐷.
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is used to obtain an analytical approximate solution for this
model. This model has the main advantage of time-saving
and its practicality. In comparison with the results calculated
using the softwareOrcaFlex, a positive agreement is obtained,
which demonstrates that the analytical approximate solution
is reliable.

The presented model is applied to analyze the influence
of different parameters. Some valuable conclusions can be
drawn as follows.

(1) Larger initial installation angle causes higher max-
imum stress during SCR installation, and the J-lay
tower is preferred to be placed in an almost vertical
position during SCR installation in order to reduce
the initial installation angle.

(2) The maximum stress during SCR installation in-
creases with the lower depth of pull-head. The pull-
head should be controlled at the minimum lower
depth to keep the safety of SCR during installation.

(3) As water becomes deeper, themaximum stress during
SCR installation becomes smaller, which is benefi-
cial to the safety of SCR. However, the increasing
axial tension induced by its self-weight brings higher
requirements on the capacity of the installation vessel.

(4) A longer distance between the installation vessel and
the offshore platform can cause a little increase in the
maximum stress during SCR installation. To avoid the
interference between the installation vessel and the
offshore platform, a smaller distance between them is
preferred for SCR installation.

This paper reports reasonable approach to the deepwater
SCR installation analysis. However, as some assumptions are
made for simplifying the investigation, further work needs
to be carried out to integrate these assumptions, such as the
effect of pipe-soil interaction.
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