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We study the number and distribution of limit cycles of some planar 𝑍
4
-equivariant quintic near-Hamiltonian systems. By the

theories of Hopf and heteroclinic bifurcation, it is proved that the perturbed system can have 24 limit cycles with some new
distributions. The configurations of limit cycles obtained in this paper are new.

1. Introduction

In 1900, Hilbert proposed 23 open mathematical problems
[1]; the second part of the 16th problem concerns themaximal
number and relative position of limit cycles of the planar
polynomial vector fields. Even though there have been many
results of obtaining more limit cycles and various configu-
ration patterns of their relative dispositions, it has not been
solved completely. To reduce the difficulty one can study the
systems with some symmetry. An important symmetry is the
𝑍
𝑞
-equivariance which was first introduced in [2]. Here we

mention some newer results; for more details, see summary
work [3–5]. Li et al. [6] proved a cubic𝑍

2
-equivariant system

having 13 limit cycles; Zhao [7] proved that this system
has 13 limit cycles with another distribution. Li and Liu [8]
proved another cubic 𝑍

2
-equivariant system also having 13

limit cycles. Zhang et al. [9] found a quartic system having
at least 15 limit cycles. Christopher [10] proved that a 𝑍

2
-

equivariant systemhas 22 limit cycles. As to the case of quintic
polynomial system, there are more results. Xu and Han [11]
studied a cubic 𝑍

4
-equivariant system perturbed by quintic

𝑍
4
-equivariant polynomials having 13 limit cycles. Li et al.

[12] studied a quintic system and obtained at least 23 limit
cycles for 𝑍

2
-equivariant case and 17 limit cycles for 𝑍

4
-

equivariant case. In [13], Wu et al. studied a 𝑍
4
-equivariant

system and found 20 limit cycles. Li et al. [14] found that 24
limit cycles existing in a 𝑍

6
-equivariant quintic system. Yao

and Yu [15] studied a 𝑍
5
-equivariant quintic planar vector

fields by normal form theory and proved that the maximal
number of small limit cycles bifurcated from such vector
fields is 25.Wu et al. [16] proved that a quintic𝑍

6
-equivariant

near-Hamiltonian system has 28 limit cycles. In [17], 24 limit
cycles are found and two different configurations of them
were shown in a 𝑍

3
-equivariant quintic planar polynomial

system.
Our main result is that there can be 24 limit cycles with

other distributions for the perturbed quintic 𝑍
4
-equivariant

systems which are different from the known results. Using
the methods of Hopf and heteroclinic bifurcation theories,
the number and location of limit cycles of the following 𝑍

4
-

equivariant quintic near-Hamiltonian system will be investi-
gated:

𝑥̇ = 𝐻
𝑦
+ 𝜀𝑃
5
(𝑥, 𝑦) ,

̇𝑦 = −𝐻
𝑥
+ 𝜀𝑄
5
(𝑥, 𝑦) ,

(1)

where 𝜀 is nonnegative and small and theHamiltonian system
is

𝐻(𝑥, 𝑦) = 2𝑥
2
+ 2𝑦
2
−
5

4
𝑥
4
−
5

4
𝑦
4
+
1

6
𝑥
6
+
1

6
𝑦
6 (2)

with phase portrait of Figure 1. (𝑃
5
(𝑥, 𝑦), 𝑄

5
(𝑥, 𝑦)) is the

five-degree polynomial vector invariant under rotation of
𝜋/2 with respect to the origin 𝑂. From [2] we know that
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Figure 1: The phase portraits of (1)
(𝜀=0)

.

(𝑃
5
(𝑥, 𝑦), 𝑄

5
(𝑥, 𝑦)) is, respectively, the real and imaginary

parts of the following complex function:

𝐹
5,4
(𝑧, 𝑧) = (𝐴

0
+ 𝐴
1
|𝑧|
2
+ 𝐴
3
|𝑧|
4
) 𝑧

+ (𝐴
3
+ 𝐴
4
|𝑧|
2
) 𝑧
3
+ 𝐴
5
𝑧
5
,

(3)

where 𝐴
𝑘
= 𝑎
𝑘
+ 𝑖𝑏
𝑘
, 𝑘 = 0, 1, 2, . . . , 5, 𝑧 = 𝑥 + 𝑖𝑦, and 𝑧 =

𝑥 − 𝑖𝑦. It is direct that

𝑃
5
= 𝑎
0
𝑥 + 𝑎
1
(𝑥
3
+ 𝑥𝑦
2
) + 𝑎
2
(𝑥
5
+ 2𝑥
3
𝑦
2
+ 𝑥𝑦
4
)

+ 𝑎
3
(𝑥
3
− 3𝑥𝑦

2
) + 𝑎
4
(𝑥
5
− 2𝑥
3
𝑦
2
− 3𝑥𝑦

4
)

+ 𝑎
5
(𝑥
5
− 10𝑥

3
𝑦
2
+ 5𝑥𝑦

4
) + 𝑏
0
(−𝑦)

+ 𝑏
1
(−𝑥
2
𝑦 − 𝑦
3
) + 𝑏
2
(−𝑥
4
𝑦 − 2𝑥

2
𝑦
3
− 𝑦
5
)

+ 𝑏
3
(3𝑥
2
𝑦 − 𝑦
3
) + 𝑏
4
(3𝑥
4
𝑦 + 2𝑥

2
𝑦
3
− 𝑦
5
)

+ 𝑏
5
(10𝑥
2
𝑦
3
− 5𝑥
4
𝑦 − 𝑦
5
) ,

𝑄
5
= 𝑎
0
𝑦 + 𝑎
1
(𝑥
2
𝑦 + 𝑦
3
) + 𝑎
2
(𝑥
4
𝑦 + 2𝑥

2
𝑦
3
+ 𝑦
5
)

+ 𝑎
3
(𝑦
3
− 3𝑥
2
𝑦) + 𝑎

4
(𝑦
5
− 3𝑥
4
𝑦 − 2𝑥

2
𝑦
3
)

+ 𝑎
5
(5𝑥
4
𝑦 − 10𝑥

2
𝑦
3
+ 𝑦
5
) + 𝑏
0
𝑥

+ 𝑏
1
(𝑥
3
+ 𝑥𝑦
2
) + 𝑏
2
(𝑥
5
+ 2𝑥
3
𝑦
2
+ 𝑥𝑦
4
)

+ 𝑏
3
(𝑥
3
− 3𝑥𝑦

2
) + 𝑏
4
(𝑥
5
− 2𝑥
3
𝑦
2
− 3𝑥𝑦

4
)

+ 𝑏
5
(𝑥
5
− 10𝑥

3
𝑦
2
+ 5𝑥𝑦

4
) .

(4)

Our result is the following.

Theorem 1. There exist some (𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
) such that

system (1) can have 24 limit cycles with two different distri-
butions, the distributions of these limit cycles are shown in
Figure 2.

The rest of this paper is organized as follows. Some useful
preliminary theorems will be listed in Section 2. In Section 3,

some related coefficients of asymptotic expansions are firstly
computed; then using this coefficients and preliminary lem-
mas we prove the main result.

2. Preliminary Lemmas

Let𝐻(𝑥, 𝑦), 𝑝(𝑥, 𝑦, 𝛿), and 𝑞(𝑥, 𝑦, 𝛿) be analytic functions, 𝜀
positive and small, and 𝛿 ∈ 𝐷 ⊂ 𝑅𝑚 with 𝐷 compact; then
the following system is a planar Hamiltonian system:

𝑥̇ = 𝐻
𝑦
, ̇𝑦 = −𝐻

𝑥
, (5)

and the below system is usually called near-Hamiltonian
system:

𝑥̇ = 𝐻
𝑦
(𝑥, 𝑦) + 𝜀𝑝 (𝑥, 𝑦, 𝛿) ,

̇𝑦 = −𝐻
𝑥
(𝑥, 𝑦) + 𝜀𝑞 (𝑥, 𝑦, 𝛿) .

(6)

Let system (5) have at least one family of periodic orbits 𝐿
ℎ

defined by𝐻(𝑥, 𝑦) = ℎ which form a periodic annulus {𝐿
ℎ
};

then the first-order approximation of the Poincaré map of
system (6) is

𝑀(ℎ, 𝛿) = ∮

𝐿ℎ

(𝑞𝑑𝑥 − 𝑝𝑑𝑦) (7)

which is called the Melnikov function or Abel integral.
By the Poincaré-Pontryagin-Andronov theorem, an isolated
zero of 𝑀(ℎ, 𝛿) corresponds a limit cycle of system (6). A
popular method to find limit cycles of (6) is to find zeros of
𝑀(ℎ, 𝛿) and an efficient method to find zeros of 𝑀(ℎ, 𝛿) is
to investigate the asymptotic expansion of 𝑀(ℎ, 𝛿) near the
boundaries of {𝐿

ℎ
}; see [18].

Let the outer boundary of {𝐿
ℎ
} be a homoclinic loop 𝐿

𝛽

defined by 𝐻(𝑥, 𝑦) = 𝛽 passing through a hyperbolic saddle
at the origin; we have the following.

Lemma2 (see [19]). (i)The function𝑀(ℎ, 𝛿) has the following
expansion:

𝑀(ℎ, 𝛿) = 𝑐
0
(𝛿) + 𝑐

1
(𝛿) (ℎ − 𝛽) ln 󵄨󵄨󵄨󵄨ℎ − 𝛽

󵄨󵄨󵄨󵄨

+ 𝑐
2
(𝛿) (ℎ − 𝛽) + 𝑐

3
(𝛿) (ℎ − 𝛽)

2 ln 󵄨󵄨󵄨󵄨ℎ − 𝛽
󵄨󵄨󵄨󵄨

+ 𝑂 (
󵄨󵄨󵄨󵄨
ℎ − 𝛽

󵄨󵄨󵄨󵄨

2

) ,

(8)

for 0 < 𝛽 − ℎ ≪ 1; 𝑐
𝑖
(𝛿) depends on the parameters of 𝐻, 𝑝,

and 𝑞.
(ii) Further suppose that, for (𝑥, 𝑦) near (0, 0),

𝐻(𝑥, 𝑦) = 𝛽 +
𝜆

2
(𝑦
2
− 𝑥
2
) + ∑

𝑖+𝑗≥3

ℎ
𝑖𝑗
𝑥
𝑖
𝑦
𝑗
, 𝜆 ̸= 0,

𝑝 (𝑥, 𝑦, 𝛿) = ∑

𝑖+𝑗≥0

𝑎
𝑖𝑗
𝑥
𝑖
𝑦
𝑗
,

𝑞 (𝑥, 𝑦, 𝛿) = ∑

𝑖+𝑗≥0

𝑏
𝑖𝑗
𝑥
𝑖
𝑦
𝑗
.

(9)
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Figure 2: Two different distributions of 24 limit cycles of system (1).

Then,

𝑐
0
(𝛿) = ∮

𝐿𝛽

𝑞 𝑑𝑥 − 𝑝𝑑𝑦,

𝑐
1
(𝛿) = −

1

|𝜆|
(𝑎
10
+ 𝑏
01
) ,

𝑐
2
(𝛿) = ∮

𝐿𝛽

(𝑝
𝑥
+ 𝑞
𝑦
) 𝑑𝑡 if 𝑐

1
(𝛿) = 0,

𝑐
3
(𝛿) =

−1

2 |𝜆| 𝜆
{(−3𝑎

30
− 𝑏
21
+ 𝑎
12
+ 3𝑏
03
)

−
1

𝜆
[(2𝑏
02
+ 𝑎
11
) (3ℎ
03
− ℎ
21
)

+ (2𝑎
20
+ 𝑏
11
) (3ℎ
30
− ℎ
12
)]} ,

if 𝑐
1
(𝛿) = 0.

(10)

The values 𝑐
1
(𝛿) and 𝑐

3
(𝛿) are, respectively, called the first and

second local Melnikov coefficients at the saddle 𝑂, denoted by
𝑐
1
(𝑂, 𝛿) and 𝑐

3
(𝑂, 𝛿), respectively.

Now let the outer boundary of {𝐿
ℎ
} be an 2-polycycle Γ2:

Γ
2
=

2

⋃

𝑖=1

(𝐿
𝑖
∪ 𝑆
𝑖
) (11)

with 2hyperbolic saddles, 𝑆
1
and 𝑆
2
, and 2heteroclinic orbits,

𝐿
1
and 𝐿

2
, connecting them, defined by 𝐻(𝑥, 𝑦) = 𝛽. The

following lemma was proved in [19].

Lemma 3 (see [19]). Under the above assumptions, 𝑀(ℎ, 𝛿)
has the form, for 0 < 𝛽 − ℎ ≪ 1,

𝑀(ℎ, 𝛿) = ∑

𝑗≥0

[𝑐
2𝑗
(𝛿) + 𝑐

2𝑗+1
(𝛿) (ℎ − 𝛽) ln 󵄨󵄨󵄨󵄨ℎ − 𝛽

󵄨󵄨󵄨󵄨
]

× (ℎ − 𝛽)
𝑗

,

(12)

where

𝑐
0
(𝛿) =

2

∑

𝑖=1

∫

𝐿 𝑖

𝑞 𝑑𝑥 − 𝑝𝑑𝑦,

𝑐
1
(𝛿) =

2

∑

𝑖=1

𝑐
1
(𝑆
𝑖
, 𝛿) ,

𝑐
3
(𝛿) =

2

∑

𝑖=1

𝑐
3
(𝑆
𝑖
, 𝛿) ,

(13)

where 𝑐
1
(𝑆
𝑖
, 𝛿) and 𝑐

3
(𝑆
𝑖
, 𝛿) are, respectively, the first and the

second local Melnikov coefficient at the saddle 𝑆
𝑖
, 𝑖 = 1, 2. In

particular,

𝑐
2
(𝛿) = ∮

Γ
2

(𝑝
𝑥
+ 𝑞
𝑦
) 𝑑𝑡 =

2

∑

𝑖=1

∫

L𝑖
(𝑝
𝑥
+ 𝑞
𝑦
) 𝑑𝑡, (14)

if 𝑐
1
(𝑆
𝑖
, 𝛿) = 0, 𝑖 = 1, 2.

When the inner boundary of {𝐿
ℎ
} is a elementary center

(𝑥
𝑐
, 𝑦
𝑐
) defined by 𝐻(𝑥

𝑐
, 𝑦
𝑐
) = 𝛼, the following lemma gives

the asymptotic expansion of𝑀(ℎ, 𝛿).

Lemma 4 (see [20]). 𝑀(ℎ, 𝛿) has the form, for 0 < ℎ−𝛼 ≪ 1,

𝑀(ℎ, 𝛿) = ∑

𝑘≥0

𝐵
𝑘
(ℎ − 𝛼)

𝑘+1
. (15)

If for (𝑥, 𝑦) near (𝑥
𝑐
, 𝑦
𝑐
),

𝐻(𝑥, 𝑦) = 𝛼 +
1

2
((𝑥 − 𝑥

𝑐
)
2

+ (𝑦 − 𝑦
𝑐
)
2

)
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+ ∑

𝑖+𝑗≥3

ℎ
𝑖𝑗
(𝑥 − 𝑥

𝑐
)
𝑖

(𝑦 − 𝑦
𝑐
)
𝑗

,

𝑝 (𝑥, 𝑦, 𝛿) = ∑

𝑖+𝑗≥1

𝑎
𝑖𝑗
(𝑥 − 𝑥

𝑐
)
𝑖

(𝑦 − 𝑦
𝑐
)
𝑗

,

𝑞 (𝑥, 𝑦, 𝛿) = ∑

𝑖+𝑗≥1

𝑏
𝑖𝑗
(𝑥 − 𝑥

𝑐
)
𝑖

(𝑦 − 𝑦
𝑐
)
𝑗

,

(16)

the coefficients 𝐵
𝑖
can be obtained by the formulas in [20].

Remark 5. When the inner boundary is a nilpotent center, a
new method of limit cycles bifurcated from the annulus near
the center can be found in [21]. Lemma 3 has been developed
in [22, 23].

Inmany cases theHamiltonian function is not of the form
presented in the above lemmas. Then to apply the lemmas
we need first to introduce suitable linear change of variables
which will cause a change in the first-order Melnikov func-
tion.The following lemma gives the relationship between the
old and new Melnikov functions.

Lemma 6 (see [24]). (i) Under the linear change of variables
of the form:

𝑢 = 𝑎 (𝑥 − 𝑥
0
) + 𝑏 (𝑦 − 𝑦

0
) ,

V = 𝑐 (𝑥 − 𝑥
0
) + 𝑑 (𝑦 − 𝑦

0
)

(17)

and time rescaling 𝜏 = 𝑘𝑡, where 𝐷 = 𝑎𝑑 − 𝑏𝑐 ̸= 0, the system
(6) becomes

𝑑𝑢

𝑑𝜏
= 𝐻̃V + 𝜀𝑝,

𝑑V
𝑑𝜏
= −𝐻̃
𝑢
+ 𝜀𝑞, (18)

where 𝐻̃(𝑢, V) = (𝐷/𝑘)𝐻(𝑥, 𝑦), 𝑝(𝑢, V, 𝛿) =

(1/𝑘)[𝑎𝑝(𝑥, 𝑦, 𝛿) + 𝑏𝑞(𝑥, 𝑦, 𝛿)], and 𝑞(𝑢, V, 𝛿) =

(1/𝑘)[𝑐𝑝(𝑥, 𝑦, 𝛿) + 𝑑𝑞(𝑥, 𝑦, 𝛿)].
(ii) Let

𝑀̃ (ℎ, 𝛿) = ∮

𝐿ℎ

𝑞 𝑑𝑢 − 𝑝𝑑V (19)

which is the Melnikov function of the system (18); then

𝑀(ℎ, 𝛿) =
|𝑘|

𝐷
𝑀̃ (
𝐷

𝑘
ℎ, 𝛿) . (20)

When systems (5) and (6) are 𝑍
4
-equivariant, (5) has

a compound cycled denoted by Γ4, which consists of 8
hyperbolic saddles 𝑆

1
, . . . , 𝑆

8
and 16 heteroclinic orbits 𝐿

12
,

𝐿
21
, 𝐿
23
, 𝐿
32
, 𝐿
34
, 𝐿
43
, 𝐿
45
, 𝐿
54
, 𝐿
56
, 𝐿
65
, 𝐿
67
, 𝐿
76
, 𝐿
78
, 𝐿
87
,

𝐿
81
, and 𝐿

18
satisfying 𝛼(𝐿

𝑖𝑗
) = 𝑆

𝑖
, 𝜔(𝐿
𝑖𝑗
) = 𝑆

𝑗
. Γ4 contains

8 two-polycycles 𝐿
𝑖
(𝑖 = 1, . . . , 8), where 𝐿

1
= 𝐿
12
∪ 𝐿
21
,

𝐿
2
= 𝐿
23
∪𝐿
32
, 𝐿
3
= 𝐿
34
∪𝐿
43
, 𝐿
4
= 𝐿
45
∪𝐿
54
, 𝐿
5
= 𝐿
56
∪𝐿
65
,

𝐿
6
= 𝐿
67
∪ 𝐿
76
, 𝐿
7
= 𝐿
78
∪ 𝐿
87
, and 𝐿

8
= 𝐿
81
∪ 𝐿
18
. See

Figure 3. We suppose that Γ4 is defined by𝐻(𝑥, 𝑦) = 𝐻(𝑆
𝑖
) =

𝛽, 𝑖 = 1, . . . , 8. There are 8 centers 𝐶
𝑖
(𝑥
𝑖
, 𝑦
𝑖
) inside the 2-

polycycle 𝐿 I, with 𝐻(𝐶1) = 𝐻(𝐶3) = 𝐻(𝐶5) = 𝐻(𝐶7) = 𝛼1
and 𝐻(𝐶

2
) = 𝐻(𝐶

4
) = 𝐻(𝐶

6
) = 𝐻(𝐶

8
) = 𝛼

2
. There

S1

S2

S3

S4S5

S6

S7

S8
L12

L23

L3 4

L4 5L5 6

L6 7

L7 8
L81

L21

L32

L43L54L65

L76

L87
L18

2

1

0

−1

−2

y

x

21−1−2

Figure 3

are 4 families of periodic orbits 𝐿ℎ
𝑖
inside the 2-polycycle 𝐿

𝑖
,

defined by 𝐻(𝑥, 𝑦) = ℎ for ℎ ∈ (𝛼
1
, 𝛽), 𝑖 = 1, 3, 5, 7, and

4 families of periodic orbits 𝐿ℎ
𝑗
inside the 2-polycycle 𝐿

𝑗
,

defined by 𝐻(𝑥, 𝑦) = ℎ for ℎ ∈ (𝛼
2
, 𝛽), 𝑗 = 2, 4, 6, 8. Then

we have 8 Melnikov functions below:

𝑀
𝑖
(ℎ, 𝛿) = ∮

𝐿
ℎ

𝑖

(𝑞 𝑑𝑥 − 𝑝𝑑𝑦)
󵄨󵄨󵄨󵄨𝜀=0
,

for ℎ ∈ (𝛼
1
, 𝛽) 𝑖 = 1, 3, 5, 7.

𝑀
𝑗
(ℎ, 𝛿) = ∮

𝐿
ℎ

𝑖

(𝑞 𝑑𝑥 − 𝑝𝑑𝑦)
󵄨󵄨󵄨󵄨𝜀=0
,

for ℎ ∈ (𝛼
2
, 𝛽) 𝑗 = 2, 4, 6, 8.

(21)

By 𝑍
4
-equivariance, 𝑀

1
(ℎ, 𝛿) = 𝑀

3
(ℎ, 𝛿) = 𝑀

5
(ℎ, 𝛿) =

𝑀
7
(ℎ, 𝛿) and 𝑀

2
(ℎ, 𝛿) = 𝑀

4
(ℎ, 𝛿) = 𝑀

6
(ℎ, 𝛿) = 𝑀

8
(ℎ, 𝛿),

we can only study 𝑀
1
(ℎ, 𝛿) and 𝑀

8
(ℎ, 𝛿). For convenience,

the notations are introduced as follows:

𝑐
01
(𝛿) = ∫

𝐿12

𝑞 𝑑𝑥 − 𝑝𝑑𝑦,

𝑐
02
(𝛿) = ∫

𝐿21

𝑞 𝑑𝑥 − 𝑝𝑑𝑦,

𝑒
01
(𝛿) = ∫

𝐿81

𝑞 𝑑𝑥 − 𝑝𝑑𝑦,

𝑒
02
(𝛿) = ∫

𝐿18

𝑞 𝑑𝑥 − 𝑝𝑑𝑦,

(22)
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and 𝑑
𝑖
(𝛿) = (𝑝

𝑥
+ 𝑞
𝑦
)(𝑆
𝑖
, 𝛿), 1 ≤ 𝑖 ≤ 8, where 𝑑

1
= 𝑑
3
= 𝑑
5
=

𝑑
7
and 𝑑

2
= 𝑑
4
= 𝑑
6
= 𝑑
8
. Letting 𝑑

1
= 𝑑
2
= 0, we introduce

𝑐
21
(𝛿) = ∫

𝐿12

(𝑝
𝑥
+ 𝑞
𝑦
) 𝑑𝑡,

𝑐
22
(𝛿) = ∫

𝐿21

(𝑝
𝑥
+ 𝑞
𝑦
) 𝑑𝑡,

𝑒
21
(𝛿) = ∫

𝐿81

(𝑝
𝑥
+ 𝑞
𝑦
) 𝑑𝑡,

𝑒
22
(𝛿) = ∫

𝐿18

(𝑝
𝑥
+ 𝑞
𝑦
) 𝑑𝑡.

(23)

The following is directly from Lemma 3.

Lemma 7. Under the above assumptions, we have the follow-
ing expansions:

𝑀
𝑖
(ℎ, 𝛿) = 𝑐

0
(𝛿) + 𝑐

1
(𝛿) (ℎ − 𝛽) ln 󵄨󵄨󵄨󵄨ℎ − 𝛽

󵄨󵄨󵄨󵄨

+ 𝑐
2
(𝛿) (ℎ − 𝛽)

+ 𝑐
3
(𝛿) (ℎ − 𝛽)

2 ln 󵄨󵄨󵄨󵄨ℎ − 𝛽
󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ ,

(24)

for 0 < ℎ − 𝛽 ≪ 1, 𝑖 = 1, 3, 5, 7,

𝑀
𝑗
(ℎ, 𝛿) = 𝑒

0
(𝛿) + 𝑒

1
(𝛿) (ℎ − 𝛽) ln 󵄨󵄨󵄨󵄨ℎ − 𝛽

󵄨󵄨󵄨󵄨

+ 𝑒
2
(𝛿) (ℎ − 𝛽)

+ 𝑒
3
(𝛿) (ℎ − 𝛽)

2 ln 󵄨󵄨󵄨󵄨ℎ − 𝛽
󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ ,

(25)

for 0 < ℎ − 𝛽 ≪ 1, 𝑗 = 2, 4, 6, 8, where

𝑐
0
(𝛿) = 𝑐

01
(𝛿) + 𝑐

02
(𝛿) ,

𝑒
0
(𝛿) = 𝑒

01
(𝛿) + 𝑒

02
(𝛿) ,

𝑐
1
(𝛿) = 𝑐

1
(𝑆
1
, 𝛿) + 𝑐

1
(𝑆
2
, 𝛿) = −

𝑑
1
(𝛿)

󵄨󵄨󵄨󵄨
𝜆
1

󵄨󵄨󵄨󵄨

−
𝑑
2
(𝛿)

󵄨󵄨󵄨󵄨
𝜆
2

󵄨󵄨󵄨󵄨

,

𝑒
1
(𝛿) = 𝑐

1
(𝑆
1
, 𝛿) + 𝑐

1
(𝑆
8
, 𝛿)

= 𝑐
1
(𝑆
1
, 𝛿) + 𝑐

1
(𝑆
2
, 𝛿) = 𝑐

1
(𝛿) ,

𝑐
3
(𝛿) = 𝑐

3
(𝑆
1
, 𝛿) + 𝑐

3
(𝑆
2
, 𝛿) ,

𝑒
3
(𝛿) = 𝑐

3
(𝑆
1
, 𝛿) + 𝑐

3
(𝑆
8
, 𝛿)

= 𝑐
3
(𝑆
1
, 𝛿) + 𝑐

3
(𝑆
2
, 𝛿) = 𝑐

3
(𝛿) ,

𝑐
2
(𝛿) = 𝑐

21
(𝛿) + 𝑐

22
(𝛿) ,

𝑒
2
(𝛿) = 𝑒

21
(𝛿) + 𝑒

22
(𝛿)

(26)

if 𝑑
1
(𝛿) = 𝑑

2
(𝛿) = 0. 𝜆

𝑖
denotes an eigenvalue of 𝑆

𝑖
for (6)

and 𝑐
1
(𝑆
𝑖
, 𝛿) and 𝑐

3
(𝑆
𝑖
, 𝛿) are the first and the second Melnikov

coefficients at the saddle 𝑆
𝑖
(𝑖 = 1, 2) as defined after Lemma 2.

By Lemma 4, for the expansions of 𝑀
𝑖
(ℎ, 𝛿) near the

center, we have

𝑀
1
(ℎ, 𝛿) = ∑

𝑘≥0

𝐵
𝑘
(𝛿) (ℎ − 𝛼

1
)
𝑘+1

for 0 < ℎ − 𝛼
1
≪ 1,

𝑀
8
(ℎ, 𝛿) = ∑

𝑘≥0

𝑑
𝑘
(𝛿) (ℎ − 𝛼

2
)
𝑘+1

for 0 < ℎ − 𝛼
2
≪ 1.

(27)

To obtain more limit cycles, we have the following.

Theorem 8. Let (24), (25), and (27) hold.
(1) Suppose that there exists 𝛿

0
∈ 𝐷 such that

𝑐
0
(𝛿
0
) = 𝑐
1
(𝛿
0
) = 𝑑
0
(𝛿
0
) = 𝑑
1
(𝛿
0
) = 0,

𝑐
2
(𝛿
0
) ̸= 0, 𝑑

2
(𝛿
0
) ̸= 0,

rank
𝜕 (𝑐
0
, 𝑐
1
, 𝑑
0
, 𝑑
1
)

𝜕 (𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑚
)
= 4.

(28)

Then there exist some (𝜀, 𝛿) near (0, 𝛿
0
) such that (5) has

4 +
1 − sgn (𝑀

1
(ℎ
1
, 𝛿
0
)𝑀
1
(ℎ
2
, 𝛿
0
))

2

+
1 − sgn (𝑀

8
(ℎ
3
, 𝛿
0
)𝑀
8
(ℎ
4
, 𝛿
0
))

2

(29)

limit cycles in the 2-polycycles 𝐿
1
and 𝐿

8
, where ℎ

1
= 𝛽 − 𝜀

0
,

ℎ
2
= 𝛼
1
+ 𝜀
0
, ℎ
3
= 𝛽 − 𝜀

0
, and ℎ

4
= 𝛼
2
+ 𝜀
0
with 𝜀

0
being

positive and very small, and the location of these limit cycles
is as follows: 2 limit cycles near the 2-polycycle 𝐿

1
, 2 limit

cycles near the center 𝐶
8
, (1 − sgn(𝑀

1
(ℎ
1
, 𝛿
0
)𝑀
1
(ℎ
2
, 𝛿
0
)))/2

limit cycles between the center 𝐶
1
and the polycycle 𝐿

1
, and

(1 − sgn(𝑀
8
(ℎ
3
, 𝛿
0
)𝑀
8
(ℎ
4
, 𝛿
0
)))/2 limit cycles between the

center 𝐶
8
and the polycycle 𝐿

8
.

(2) Suppose that there exists 𝛿
0
∈ 𝐷 such that

𝑐
0
(𝛿
0
) = 𝑐
1
(𝛿
0
) = 𝐵
0
(𝛿
0
) = 𝑒
0
(𝛿
0
) = 0,

𝑐
2
(𝛿
0
) ̸= 0, 𝑒

2
(𝛿
0
) ̸= 0, 𝐵

1
(𝛿
0
) ̸= 0,

rank
𝜕(𝑐
0
, 𝑐
1
, 𝐵
0
, 𝑒
0
)

𝜕(𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑚
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛿=𝛿0

= 4.

(30)

Then there exist some (𝜀, 𝛿) near (0, 𝛿
0
) such that (5) has

4 +
1 − sgn (𝑀

1
(ℎ
1
, 𝛿
0
)𝑀
1
(ℎ
2
, 𝛿
0
))

2

+
1 − sgn (𝑀

8
(ℎ
3
, 𝛿
0
)𝑀
8
(ℎ
4
, 𝛿
0
))

2

+
1 + sgn (𝑐

2
(𝛿
0
) 𝑒
2
(𝛿
0
))

2

(31)

limit cycles in the 2-polycycles 𝐿
1
and 𝐿

8
, where ℎ

1
= 𝛽 − 𝜀

0
,

ℎ
2
= 𝛼
1
+𝜀
0
, ℎ
3
= 𝛽−𝜀

0
, and ℎ

4
= 𝛼
2
+𝜀
0
with 𝜀

0
being positive
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and very small, and the location of these limit cycles is the
following: 2 limit cycles near the 2-polycycle 𝐿

1
, 1 limit cycles

near the center 𝐶
1
, 1 + ((1 + sgn(𝑐

2
(𝛿
0
)𝑒
2
(𝛿
0
)))/2) limit cycles

near the 2-polycycle 𝐿
8
, (1 − sgn(𝑀

1
(ℎ
1
, 𝛿
0
)𝑀
1
(ℎ
2
, 𝛿
0
)))/2

limit cycles between the center 𝐶
1
, and the polycycle 𝐿

1
and

(1 − sgn(𝑀
8
(ℎ
3
, 𝛿
0
)𝑀
8
(ℎ
4
, 𝛿
0
)))/2 limit cycles between the

center 𝐶
8
and the polycycle 𝐿

8
.

Proof. Because of the similarity, we only prove the last
conclusion. For 𝛿 = 𝛿

0
, by continuity, there exist (1 −

sgn(𝑀
1
(ℎ
1
, 𝛿
0
)𝑀
1
(ℎ
2
, 𝛿
0
)))/2 zeros of 𝑀

1
(ℎ, 𝛿
0
) between

ℎ
1
and ℎ

2
and (1 − sgn(𝑀

8
(ℎ
3
, 𝛿
0
)𝑀
8
(ℎ
4
, 𝛿
0
)))/2 zeros of

𝑀
8
(ℎ, 𝛿
0
) between ℎ

3
and ℎ

4
. Thus, for all 𝛿 near 𝛿

0
or

𝛿 ∈ 𝑈
0
= {𝛿 | |𝛿| < 𝜀

∗
, 𝜀
∗ is very small} there exist

(1 − sgn(𝑀
1
(ℎ
1
, 𝛿
0
)𝑀
1
(ℎ
2
, 𝛿
0
)))/2 zeros of𝑀

1
(ℎ, 𝛿) between

ℎ
1
and ℎ

2
and (1 − sgn(𝑀

8
(ℎ
3
, 𝛿
0
)𝑀
8
(ℎ
4
, 𝛿
0
)))/2 zeros of

𝑀
8
(ℎ, 𝛿) between ℎ

3
and ℎ
4
.

According to the condition, we can take 𝑐
0
, 𝑐
1
, 𝑒
0
, and 𝐵

0

as free parameters. Hence, we first take 𝑐
1
satisfying

󵄨󵄨󵄨󵄨
𝑐
1

󵄨󵄨󵄨󵄨
≪
󵄨󵄨󵄨󵄨
𝑐
2

󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨
𝑐
1

󵄨󵄨󵄨󵄨
≪
󵄨󵄨󵄨󵄨
𝑒
2

󵄨󵄨󵄨󵄨
, 𝑐

1
𝑐
2
> 0, (32)

so that there is a zero of 𝑀
1
(ℎ, 𝛿) denoted by ℎ̃

1
near 𝛽

satisfying ℎ
1
< ℎ̃
1
< 𝛽. On the other hand, if 𝑐

2
𝑒
2
> 0,

considering 𝑐
1
= 𝑒
1
, we have |𝑒

1
| ≪ |𝑒

2
| and 𝑒

1
𝑒
2
> 0

which implies that there is a zero of𝑀
8
(ℎ, 𝛿) denoted by ℎ

1

near 𝛽 satisfying ℎ
3
< ℎ
1
< 𝛽. If 𝑐

2
𝑒
2
< 0, we are not

sure if 𝑀
8
(ℎ, 𝛿) has a zero. Thus, so far we obtain 1 zero of

𝑀
1
(ℎ, 𝛿) and (1 + sgn(𝑐

2
(𝛿
0
)𝑒
2
(𝛿
0
)))/2 zeros of𝑀

8
(ℎ, 𝛿) for

𝛿 ∈ 𝑈
1
= {𝛿 | |𝑐

1
| ≪ |𝑐

2
|, |𝑐
1
| ≪ |𝑒

2
|, 𝑐
1
𝑐
2
> 0}.

Next, we take 𝑐
0
, 𝑒
0
, and 𝐵

0
satisfying

󵄨󵄨󵄨󵄨
𝑐
0

󵄨󵄨󵄨󵄨
≪
󵄨󵄨󵄨󵄨
𝑐
1

󵄨󵄨󵄨󵄨
, 𝑐

0
𝑐
1
< 0,

󵄨󵄨󵄨󵄨
𝑒
0

󵄨󵄨󵄨󵄨
≪
󵄨󵄨󵄨󵄨
𝑒
1

󵄨󵄨󵄨󵄨
,

𝑒
0
𝑒
1
< 0,

󵄨󵄨󵄨󵄨
𝐵
0

󵄨󵄨󵄨󵄨
≪
󵄨󵄨󵄨󵄨
𝐵
1

󵄨󵄨󵄨󵄨
, 𝐵

0
𝐵
1
< 0.

(33)

Then 𝑀
1
(ℎ, 𝛿) has two new zeros ℎ̃

2
near 𝛽 and ℎ̃

3
near

𝛼
2
satisfying ℎ

1
< ℎ̃
1
< ℎ̃
2
< 𝛽 and 𝛼

2
< ℎ̃
3
< ℎ
4
, and

𝑀
8
(ℎ, 𝛿) has a new zero ℎ

2
near 𝛽 satisfying ℎ

3
< ℎ
2
< 𝛽.

In this step, we get 2 more zeros of 𝑀
1
(ℎ, 𝛿) and 1 more

zero of𝑀
1
(ℎ, 𝛿) for ∈ 𝑈

2
= {𝛿 | |𝑐

0
| ≪ |𝑐

1
|, 𝑐
0
𝑐
1
< 0, |𝑒

0
| ≪

|𝑒
1
|, 𝑒
0
𝑒
1
< 0, |𝐵

0
| ≪ |𝐵

1
|, and 𝐵

0
𝐵
1
< 0}. Then totally

we have 4 + (1 − sgn(𝑀
1
(ℎ
1
, 𝛿
0
)𝑀
1
(ℎ
2
, 𝛿
0
)))/2 + (1 −

sgn(𝑀
8
(ℎ
3
, 𝛿
0
)𝑀
8
(ℎ
4
, 𝛿
0
)))/2 + (1 + sgn(𝑐

2
(𝛿
0
)𝑒
2
(𝛿
0
)))/2

zeros for 𝛿 ∈ 𝑈
0
∩ 𝑈
1
∩ 𝑈
2
. Therefore, there

are 4 + (1 − sgn(𝑀
1
(ℎ
1
, 𝛿
0
)𝑀
1
(ℎ
2
, 𝛿
0
)))/2 + (1 −

sgn(𝑀
8
(ℎ
3
, 𝛿
0
)𝑀
8
(ℎ
4
, 𝛿
0
)))/2 + (1 + sgn(𝑐

2
(𝛿
0
)𝑒
2
(𝛿
0
)))/2

limit cycles for some 𝛿 near 𝛿
0
. This completes the proof.

Remark 9. The signs of 𝑀
1
(ℎ
1
, 𝛿
0
), 𝑀
1
(ℎ
2
, 𝛿
0
), 𝑀
8
(ℎ
3
, 𝛿
0
),

and𝑀
8
(ℎ
4
, 𝛿
0
) can be determined by using the first nonzero

coefficients in their expansions.

3. Main Result

In this section, we investigate the distributions of limit cycles
of system (1). For 𝜀 = 0, (1) has two level sets, Γ̃

1
and

Γ̃
2
, defined by 𝐻(𝑥, 𝑦) = −5/12 and 𝐻(𝑥, 𝑦) = −5/12
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L34

L56
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L78 L81
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Figure 4

respectively. Γ̃
1
consists of 8 saddles, 𝑆

1
= (1, 2), 𝑆

2
= (2, 1),

𝑆
3
= (2, −1), 𝑆

4
= (1, −2), 𝑆

5
= (−1, −2), 𝑆

6
= (−2, −1),

𝑆
7
= (−2, 1), and 𝑆

8
= (−1, 2), as shown in Figure 4. Let

𝐿
𝑖𝑗
, 𝐿
𝑖
, 𝐿ℎ
𝑗
, 𝑐
01
, 𝑐
02
, 𝑒
01
, 𝑒
02
, 𝑐
21
, 𝑐
22
, 𝑒
21
,𝑒
22
, and so forth are

the same as those for Lemma 7. We can write the compound
cycles Γ̃

1
as

Γ̃
1
=

8

⋃

𝑖=1

{𝑆
𝑖
}

∪ {𝐿
12
, 𝐿
21
, 𝐿
23
, 𝐿
32
, . . . , 𝐿

78
, 𝐿
87
, 𝐿
81
, 𝐿
18
} .

(34)

The equation 𝐻(𝑥, 𝑦) = −8/3 defines four centers, 𝐶
1
=

(2, 2), 𝐶
3
= (2, −2), 𝐶

5
= (−2, −2), and 𝐶

7
= (−2, 2), where

the equation 𝐻(𝑥, 𝑦) = −4/3 defines four centers of 𝐶
2
=

(2, 0), 𝐶
4
= (0, −2), 𝐶

6
= (−2, 0), and 𝐶

8
= (0, 2). The center

𝐶
𝑖
is inside the 2-polycycle 𝐿

𝑖
for 𝑖 = 1, . . . , 8.

We first investigate the 2-polycycles 𝐿
1
and 𝐿

8
. Here, 𝐿ℎ

1

denotes the periodic orbit defined by𝐻(𝑥, 𝑦) = ℎ surround-
ing the unique center 𝐶

1
and 𝐿ℎ

8
denotes the periodic orbit

defined by 𝐻(𝑥, 𝑦) = ℎ surrounding the unique center 𝐶
8
.

Then

𝑀
1
(ℎ, 𝛿) = ∮

𝐿
ℎ

1

𝑄
5
𝑑𝑥 − 𝑃

5
𝑑𝑦

= ∮

𝐿
ℎ

1

(𝑄
5
− 𝑃
5

𝑑𝑦

𝑑𝑥
)𝑑𝑥, ℎ ∈ (−

8

3
, −
5

12
) ,

𝑀
8
(ℎ, 𝛿) = ∮

𝐿
ℎ

8

𝑄
5
𝑑𝑥 − 𝑃

5
𝑑𝑦

= ∮

𝐿
ℎ

8

(𝑄
5
− 𝑃
5

𝑑𝑦

𝑑𝑥
)𝑑𝑥, ℎ ∈ (−

4

3
, −
5

12
) ,

(35)
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where 𝛿 = (𝑎
0
, 𝑎
1
, . . . , 𝑎

5
) ∈ 𝑅
6. By Lemma 7, we have

𝑀
1
(ℎ, 𝛿) = 𝑐

0
(𝛿) + 𝑐

1
(𝛿) (ℎ +

5

12
) ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ℎ +
5

12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑐
2
(𝛿) (ℎ +

5

12
)

+ 𝑐
3
(𝛿) (ℎ +

5

12
)

2

ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ℎ +
5

12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ ,

(36)

for 0 < −(ℎ + 5/12) ≪ 1,

𝑀
8
(ℎ, 𝛿) = 𝑒

0
(𝛿) + 𝑒

1
(𝛿) (ℎ +

5

12
) ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ℎ +
5

12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑒
2
(𝛿) (ℎ +

5

12
)

+ 𝑒
3
(𝛿) (ℎ +

5

12
)

2

ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ℎ +
5

12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ ,

(37)

for 0 < −(ℎ + 5/12) ≪ 1.
By Lemma 4, for 0 < ℎ + 8/3 ≪ 1, 𝑖 = 1, 3, 5, 7,

𝑀
𝑖
(ℎ, 𝛿) = ∑

𝑘≥0

𝐵
𝑘
(𝛿) (ℎ +

8

3
)

𝑘+1

, (38)

and, for 0 < ℎ + 4/3 ≪ 1, 𝑗 = 2, 4, 6, 8,

𝑀
𝑗
(ℎ, 𝛿) = ∑

𝑘≥0

𝑑
𝑘
(𝛿) (ℎ +

4

3
)

𝑘+1

. (39)

To find the zeros of𝑀
1
(ℎ, 𝛿) and𝑀

8
(ℎ, 𝛿), the coefficients

in these asymptotic expansions need to be calculated. In order
to calculate the coefficients 𝑐

01
(𝛿), 𝑐
02
(𝛿), 𝑒
01
(𝛿), 𝑒
02
(𝛿), and

so forth, the expressions of heteroclinic orbits are found as
follows:

𝐿
12
: 𝑦
1
(𝑥)

=
1

2

√
2𝑥
2
+ 5 + √−12𝑥

4
+ 60𝑥

2
+ 33,

1 ≤ 𝑥 ≤
1

2

√22,

𝑦
2
(𝑥) =

1

2

√
2𝑥
2
+ 5 − √−12𝑥

4
+ 60𝑥

2
+ 33,

1

2

√22 ≤ 𝑥 ≤ 2,

𝐿
21
: 𝑦
3
(𝑥) = √5 − 𝑥

2
, 2 ≥ 𝑥 ≥ 1,

𝐿
81
: 𝑦
4
(𝑥) = √5 − 𝑥

2
, −1 ≤ 𝑥 ≤ 1,

𝐿
18
: 𝑦
5
(𝑥)

=
1

2

√
2𝑥
2
+ 5 + √−12𝑥

4
+ 60𝑥

2
+ 33,

1 ≥ 𝑥 ≥ −1.

(40)

Figure 5 may be helpful to understand the step to cal-
culate the coefficients in the folowing. By (4), 𝑃

5
(𝑥, 𝑦) and

𝑃
5
(𝑥, 𝑦) are written as follows:

𝑃
5
(𝑥, 𝑦) =

5

∑

𝑖=0

𝑝
1𝑖
𝑎
𝑖
+ 𝑝
2𝑖
𝑏
𝑖
,

𝑄
5
(𝑥, 𝑦) =

5

∑

𝑖=0

𝑞
1𝑖
𝑎
𝑖
+ 𝑞
2𝑖
𝑏
𝑖
,

(41)

and introduce the following notations:

𝑝
𝑗

1𝑖
= 𝑝
1𝑖

󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)
, 𝑝

𝑗

2𝑖
= 𝑝
2𝑖

󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)
,

𝑞
𝑗

1𝑖
= 𝑞
1𝑖

󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)
, 𝑞

𝑗

2𝑖
= 𝑞
2𝑖

󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)
,

𝑖, 𝑗 = 1, 2, 3, 4, 5,

(42)

and 𝑓
𝑗

= (𝑑𝑦/𝑑𝑥)|
𝑦=𝑦𝑖(𝑥)

=

((−2𝑥 + 3𝑥
3
− 𝑥
5
)/(2𝑦 − 3𝑦

3
+ 𝑦
5
))|
𝑦=𝑦𝑖(𝑥)

. By Lemma 7,
we have

𝑐
01
(𝛿) = ∫

𝐿12

𝑄
5
𝑑𝑥 − 𝑃

5
𝑑𝑦

= ∫

√22/2

1

(𝑄
5
− 𝑃
5

𝑑𝑦

𝑑𝑥
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦1(𝑥)

𝑑𝑥

+ ∫

2

√22/2

(𝑄
5
− 𝑃
5

𝑑𝑦

𝑑𝑥
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦2(𝑥)

𝑑𝑥

= ∑

𝑖=0

𝑎
𝑖
𝐼
1

1𝑖
+ 𝑏
𝑖
𝐼
1

2𝑖
+ 𝑎
𝑖
𝐼
2

1𝑖
+ 𝑏
𝑖
𝐼
2

2𝑖
,

𝑐
02
(𝛿) = ∫

𝐿21

𝑄
5
𝑑𝑥 − 𝑃

5
𝑑𝑦

= ∫

1

2

(𝑄
5
− 𝑃
5

𝑑𝑦

𝑑𝑥
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦3(𝑥)

𝑑𝑥

= ∑

𝑖=0

𝑎i𝐼
3

1𝑖
+ 𝑏
𝑖
𝐼
3

2𝑖
,

𝑒
01
(𝛿) = ∫

𝐿81

𝑄
5
𝑑𝑥 − 𝑃

5
𝑑𝑦

= ∫

1

−1

(𝑄
5
− 𝑃
5

𝑑𝑦

𝑑𝑥
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦4(𝑥)

𝑑𝑥

= ∑

𝑖=0

𝑎
𝑖
𝐼
4

1𝑖
+ 𝑏
𝑖
𝐼
4

2𝑖
,

𝑒
02
(𝛿) = ∫

𝐿18

𝑄
5
𝑑𝑥 − 𝑃

5
𝑑𝑦

= ∫

−1

1

(𝑄
5
− 𝑃
5

𝑑𝑦

𝑑𝑥
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦5(𝑥)

𝑑𝑥

= ∑

𝑖=0

𝑎
𝑖
𝐼
4

1𝑖
+ 𝑏
𝑖
𝐼
4

2𝑖
,

(43)
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y = y1(x)

y = y2(x)

y = y3(x)

S1(1, 2)

S2(2, 1)

C1(2, 2)

1

2

1 2

x

y

x = √22/2

L12

L21

(a) The 2-polycycle 𝐿1

y = y5(x)

y = y4(x) S1(1, 2)S8( 1,2)

C8(0, 2)

x

y

L18

−

−

1 0 1

2
L81 L12

L21

(b) The 2-polycycle 𝐿8

Figure 5

where, for 𝑖 = 0, 1, 2, 3, 4, 5,

𝐼
1

1𝑖
= ∫

√22/2

1

(𝑝
1

1𝑖
+ 𝑞
1

1𝑖
𝑓
1
) 𝑑𝑥,

𝐼
1

2𝑖
= ∫

√22/2

1

(𝑝
1

2𝑖
+ 𝑞
1

2𝑖
𝑓
1
) 𝑑𝑥,

𝐼
2

1𝑖
= ∫

2

√22/2

(𝑝
2

1𝑖
+ 𝑞
2

1𝑖
𝑓
2
) 𝑑𝑥,

𝐼
2

2𝑖
= ∫

2

√22/2

(𝑝
2

2𝑖
+ 𝑞
2

2𝑖
𝑓
2
) 𝑑𝑥,

𝐼
3

1𝑖
= ∫

1

2

(𝑝
3

1𝑖
+ 𝑞
3

1𝑖
𝑓
3
) 𝑑𝑥,

𝐼
3

2𝑖
= ∫

1

2

(𝑝
3

2𝑖
+ 𝑞
3

2𝑖
𝑓
3
) 𝑑𝑥,

𝐼
4

1𝑖
= ∫

1

−1

(𝑝
4

1𝑖
+ 𝑞
4

1𝑖
𝑓
4
) 𝑑𝑥,

𝐼
4

2𝑖
= ∫

1

−1

(𝑝
4

2𝑖
+ 𝑞
4

2𝑖
𝑓
4
) 𝑑𝑥,

𝐼
5

1𝑖
= ∫

−1

1

(𝑝
5

1𝑖
+ 𝑞
5

1𝑖
𝑓
5
) 𝑑𝑥,

𝐼
5

2𝑖
= ∫

−1

1

(𝑝
5

2𝑖
+ 𝑞
5

2𝑖
𝑓
5
) 𝑑𝑥.

(44)

Thus,

𝑐
0
(𝛿) = 𝑐

01
(𝛿) + 𝑐

02
(𝛿)

=

5

∑

𝑖=0

[(𝐼
1

1𝑖
+ 𝐼
2

1𝑖
+ 𝐼
3

1𝑖
) 𝑎
𝑖
+ (𝐼
1

2𝑖
+ 𝐼
2

2𝑖
+ 𝐼
2

2𝑖
) 𝑏
𝑖
]

≡ 𝑙
0
𝑎
0
+ 𝑙
1
𝑎
1
+ 𝑙
2
𝑎
2
+ 𝑙
3
𝑎
3
+ 𝑙
4
𝑎
4
+ 𝑙
5
𝑎
5
,

𝑒
0
(𝛿) = 𝑒

01
(𝛿) + 𝑒

02
(𝛿)

=

5

∑

𝑖=0

[(𝐼
4

1𝑖
+ 𝐼
5

1𝑖
+ 𝐼
3

1𝑖
) 𝑎
𝑖
+ (𝐼
4

2𝑖
+ 𝐼
5

2𝑖
+ 𝐼
2

2𝑖
) 𝑏
𝑖
]

≡ 𝑚
0
𝑎
0
+ 𝑚
1
𝑎
1
+ 𝑚
2
𝑎
2
+ 𝑚
4
𝑎
4
+ 𝑚
5
𝑎
5
.

(45)

By (4), the divergence of (1) at 𝑆
1
and 𝑆
2
is as follows:

𝑑
1
(𝛿) = (

𝑑𝑃
5

𝑑𝑥
+
𝑑𝑄
5

𝑑𝑦
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(1,2)

= 2𝑎
0
+ 20𝑎
1
+ 150𝑎

2
− 14𝑎
4

− 70𝑎
5
− 48𝑏
4
+ 240𝑏

5
,

𝑑
2
(𝛿) = (

𝑑𝑃
5

𝑑𝑥
+
𝑑𝑄
5

𝑑𝑦
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2,1)

= 2𝑎
0
+ 20𝑎
1
+ 150𝑎

2
− 14𝑎
4

− 70𝑎
5
+ 48𝑏
4
− 240𝑏

5
.

(46)

Note that

(
𝐻
𝑦𝑥

𝐻
𝑦𝑦

−𝐻
𝑥𝑥
−𝐻
𝑥𝑦

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆1

= (
0 24

6 0
) ,

(
𝐻
𝑦𝑥

𝐻
𝑦𝑦

−𝐻
𝑥𝑥
−𝐻
𝑥𝑦

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆2

= (
0 −6

−24 0
) ,

(47)

which yields

𝜆
1
= 𝜆
2
= 12. (48)
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By Lemma 3, we have

𝑐
1
(𝛿) = 𝑒

1
(𝛿) =

2

∑

𝑖=1

−
1

󵄨󵄨󵄨󵄨
𝜆
𝑖

󵄨󵄨󵄨󵄨

(
𝑑𝑃
5

𝑑𝑥
+
𝑑𝑄
5

𝑑𝑦
) (𝑆
𝑖
, 𝛿)

= −
𝑑
1
(𝛿)

󵄨󵄨󵄨󵄨
𝜆
1

󵄨󵄨󵄨󵄨

−
𝑑
2
(𝛿)

󵄨󵄨󵄨󵄨
𝜆
1

󵄨󵄨󵄨󵄨

= −
1

3
𝑎
0
−
10

3
𝑎
1
− 25𝑎
2
+
7

3
𝑎
4
+
35

3
𝑎
5
.

(49)

In the following by letting 𝑏
4
= 5𝑏
5
, then

𝑑
1
(𝛿) = 𝑑

2
(𝛿) , 𝑐

1
(𝑆
1
, 𝛿) = 𝑐

1
(𝑆
2
, 𝛿) . (50)

Letting 𝑐
1
(𝛿) = 0, then

𝑎
0
= −10𝑎

1
− 75𝑎
2
+ 7𝑎
4
+ 35𝑎
5
. (51)

Under 𝑐
1
(𝛿) = 0, we can apply Lemma 7 to calculate the

coefficients 𝑐
2
(𝛿) and 𝑒

2
(𝛿). For convenience, the following

notations are introduced: ℎ = 𝑑𝑥/𝑑𝑡 = 2𝑦 − 3𝑦3 + 𝑦5.
For 𝑗 = 1, 2, 3, 4, 5, ℎ

𝑗
= (2𝑦 − 3𝑦

3
+ 𝑦
5
)|
𝑦=𝑦𝑗(𝑥)

, (𝑑𝑃
5
/𝑑𝑥 +

𝑑𝑄
5
/𝑑𝑦) ≡ ∑

5

𝑗=0
𝑓
𝑖
𝑎
𝑖
, and

𝑓
𝑗

0
(𝑥) =

𝑓
0

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

=
2

2𝑦 − 3𝑦
3
+ 𝑦
5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

,

𝑓
𝑗

1
(𝑥) =

𝑓
1

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

=
4𝑥
2
+ 4𝑦
2

2𝑦 − 3𝑦
3
+ 𝑦
5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

,

𝑓
𝑗

2
(𝑥) =

𝑓
2

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

=
12𝑦
2
𝑥
2
+ 6𝑥
4
+ 6𝑦
4

2𝑦 − 3𝑦
3
+ 𝑦
5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

,

𝑓
𝑗

3
(𝑥) =

𝑓
3

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

=
0

2𝑦 − 3𝑦
3
+ 𝑦
5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

= 0,

𝑓
𝑗

4
(𝑥) =

𝑓
4

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

=
−12𝑦
2
𝑥
2
+ 2𝑥
4
+ 2𝑦
4

2𝑦 − 3𝑦
3
+ 𝑦
5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

,

𝑓
𝑗

5
(𝑥) =

𝑓
5

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

=
−60𝑦
2
𝑥
2
+ 10𝑥

4
+ 10𝑦

4

2𝑦 − 3𝑦
3
+ 𝑦
5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦𝑗(𝑥)

.

(52)

By Lemma 7, we have

𝑐
21
(𝛿) = ∫

𝐿12

(
𝑑𝑃
5

𝑑𝑥
+
𝑑𝑄
5

𝑑𝑦
)𝑑𝑡 =

5

∑

𝑖=0

∫

𝐿12

𝑎
𝑖

𝑓
𝑖

ℎ
𝑑𝑥,

𝑐
22
(𝛿) = ∫

𝐿21

(
𝑑𝑃
5

𝑑𝑥
+
𝑑𝑄
5

𝑑𝑦
)𝑑𝑡 =

5

∑

𝑖=0

∫

𝐿21

𝑎
𝑖

𝑓
𝑖

ℎ
𝑑𝑥,

𝑒
21
(𝛿) = ∫

𝐿81

(
𝑑𝑃
5

𝑑𝑥
+
𝑑𝑄
5

𝑑𝑦
)𝑑𝑡 =

5

∑

𝑖=0

∫

𝐿81

𝑎
𝑖

𝑓
𝑖

ℎ
𝑑𝑥,

𝑒
22
(𝛿) = ∫

𝐿18

(
𝑑𝑃
5

𝑑𝑥
+
𝑑𝑄
5

𝑑𝑦
)𝑑𝑡 =

5

∑

𝑖=0

∫

𝐿18

𝑎
𝑖

𝑓
𝑖

ℎ
𝑑𝑥.

(53)

Substituting (52) into (53), with 𝑓
0
= 2 being considered, we

have

𝑐
21
(𝛿) =

5

∑

𝑖=1

∫

𝐿12

𝑎
𝑖

𝑓
𝑖

ℎ
𝑑𝑥

+ ∫

𝐿12

−20𝑎
1
− 150𝑎

2
+ 14𝑎
4
+ 70𝑎
5

ℎ
𝑑𝑥

= ∑

𝑖=1

𝑎
𝑖
𝐽
1

𝑖
+∑

𝑖=1

𝑎
𝑖
𝐽
2

𝑖
,

𝑐
22
(𝛿) =

5

∑

𝑖=1

∫

𝐿21

𝑎
𝑖

𝑓
𝑖

ℎ
𝑑𝑥

+ ∫

𝐿21

−20𝑎
1
− 150𝑎

2
+ 14𝑎
4
+ 70𝑎
5

ℎ
𝑑𝑥

= ∑

𝑖=1

𝑎
𝑖
𝐽
3

𝑖
,

𝑒
21
(𝛿) =

5

∑

𝑖=1

∫

𝐿81

𝑎
𝑖

𝑓
𝑖

ℎ
𝑑𝑥

+ ∫

𝐿81

−20𝑎
1
− 150𝑎

2
+ 14𝑎
4
+ 70𝑎
5

ℎ
𝑑𝑥

= ∑

𝑖=1

𝑎
𝑖
𝐽
4

𝑖
,

𝑒
22
(𝛿) =

5

∑

𝑖=1

∫

𝐿18

𝑎
𝑖

𝑓
𝑖

ℎ
𝑑𝑥

+ ∫

𝐿18

−20𝑎
1
− 150𝑎

2
+ 14𝑎
4
+ 70𝑎
5

ℎ
𝑑𝑥

= ∑

𝑖=1

𝑎
𝑖
𝐽
5

𝑖
,

(54)

where 𝐽1
3
= 𝐽
2

3
= 𝐽
3

3
= 𝐽
4

3
= 𝐽
5

3
= 0 and

𝐽
1

1
= ∫

√22/2

1

𝑓
1

1
(𝑥) +

−20

ℎ
1

𝑑𝑥,

𝐽
2

1
= ∫

2

√22/2

𝑓
2

1
(𝑥) +

−20

ℎ
2

𝑑𝑥,

𝐽
3

1
= ∫

1

2

𝑓
3

1
(𝑥) +

−20

ℎ
3

𝑑𝑥,

𝐽
1

2
= ∫

√22/2

1

𝑓
1

2
(𝑥) +

−150

ℎ
1

𝑑𝑥,
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𝐽
2

2
= ∫

2

√22/2

𝑓
2

2
(𝑥) +

−150

ℎ
2

𝑑𝑥,

𝐽
3

2
= ∫

1

2

𝑓
3

2
(𝑥) +

−150

ℎ
3

𝑑𝑥,

𝐽
1

4
= ∫

√22/2

1

𝑓
1

4
(𝑥) +

14

ℎ
1

𝑑𝑥,

𝐽
2

4
= ∫

2

√22/2

𝑓
2

4
(𝑥) +

14

ℎ
2

𝑑𝑥,

𝐽
3

4
= ∫

1

2

𝑓
3

4
(𝑥) +

14

ℎ
3

𝑑𝑥,

𝐽
1

5
= ∫

√22/2

1

𝑓
1

5
(𝑥) +

70

ℎ
1

𝑑𝑥,

𝐽
2

5
= ∫

2

√22/2

𝑓
2

5
(𝑥) +

70

ℎ
2

𝑑𝑥,

𝐽
3

5
= ∫

1

2

𝑓
3

5
(𝑥) +

70

ℎ
3

𝑑𝑥,

𝐽
4

1
= ∫

1

−1

𝑓
1

1
(𝑥) +

−20

ℎ
4

𝑑𝑥,

𝐽
5

1
= ∫

−1

1

𝑓
2

1
(𝑥) +

−20

ℎ
5

𝑑𝑥,

𝐽
4

2
= ∫

1

−1

𝑓
1

2
(𝑥) +

−150

ℎ
4

𝑑𝑥,

𝐽
5

2
= ∫

−1

1

𝑓
2

2
(𝑥) +

−150

ℎ
5

𝑑𝑥,

𝐽
4

4
= ∫

1

−1

𝑓
1

4
(𝑥) +

14

ℎ
4

𝑑𝑥,

𝐽
5

4
= ∫

−1

1

𝑓
2

4
(𝑥) +

14

ℎ
5

𝑑𝑥,

𝐽
4

5
= ∫

1

−1

𝑓
1

5
(𝑥) +

70

ℎ
4

𝑑𝑥,

𝐽
5

5
= ∫

−1

1

𝑓
2

5
(𝑥) +

70

ℎ
5

𝑑𝑥.

(55)

Applying Lemma 7, we have

𝑐
2
(𝛿) = 𝑐

21
(𝛿) + 𝑐

22
(𝛿)

= ∑

𝑖=0

(𝐽
1

𝑖
+ 𝐽
2

𝑖
+ 𝐽
3

𝑖
) 𝑎
𝑖

≡ 𝐽
1
𝑎
1
+ 𝐽
2
𝑎
2
+ 𝐽
4
𝑎
4
+ 𝐽
5
𝑎
5
,

𝑒
2
(𝛿) = 𝑒

21
(𝛿) + 𝑒

22
(𝛿)

= ∑

𝑖=0

(𝐽
4

𝑖
+ 𝐽
5

𝑖
+ 𝐽
3

𝑖
) 𝑎
𝑖

≡ 𝑅
1
𝑎
1
+ 𝑅
2
𝑎
2
+ 𝑅
4
𝑎
4
+ 𝑅
5
𝑎
5
.

(56)

The integrals in (44) and (3) and the coefficients in (45) and
(56) can be obtained by numeral computation on Maple 13;
see Appendix.

In order to find the local coefficient 𝑐
3
(𝑆
1
, 𝛿) at the saddle

𝑆
1
(1, 2) we make a change of variables of the form 𝑢 =
(√2/2)(𝑥−1), V = √2(𝑦−2) and time rescaling 𝜏 = 𝑘𝑡, 𝑘 = 1
so that the system (1) becomes

𝑑𝑢

𝑑𝜏
= 𝐻̃V + 𝜀𝑝 (𝑢, V, 𝛿) ,

𝑑V
𝑑𝜏
= −𝐻̃
𝑢
+ 𝜀𝑞 (𝑢, V, 𝛿) , (57)

where

𝐻̃ (𝑢, V) = 𝐻 (𝑥, 𝑦)󵄨󵄨󵄨󵄨{𝑥=√2𝑢+1,𝑦=(√2/2)V+2}

= 6V2 − 6𝑢2 −
10√2

3
𝑢
3
+
25√2

6
V3

+ 5𝑢
4
+
35

16
V4 + 4√2𝑢5 +

√2

4
V5

+
4

3
𝑢
6
+
1

48
V6 −

5

12
,

𝑝 (𝑢, V) =
√2

2
𝑃
5
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨
{𝑥=√2𝑢+1,𝑦=(√2/2)V+2}

,

𝑞 (𝑢, V) = √2𝑄
5
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨{𝑥=√2𝑢+1,𝑦=(√2/2)V+2}
.

(58)

Writing functions 𝑝(𝑢, V) and 𝑞(𝑢, V) as the form

𝑝 (𝑢, V) =
5

∑

𝑖+𝑗=0

𝑎
𝑖𝑗
𝑢
𝑖V𝑗,

𝑞 (𝑢, V) =
5

∑

𝑖+𝑗=0

𝑏̃
𝑖𝑗
𝑢
𝑖V𝑗,

(59)

then the formula for the second local coefficient at the saddle
in Lemma 2 can be applied directly; we have

𝑐
3
(𝑆
1
, 𝛿) =

7

216
𝑎
1
+
35

72
𝑎
2
+
55

216
𝑎
4
+
275

216
𝑎
5
. (60)

Similarly, we have

𝑐
3
(𝑆
2
, 𝛿) =

7

216
𝑎
1
+
35

72
𝑎
2
+
55

216
𝑎
4
+
275

216
𝑎
5
. (61)

Applying Lemma 7, we have

𝑐
3
(𝛿) = 𝑒

3
(𝛿) = 𝑐

3
(𝑆
1
, 𝛿) + 𝑐

3
(𝑆
2
, 𝛿)

=
7

108
𝑎
1
+
35

36
𝑎
2
+
55

108
𝑎
4
+
275

108
𝑎
5
.

(62)
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In order to find 𝐵
𝑖
(𝛿), 𝑖 = 0, 1, 2, we move the center

𝐶
1
= (2, 2) into the origin by letting 𝑢 = 2√6(𝑥 − 2) and

V = 2√6(𝑦−2); that is,𝑥 = (√6/12)𝑢+2 and𝑦 = (√6/12)V+2
and make the time rescaling 𝑑𝜏 = 24𝑑𝑡 so that the system (1)
becomes

𝑑𝑢

𝑑𝜏
=
𝑑𝐻
𝑐

1

𝑑V
+ 𝜀𝑝
1
(𝑢, V) ,

𝑑V
𝑑𝜏
= −
𝑑𝐻
𝑐

1

𝑑𝑢
+ 𝜀𝑞
1
(𝑢, V) ,

(63)

where

𝐻
𝑐

1
(𝑢, V) = 𝐻 (𝑥, 𝑦)󵄨󵄨󵄨󵄨{𝑥=(√6/12)𝑢+2,𝑦=(√6/12)V+2}

= −
8

3
+
1

2
𝑢
2
+
1

2
V2 +

25√6

432
𝑢
3

+
25√6

432
V3 +

35

2304
𝑢
4
+
35

2304
V4 +

√6

3456
𝑢
5

+
√6

3456
V5 +

1

82944
𝑢
6
+
1

82944
V6,

𝑝
1
(𝑢, V) =

√6

12
𝑝(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨{𝑥=(√6/12)𝑢+2,𝑦=(√6/12)V+2}
,

𝑞
1
(𝑢, V) =

√6

12
𝑞(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨{𝑥=(√6/12)𝑢+2,𝑦=(√6/12)V+2}
.

(64)

Let

𝑀̃
𝑐

1
(ℎ, 𝛿) = ∮

𝐻
𝑐

1
(𝑢,V)=ℎ

𝑞
1
𝑑𝑢 − 𝑝

1
𝑑V

= ∑

𝑘≥0

𝑏̃
𝑘
(ℎ +

8

3
)

𝑘+1
(65)

which is the Melnikov function of the new system (63).
Applying the formula for the Hopf coefficients 𝑏̃

0
(𝛿), 𝑏̃
1
(𝛿),

and 𝑏̃
2
(𝛿) directly in [20], we have

𝑏̃
0
(𝛿) =

1

6
𝜋𝑎
0
+
8

3
𝜋𝑎
1
+ 32𝜋𝑎

2
−
32

3
𝜋𝑎
4
−
160

3
𝜋𝑎
5
,

𝑏̃
1
(𝛿)
󵄨󵄨󵄨󵄨󵄨𝑏̃0=0
= −
11

108
𝜋𝑎
1
−
19

9
𝜋𝑎
2

+
25

27
𝜋𝑎
4
+
125

27
𝜋𝑎
5
,

𝑏̃
2
(𝛿)
󵄨󵄨󵄨󵄨󵄨𝑏̃0=0
= −
17545

839808
𝜋𝑎
1
−
28379

69984
𝜋𝑎
2

+
37445

209952
𝜋𝑎
4
+
187225

209952
𝜋𝑎
5
.

(66)

By Lemma 6,

𝑀
1
(ℎ, 𝛿) = 𝑀̃

𝑐

1
(ℎ, 𝛿) . (67)

Therefore

𝐵
0
(𝛿) = 𝑏̃

0
(𝛿) =

1

6
𝜋𝑎
0
+
8

3
𝜋𝑎
1

+ 32𝜋𝑎
2
−
32

3
𝜋𝑎
4
−
160

3
𝜋𝑎
5
,

𝐵
1
(𝛿)
󵄨󵄨󵄨󵄨𝐵0=0

= 𝑏̃
1
(𝛿)
󵄨󵄨󵄨󵄨󵄨𝑏̃0=0
= −
11

108
𝜋𝑎
1
−
19

9
𝜋𝑎
2

+
25

27
𝜋𝑎
4
+
125

27
𝜋𝑎
5
,

𝐵
2
(𝛿)
󵄨󵄨󵄨󵄨𝐵0=0

= 𝑏̃
2
(𝛿)
󵄨󵄨󵄨󵄨󵄨𝑏̃0=0
= −
17545

839808
𝜋𝑎
1
−
28379

69984
𝜋𝑎
2

+
37445

209952
𝜋𝑎
4
+
187225

209952
𝜋𝑎
5
.

(68)

Similarly, the expressions of 𝑑
𝑘
(𝛿) are obtained as follows:

𝑑
0
(𝛿) =

√6

6
𝜋𝑎
0
+
4√6

3
𝜋𝑎
1
+ 8√6𝜋𝑎

2

+
8√6

3
𝜋𝑎
4
+
40√6

3
𝜋a
5
,

𝑑
1
(𝛿)
󵄨󵄨󵄨󵄨𝑑0=0

= −
√6

108
𝜋𝑎
1
+
√6

18
𝜋𝑎
2

−
35√6

54
𝜋𝑎
4
−
175√6

54
𝜋𝑎
5
,

𝑑
2
(𝛿)
󵄨󵄨󵄨󵄨𝑑0=0

=
535

104976
𝜋√6𝑎

1
+
1949

17496
𝜋√6𝑎

2

−
12055

52488
𝜋√6𝑎

4
−
60275

52488
𝜋√6𝑎

5
.

(69)

We will use the coefficients 𝑐
0
(𝛿), 𝑐
1
(𝛿), 𝑐
2
(𝛿), 𝑐
3
(𝛿), 𝐵
0
(𝛿),

𝐵
1
(𝛿), 𝐵

2
(𝛿), 𝑒
0
(𝛿), 𝑒
1
(𝛿), 𝑒
2
(𝛿), 𝑒
3
(𝛿), 𝑑
0
(𝛿), 𝑑
1
(𝛿), and 𝑑

2
(𝛿)

obtained above to study the limit cycle bifurcation.
(1) Solving the equations

𝑐
0
(𝛿) = 𝑐

1
(𝛿) = 𝑑

0
(𝛿) = 𝑑

1
(𝛿) = 0 (70)

gives

𝑎
0
= 𝜇
1
𝑎
1
, 𝑎

2
= 𝜇
2
𝑎
1
,

𝑎
4
= 𝜇
3
𝑎
1
, 𝑎

5
= 𝜇
4
𝑎
1
,

(71)

where

𝜇
1
= −
232

73
, 𝜇

2
= −
163

1752
,

𝜇
3
=
1

1752

39𝑙
5
+ 27840𝑙

0
− 8760𝑙

1
+ 815𝑙

2

−𝑙
5
+ 5𝑙
4

,

𝜇
4
= −

1

1752

5568𝑙
0
− 1752𝑙

1
+ 163𝑙

2
+ 39𝑙
4

−𝑙
5
+ 5𝑙
4

.

(72)
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Approximate computation using Maple.13 gives

𝑎
0
= 𝜇
1
𝑎
1
= −3.1780821917808219178𝑎

1
≡ 𝑎
∗

0
,

𝑎
2
= 𝜇
2
𝑎
1

= −0.093036529680365296804𝑎
1
≡ 𝑎
∗

2
,

𝑎
4
= 𝜇
3
𝑎
1

= 1.3418001549779299848 × 10
8
𝑎
1
≡ 𝑎
∗

4
,

𝑎
5
= 𝜇
4
𝑎
1

= −2.6836003104010654490 × 10
7
𝑎
1
≡ 𝑎
∗

5
.

(73)

We can easily find that

rank
𝜕 (𝑐
0
, 𝑐
1
, 𝑑
0
, 𝑑
1
)

𝜕 (𝑎
0
, 𝑎
2
, 𝑎
4
, 𝑎
5
)
= 4. (74)

We fix 𝑎
1
> 0, 𝑎

3
̸= 0, and take 𝛿 = (𝑎

0
, 𝑎
2
, 𝑎
4
, 𝑎
5
), 𝛿
0
=

(𝑎
∗

0
, 𝑎
∗

2
, 𝑎
∗

4
, 𝑎
∗

5
). Inserting 𝛿

0
into 𝑐
2
(𝛿), 𝑑
2
(𝛿), 𝑒
0
(𝛿) and 𝐵

0
(𝛿)

we have

𝑐
2
(𝛿
0
) = −1.6154178146383561644𝑎

1
,

𝑑
2
(𝛿
0
) = −0.000155025650574300610𝜋√6𝑎

1
,

𝑒
0
(𝛿
0
) = 0.001040156096575342𝑎

1
,

𝐵
0
(𝛿
0
) = −0.6027397260050228310𝜋𝑎

1
.

(75)

Taking ℎ
1
= −5/12 − 𝜀

1
, ℎ
2
= −8/3 + 𝜀

1
, ℎ
3
= −5/12 − 𝜀

1
, and

ℎ
4
= −4/3 + 𝜀

1
with 𝜀

1
> 0 small enough, we have

𝑀
1
(ℎ
1
, 𝛿
0
) = 𝑐
2
(𝛿
0
) (−𝜀
1
) + 𝑂 ((−𝜀

1
)
2 ln 󵄨󵄨󵄨󵄨𝜀1

󵄨󵄨󵄨󵄨
) > 0,

𝑀
1
(ℎ
2
, 𝛿
0
) = 𝐵
0
(𝛿
0
) (𝜀
1
) + 𝑂 (𝜀

2

1
) < 0,

𝑀
8
(ℎ
3
, 𝛿
0
) = 𝑒
0
(𝛿
0
) + 𝑂 ((𝜀

1
)
2 ln 󵄨󵄨󵄨󵄨𝜀1

󵄨󵄨󵄨󵄨
) > 0,

𝑀
8
(ℎ
4
, 𝛿
0
) = 𝑑
2
(𝛿
0
) (𝜀
1
)
3

+ 𝑂 ((𝜀
1
)
4

) < 0,

(76)

which yield (1 − sgn(𝑀
1
(ℎ
1
, 𝛿
0
)𝑀
1
(ℎ
2
, 𝛿
0
)))/2 = 1 and (1 −

sgn(𝑀
8
(ℎ
3
, 𝛿
0
)𝑀
8
(ℎ
4
, 𝛿
0
)))/2 = 1. Hence, by Theorem 8,

(1) can have 6 limit cycles inside the 2-polycycles 𝐿
1
and

𝐿
8
, 2 limit cycles near the 2-polycycle 𝐿

1
, 2 limit cycles

near the center 𝐶
8
, 1 limit cycle between the center 𝐶

1
and

the polycycle 𝐿
1
, and 1 limit cycle between the center 𝐶

8

and the polycycle 𝐿
8
. Considering that the system (1) is 𝑍

4
-

equivariant, the system (1) can have at least 24 limit cycles.
See Figure 2(a) for their distribution.

(2) Further let

𝑐
0
(𝛿) = 𝑐

1
(𝛿) = 𝐵

0
(𝛿) = 𝑒

0
(𝛿) = 0, (77)

to obtain

𝑎
0
= 𝑤
1
𝑎
1
, 𝑎

2
= 𝑤
2
𝑎
1
,

𝑎
4
= 𝑤
3
𝑎
1
, 𝑎

5
= 𝑤
4
𝑎
1
,

(78)

where𝑤
1
= −16(55𝑚

2
𝑙
4
−11𝑚

2
𝑙
5
−55𝑚

4
𝑙
2
+15𝑚

5
𝑙
4
+11𝑚

5
𝑙
2
−

15𝑚
4
𝑙
5
+ 360𝑚

4
𝑙
1
− 72𝑚

5
𝑙
1
− 360𝑚

1
𝑙
4
+ 72𝑚

1
𝑙
5
)/(5760𝑚

4
𝑙
0
−

95𝑚
4
𝑙
2
−1152𝑚

5
𝑙
0
+39𝑚

5
𝑙
4
+19𝑚

5
𝑙
2
−5760𝑚

0
𝑙
4
+1152𝑚

0
𝑙
5
−

39𝑚
4
𝑙
5
+ 95𝑚

2
𝑙
4
− 19𝑚

2
𝑙
5
), 𝑤
2
= −(−2𝑚

4
𝑙
5
+ 880𝑚

4
𝑙
0
−

95𝑚
4
𝑙
1
− 176𝑚

5
𝑙
0
+ 2𝑚
5
𝑙
4
+ 19𝑚

5
𝑙
1
− 880𝑚

0
𝑙
4
+ 176𝑚

0
𝑙
5
+

95𝑚
1
𝑙
4
− 19𝑚

1
𝑙
5
)/(5760𝑚

4
𝑙
0
− 95𝑚

4
𝑙
2
− 1152𝑚

5
𝑙
0
+ 39𝑚

5
𝑙
4
+

19𝑚
5
𝑙
2
− 5760𝑚

0
𝑙
4
+ 1152𝑚

0
𝑙
5
− 39𝑚

4
𝑙
5
+ 95𝑚

2
𝑙
4
− 19𝑚

2
𝑙
5
),

𝑤
3
= (240𝑚

5
𝑙
0
− 2𝑚

2
𝑙
5
+ 2𝑚

5
𝑙
2
− 240𝑚

0
𝑙
5
− 39𝑚

5
𝑙
1
+

39𝑚
1
𝑙
5
−5760𝑙

0
𝑚
1
−880𝑙

2
𝑚
0
+95𝑙
2
𝑚
1
+880𝑙

0
𝑚
2
+5760𝑙

1
𝑚
0
−

95𝑙
1
𝑚
2
)/(5760𝑚

4
𝑙
0
− 95𝑚

4
𝑙
2
− 1152𝑚

5
𝑙
0
+ 39𝑚

5
𝑙
4
+ 19𝑚

5
𝑙
2
−

5760𝑚
0
𝑙
4
+ 1152𝑚

0
𝑙
5
− 39𝑚

4
𝑙
5
+ 95𝑚

2
𝑙
4
− 19𝑚

2
𝑙
5
), and

𝑤
4
= (240𝑚

0
𝑙
4
− 39𝑚

1
𝑙
4
+ 2𝑚
2
𝑙
4
− 19𝑙
2
𝑚
1
− 240𝑚

4
𝑙
0
+

176𝑙
2
𝑚
0
+ 1152𝑙

0
𝑚
1
− 2𝑚
4
𝑙
2
− 176𝑙

0
𝑚
2
+ 39𝑚

4
𝑙
1
+ 19𝑙
1
𝑚
2
−

1152𝑙
1
𝑚
0
)/(5760𝑚

4
𝑙
0
−95𝑚

4
𝑙
2
−1152𝑚

5
𝑙
0
+39𝑚

5
𝑙
4
+19𝑚

5
𝑙
2
−

5760𝑚
0
𝑙
4
+1152𝑚

0
𝑙
5
−39𝑚

4
𝑙
5
+95𝑚

2
𝑙
4
−19𝑚

2
𝑙
5
). Approximate

computation using Maple.13 gives

𝑎
0
= −9.4485863716681452021𝑎

1
≡ 𝑎
∗

0
,

𝑎
2
= 0.0030582821716100337153𝑎

1
≡ 𝑎
∗

2
,

𝑎
4
= 8655624.6835808229498𝑎

1
≡ 𝑎
∗

4
,

𝑎
5
= −1731124.9144080276985𝑎

1
≡ 𝑎
∗

5
.

(79)

As before, we have

rank
𝜕 (𝑐
0
, 𝑐
1
, 𝐵
0
, 𝑒
0
)

𝜕 (𝑎
0
, 𝑎
2
, 𝑎
4
, 𝑎
5
)
= 4, (80)

fixing 𝑎
1
> 0, 𝑎

3
̸= 0, and taking 𝛿 = (𝑎

0
, 𝑎
2
, 𝑎
4
, 𝑎
5
) and 𝛿

0
=

(𝑎
∗

0
, 𝑎
∗

2
, 𝑎
∗

4
, 𝑎
∗

5
). Noting that

𝑐
2
(𝛿
0
) = −0.45572159725036392404𝑎

1
,

𝐵
1
(𝛿
0
) = −0.0050298137906989600656𝜋𝑎

1
,

𝑒
2
(𝛿
0
) = −0.85071588097𝑎

1
,

𝑑
0
(𝛿
0
) = 0.0804770206482136030𝜋√6𝑎

1
,

(81)

we have
𝑀
1
(ℎ
1
, 𝛿
0
) = 𝑐
2
(𝛿
0
) (−𝜀
3
) + 𝑂 (−𝜀

3
ln 󵄨󵄨󵄨󵄨𝜀3

󵄨󵄨󵄨󵄨
) > 0,

𝑀
1
(ℎ
2
, 𝛿
0
) = 𝐵
1
(𝛿
0
) (𝜀
2

3
) + 𝑂 (𝜀

3

3
) < 0,

𝑀
8
(ℎ
3
, 𝛿
0
) = 𝑒
2
(𝛿
0
) (−𝜀
3
) + 𝑂 ((−𝜀

3
) ln 󵄨󵄨󵄨󵄨𝜀3

󵄨󵄨󵄨󵄨
) > 0,

𝑀
8
(ℎ
4
, 𝛿
0
) = 𝑑
0
(𝛿
0
) 𝜀
3
+ 𝑂 ((−𝜀

3
)
2

) > 0,

(82)

where ℎ
1
= −5/12 − 𝜀

3
, ℎ
2
= −8/3 + 𝜀

3
, ℎ
3
=

−5/12 − 𝜀
3
, and ℎ

4
= −4/3 + 𝜀

3
with 𝜀

1
> 0being small.

Hence, noting that (1 − sgn(𝑀
1
(ℎ
1
, 𝛿
0
)𝑀
1
(ℎ
2
, 𝛿
0
)))/2 =

1, (1 − sgn(𝑀
8
(ℎ
3
, 𝛿
0
)𝑀
8
(ℎ
4
, 𝛿
0
)))/2 = 0, and (1 +

sgn(𝑐
2
(𝛿
0
)𝑒
2
(𝛿
0
)))/2 = 1, by Theorem 8 again, we can obtain

6 limit cycles inside the 2-polycycles 𝐿
1
and 𝐿

8
. By 𝑍

4
-

equivariance, the system (1) can have 24 limit cycles. See
Figure 2(b). ThenTheorem 1 is proved.

4. Conclusion

In this paper, we proved that a 𝑍
4
-equivalent quintic near-

Hamiltonian system can also have 24 limit cycles compared
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to a 𝑧
6
and 𝑧

3
-equivalent quintic near-Hamiltonian system

having 24 limit cycles. Certainly, the distributions of 24 limit
cycles obtained in this paper are new. The method we use
is the expansions of the corresponding Melnikov functions,
which is different from the methods of detect function and
normal form, which are the main methods of the previous
work on 𝑧

𝑞
-equivalent quintic near-Hamiltonian system.

Appendix

In this section, by numeral computation using Maple.13, we
give the approximate values of the integrals in (44) and (3)
and the coefficients in (45) and (56) as

𝐼
1

10
= 3.309003029,

𝐼
2

10
= 1.730303665,

𝐼
3

10
= −3.217505541,

𝐼
1

11
= 28.51638338,

𝐼
2

11
= 12.79094042,

𝐼
3

11
= −16.08752770,

𝐼
1

12
= 254.3849935,

𝐼
2

12
= 97.6750154,

𝐼
3

12
= −80.43763849,

𝐼
1

13
= −13.03562364,

𝐼
2

13
= 1.03562364, 𝐼

3

13
= 12,

𝐼
1

14
= −141.0435372,

𝐼
2

14
= −0.5116118346,

𝐼
3

14
= 60, 𝐼

1

15
= −317.8639878,

𝐼
2

15
= −149.9117575,

𝐼
3

15
= 60, 𝐼

4

10
= 4.636476089,

𝐼
5

10
= −3.114725692,

𝐼
4

11
= 23.18238044,

𝐼
5

11
= −10.86431923,

𝐼
4

12
= 115.9119022,

𝐼
5

12
= −39.42284767,

𝐼
4

13
= 12, 𝐼

5

13
= −12.00000000,

𝐼
4

14
= 60, 𝐼

5

14
= −43.62567211,

𝐼
4

15
= 60, 𝐼

5

15
= 21.87163945,

𝐼
1

20
=
9

4
, 𝐼

2

20
= −
9

4
, 𝐼

3

20
= 0,

𝐼
4

20
= 0, 𝐼

5

20
= 0, 𝐼

1

21
=
261

16
,

𝐼
2

21
= −
261

16
, 𝐼

3

21
= 0,

𝐼
4

21
= 0, 𝐼

5

21
= 0,

𝐼
1

22
=
1953

16
, 𝐼

2

22
= −
1953

16
, 𝐼

3

22
= 0,

𝐼
4

22
= 0, 𝐼

5

22
= 0, 𝐼

1

23
= −
315

16
,

𝐼
2

23
=
315

16
, 𝐼

3

23
= 0, 𝐼

4

23
= 0,

𝐼
5

23
= 0, 𝐼

1

24
= −
2385

16
, 𝐼

2

24
=
2385

16
,

𝐼
3

24
= 0, 𝐼

4

24
= 0, 𝐼

5

24
= 0,

𝐼
1

25
= −
549

16
, 𝐼

2

25
=
549

16
, 𝐼

3

25
= 0,

𝐼
4

25
= 0, 𝐼

5

25
= 0,

𝐽
1

1
= 1.831700353,

𝐽
2

1
= 1.100027834, 𝐽

3

1
= 0,

𝐽
1

2
= 36.46355425,

𝐽
2

2
= 20.04837845,

𝐽
3

2
= 0, 𝐽

1

4
= −14.15186229,

𝐽
2

4
= −7.471228579,

𝐽
3

4
= −10.29601773,

𝐽
1

5
= −70.75931146,

𝐽
2

5
= −37.35614289,

𝐽
3

5
= −51.48008865,

𝐽
4

1
= 0, 𝐽

5

1
= −3.964132938,

𝐽
4

2
= 0, 𝐽

5

2
= −49.77854225,

𝐽
4

4
= 14.83672348,

𝐽
5

4
= 14.44096924,

𝐽
4

5
= 74.18361742,



14 Abstract and Applied Analysis

𝐽
5

5
= 72.20484619,

(A.1)

and 𝑙
3
= 𝑚
3
= 0,

𝑙
0
= 1.821801153,

𝑙
1
= 25.21979610,

𝑙
2
= 271.6223704,

𝑙
4
= −81.55514903,

𝑙
5
= −407.7757453,

𝑚
0
= 1.521750397,

𝑚
1
= 12.31806121,

𝑚
2
= 76.48905453,

𝑚
4
= 16.37432789,

𝑚
5
= 81.87163945,

𝐽
1
= 2.931728187,

𝐽
2
= 56.51193270,

𝐽
3
= 0, 𝐽

4
= −31.91910860,

𝐽
5
= −159.5955430,

𝑅
1
= −3.964132938,

𝑅
2
= −49.77854225,

𝑅
3
= 0, 𝑅

4
= 29.27769272,

𝑅
5
= 146.3884636.

(A.2)
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