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We investigate the oscillatory behavior of solutions of the𝑚th order half-linear functional difference equations with damping term
of the form Δ[𝑝

𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
)]+𝑞
𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
)+𝑟
𝑛
𝑄(𝑦
𝜏
𝑛

) = 0, 𝑛 ≥ 𝑛
0
, wherem is even and𝑄(𝑠) = |𝑠|𝛼−2𝑠, 𝛼 > 1 is a fixed real number.

Our main results are obtained via employing the generalized Riccati transformation. We provide two examples to illustrate the
effectiveness of the proposed results.

1. Introduction

Consider the second order half-linear difference equation:

Δ [𝑝
𝑛





Δ𝑦
𝑛






𝛼−2

Δ𝑦
𝑛
] + 𝑟
𝑛





𝑦
𝑛+1






𝛼−2

𝑦
𝑛+1

= 0, 𝑛 ≥ 𝑛
0
, 𝛼 > 1,

(1)

where Δ is the forward difference operator and {𝑝
𝑛
}, {𝑟
𝑛
}

are sequences of nonnegative real numbers with {𝑝
𝑛
} > 0.

The study of (1) has been initiated by Rehák in [1]. It is well
known that there is a close similarity between (1) and the
linear second order difference equation. Indeed, if {𝑦

𝑛
} is a

solution of (1), then so is {𝑐𝑦
𝑛
} for any constant 𝑐. Thus, (1)

has one half of linearity properties [2].
In the presence of damping, (1) has been extended further

to the second order half-linear difference equation with
damping term of the form

Δ [𝑝
𝑛





Δ𝑦
𝑛






𝛼−2

Δ𝑦
𝑛
] + 𝑞
𝑛





Δ𝑦
𝑛






𝛼−2

Δ𝑦
𝑛
+ 𝑟
𝑛





𝑦
𝑛+1






𝛼−2

𝑦
𝑛+1

= 0,

𝑛 ≥ 𝑛
0
∈ N,

(2)

where {𝑞
𝑛
} is a sequence of nonnegative real numbers. It is

to be noted that neither (1) nor (2) has involved a delaying
term. There are numerous numbers of oscillation criteria

established in the literature for the solutions of (1) and (2).
Most of these results were obtained by using certain efficient
tools among them we name the Riccati transformation,
variational principle, and some inequality techniques; see, for
instance, the monograph [3] in which many contributions
have been cited therein and to the recent papers [4–9].

Let 𝑄 : R → R be defined by 𝑄(𝑠) = |𝑠|
𝛼−2

𝑠; 𝛼 > 1

is a fixed real number and N
𝑛
0

= {𝑛
0
, 𝑛
0
+ 1, . . .}. Consider

the𝑚th order half-linear functional difference equation with
damping term of the form

Δ [𝑝
𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
)] + 𝑞

𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
) + 𝑟
𝑛
𝑄(𝑦
𝜏
𝑛

) = 0,

𝑛 ∈ N
𝑛
0

,

(3)

where𝑚 is even number, and

(H1) {𝑝
𝑛
} : N
𝑛
0

→ R+ with Δ𝑝
𝑛
≥ 0 for all 𝑛 ≥ 𝑛

0
;

(H2) {𝑞
𝑛
} and {𝑟

𝑛
} : N
𝑛
0

→ R with 𝑞
𝑛
≥ 0 and 𝑟

𝑛
> 0;

(H3) {𝜏
𝑛
} : N
𝑛
0

→ Z with 𝜏
𝑛
< 𝑛 and lim

𝑛→∞
𝜏
𝑛
= ∞.

For close results regarding the continuous counterparts of (1),
(2), and (3), the reader is suggested to consult [10–14].

A primary purpose of this paper is to establish sufficient
conditions that guarantee the oscillation of solutions of (3).
Our main results are obtained via employing the generalized
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Riccati transformation. In view of (3), one can easily figure
out that it is formulated in more general form so that it
includes some particular cases which have been studied in
the literature; see [15–23] for more details. To the best of
authors’ observation, however, no published result has been
concerned with the investigation of oscillatory behavior of
solutions of (3) or its continuous counterpart. Therefore, our
paper is new and presents a new approach.

2. Main Results

We start by recalling the following standard definitions.

Definition 1. A nontrivial sequence 𝑦
𝑛
is called a solution of

(3) if it is defined for all 𝑛 ≥ 𝜎 where 𝑛 ∈ Z, 𝜎 = min
𝑖≥𝑛
0

{𝜏
𝑖
},

and 𝑝
𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
) is differenceable onN

𝑛
0

and satisfies (3) for
all 𝑛 ∈ N

𝑛
0

.

Definition 2. A nontrivial solution 𝑦
𝑛
of (3) is said to be

oscillatory if the terms of the sequence 𝑦
𝑛
are not eventually

positive or not eventually negative. Otherwise, the solution is
called nonoscillatory. A difference equation is called oscilla-
tory if all its solutions oscillate.

To obtain our main results, we need the following essen-
tial lemmas. The first of these is the discrete analogue of the
well-known Kiguradze’s lemma.

Lemma 3 (see [24]). Let 𝑦
𝑛
be defined for 𝑛 ≥ 𝑛

0
∈ N and

𝑦(𝑛) > 0 with Δ𝑚𝑦
𝑛
of constant sign for 𝑛 ≥ 𝑛

0
and not

identically zero. Then, there exists an integer 𝑙, 0 ≤ 𝑙 ≤ 𝑚 with
(𝑚+ 𝑙) odd for Δ𝑚𝑦

𝑛
≤ 0 and (𝑚+ 𝑙) even for Δ𝑚𝑦(𝑛) ≥ 0 such

that

(i) 𝑙 ≤ 𝑚− 1 implies (−1)𝑙+𝑖Δ𝑖𝑦
𝑛
> 0 for all 𝑛 ≥ 𝑛

0
, 𝑙 ≤ 𝑖 ≤

𝑚 − 1,
(ii) 𝑙 ≥ 1 implies Δ𝑖𝑦

𝑛
> 0 for all large 𝑛 ≥ 𝑛

0
, 1 ≤ 𝑖 ≤ 𝑙−1.

Lemma 4 (see [25]). Let 𝑦
𝑛
be defined for 𝑛 ≥ 𝑛

0
and 𝑦

𝑛
> 0

with Δ𝑚𝑦
𝑛
≤ 0 for 𝑛 ≥ 𝑛

0
and not identically zero. Then, there

exists a large integer 𝑛
1
≥ 𝑛
0
such that

𝑦
𝑛
≥

1

(𝑚 − 1)!

(𝑛 − 𝑛
1
)
𝑚−1

Δ
𝑚−1

𝑦
2
𝑚−𝑙−1
𝑛
, 𝑛 ≥ 𝑛

1
, (4)

where 𝑙 is defined as in Lemma 3. Further, if 𝑦
𝑛
is increasing,

then

𝑦
𝑛
≥

1

(𝑚 − 1)!

(

𝑛

2
𝑚−1

)

𝑚−1

Δ
𝑚−1

𝑦
𝑛
, 𝑛 ≥ 2

𝑚−1

𝑛
1
. (5)

Lemma 5. Let 𝑦
𝑛
satisfy conditions of Lemmas 3 and 4 and

Δ
𝑚−1

𝑦
𝑛
Δ
𝑚

𝑦
𝑛
≤ 0 for 𝑛 ≥ 𝑛

1
≥ 𝑛
0
. Further, if 𝑦

𝑛
is increasing,

then

Δ𝑦
𝑛−𝑘

≥ 𝑀𝑛
𝑚−2

Δ
𝑚−1

𝑦
𝑛
, 𝑛 ≥ 𝑛

1
, (6)

where𝑀 = (1/((𝑚 − 1)!2
(𝑚−1)

2

)) > 0.

The proof of Lemma 5 is straightforward and it can be
achieved by using the last inequality of Lemma 4.

Lemma 6. Let 𝑦
𝑛
be an eventually positive solution of (3). If

(Λ1) lim
𝑛→∞

𝑛−1

∑

𝑠=𝑛
1

(

1

𝑝
𝑠

(1 −

𝑠−1

∏

𝑘=𝑛
1

(1 −

𝑞
𝑘

𝑝
𝑘

)))

1/(𝛼−1)

= ∞,

(7)

then Δ𝑚−1𝑦
𝑛
> 0, Δ𝑚𝑦

𝑛
≤ 0, and Δ𝑦

𝑛
> 0 for all 𝑛 ≥ 𝑛

1
≥ 𝑛
0
.

Proof. The fact that 𝑦
𝑛
is eventually positive solution of (3)

implies 𝑦
𝑛
> 0 and 𝑦

𝜏
𝑛

> 0 for all 𝑛 ≥ 𝑛
1
≥ 𝑛
0
. In view of (3),

we get

Δ [𝑝
𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
)] + 𝑞

𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
) < 0, (8)

which leads to

Δ
[

[

𝑝
𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
) −

𝑛−1

∏

𝑘=𝑛
1

(1 −

𝑞
𝑘

𝑝
𝑘

)𝑝
𝑛
1

𝑄(Δ
𝑚−1

𝑦
𝑛
1

)
]

]

< 0.

(9)

Hence,

𝑝
𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
) −

𝑛−1

∏

𝑘=𝑛
1

(1 −

𝑞
𝑘

𝑝
𝑘

)𝑝
𝑛
1

𝑄(Δ
𝑚−1

𝑦
𝑛
1

) (10)

is decreasing and Δ𝑚−1𝑦
𝑛
is eventually positive or eventually

negative.
We claim that

Δ
𝑚−1

𝑦
𝑛
> 0, 𝑛 ≥ 𝑛

1
. (11)

Assume, on the contrary, thatΔ𝑚−1𝑦
𝑛
< 0, 𝑛 ≥ 𝑛

1
.Then, from

(10), we obtain

𝑝
𝑛






Δ
𝑚−1

𝑦
𝑛







𝛼−2

Δ
𝑚−1

𝑦
𝑛

−

𝑛−1

∏

𝑘=𝑛
1

(1 −

𝑞
𝑘

𝑝
𝑘

)𝑝
𝑛
1






Δ
𝑚−1

𝑦
𝑛
1







𝛼−2

Δ
𝑚−1

𝑦
𝑛
1

≤ 𝑝
𝑛
1






Δ
𝑚−1

𝑦
𝑛
1







𝛼−2

Δ
𝑚−1

𝑦
𝑛
1

−

𝑛
1
−1

∏

𝑘=𝑛
1

(1 −

𝑞
𝑘

𝑝
𝑘

)𝑝
𝑛
1






Δ
𝑚−1

𝑦
𝑛
1







𝛼−2

Δ
𝑚−1

𝑦
𝑛
1

,

(12)

where ∏𝑛1−1
𝑘=𝑛
1

(1 − (𝑞
𝑘
/𝑝
𝑘
))𝑝
𝑛
1

|Δ
𝑚−1

𝑦
𝑛
1

|

𝛼−2

Δ
𝑚−1

𝑦
𝑛
1

= 0.
Therefore, from (12), we have

𝑝
𝑛






Δ
𝑚−1

𝑦
𝑛







𝛼−2

Δ
𝑚−1

𝑦
𝑛

−

𝑛−1

∏

𝑘=𝑛
1

(1 −

𝑞
𝑘

𝑝
𝑘

)𝑝
𝑛
1






Δ
𝑚−1

𝑦
𝑛
1







𝛼−2

Δ
𝑚−1

𝑦
𝑛
1

≤ 𝑝
𝑛
1






Δ
𝑚−1

𝑦
𝑛
1







𝛼−2

Δ
𝑚−1

𝑦
𝑛
1

−

𝑛
1
−1

∏

𝑘=𝑛
1

(1 −

𝑞
𝑘

𝑝
𝑘

)𝑝
𝑛
1






Δ
𝑚−1

𝑦
𝑛
1







𝛼−2

Δ
𝑚−1

𝑦
𝑛
1

≡ −𝑀
𝛼−1

1
,

(13)
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where𝑀
1
= 𝑝
1/(𝛼−1)

𝑛
1

|Δ
𝑚−1

𝑦
𝑛
1

| > 0. It follows that

(−Δ
𝑚−1

𝑦
𝑛
)

𝛼−1

≥

𝑀
𝛼−1

1

𝑝
𝑛

(1 −

𝑛−1

∏

𝑘=𝑛
1

(1 −

𝑞
𝑘

𝑝
𝑘

)) (14)

or

Δ
𝑚−1

𝑦
𝑛
≤ −𝑀

1
(

1

𝑝
𝑛

(1 −

𝑛−1

∏

𝑘=𝑛
1

(1 −

𝑞
𝑘

𝑝
𝑘

)))

1/(𝛼−1)

. (15)

Consequently, we obtain

Δ
𝑚−2

𝑦
𝑛
≤ Δ
𝑚−2

𝑦
𝑛
1

−𝑀
1

𝑛−1

∑

𝑠=𝑛
1

(

1

𝑝
𝑠

(1 −

𝑠−1

∏

𝑘=𝑛
1

(1 −

𝑞
𝑘

𝑝
𝑘

)))

1/(𝛼−1)

.

(16)

Letting 𝑛 → ∞ in the above inequality, one gets
lim
𝑛→∞

Δ
𝑚−2

𝑦
𝑛
= −∞. Hence, 𝑦

𝑛
is an eventually negative

function which contradicts that 𝑦
𝑛
> 0. Therefore, inequality

(11) holds.
From (3), we get

Δ [𝑝
𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
)] = 𝑝

𝑛+1
Δ(Δ
𝑚−1

𝑦
𝑛
)

𝛼−1

+ (Δ
𝑚−1

𝑦
𝑛
)

𝛼−1

Δ𝑝
𝑛
≤ 0

(17)

from which it follows that

Δ(Δ
𝑚−1

𝑦
𝑛
)

𝛼−1

≤ 0, 𝑛 ≥ 𝑛
1
≥ 𝑛
0
. (18)

The above inequality implies that (Δ𝑚−1𝑦
𝑛
)
𝛼−1 is nonincreas-

ing. Therefore, we can write

Δ(Δ
𝑚−1

𝑦
𝑛
)

𝛼−1

= (Δ
𝑚−1

𝑦
𝑛+1
)

𝛼−1

− (Δ
𝑚−1

𝑦
𝑛
)

𝛼−1

= [Δ
𝑚−1

𝑦
𝑛+1

− Δ
𝑚−1

𝑦
𝑛
]

× [(Δ
𝑚−1

𝑦
𝑛+1
)

𝛼−2

+ (Δ
𝑚−1

𝑦
𝑛+1
)

𝛼−3

(Δ
𝑚−1

𝑦
𝑛
)

+ (Δ
𝑚−1

𝑦
𝑛+1
)

𝛼−4

(Δ
𝑚−1

𝑦
𝑛
)

2

+ ⋅ ⋅ ⋅ +(Δ
𝑚−1

𝑦
𝑛
)

𝛼−2

] ≤ 0.

(19)

Since (Δ𝑚−1𝑦
𝑛
)
𝛼−1 is nonincreasing and positive, then from

the above inequality, we have

Δ(Δ
𝑚−1

𝑦
𝑛
)

𝛼−1

≤ [Δ
𝑚−1

𝑦
𝑛+1

− Δ
𝑚−1

𝑦
𝑛
] (𝛼 − 1) (Δ

𝑚−1

𝑦
𝑛
)

𝛼−2

= (𝛼 − 1) Δ (Δ
𝑚−1

𝑦
𝑛
) (Δ
𝑚−1

𝑦
𝑛
)

𝛼−2

≤ (𝛼 − 1) Δ
𝑚

𝑦
𝑛
(Δ
𝑚−1

𝑦
𝑛
)

𝛼−2

≤ 0

(20)

by which we have

Δ
𝑚

𝑦
𝑛
≤ 0. (21)

In virtue of (21) and Lemma 3, we deduce that since𝑚 is even
then 𝑙 is odd. Hence Δ𝑦

𝑛
> 0 for 𝑛 ≥ 𝑛

1
≥ 𝑛
0
. The proof is

complete.

Theorem 7. Let condition (Λ1) hold. Further, assume that
there exists a constant 𝜆 > 𝛼 − 1 such that

(Λ2) lim sup
𝑛→∞

1

(𝑛 − 𝑛
1
)
𝜆

𝑛−1

∑

𝑘=𝑛
1

[(𝑛 − 𝑘)
𝜆

𝑟
𝑘

−

(𝛼 − 1)
𝛼−1

𝛼
𝛼

𝑋
𝛼

𝑛𝑘
𝑌
1−𝛼

𝑛𝑘
]

= ∞,

(22)

where

𝑋
𝑛𝑘
= ((𝑛 + 1 − 𝑘)

𝜆

− (𝑛 − 𝑘)
𝜆

(1 +

𝑞
𝑘

𝑝
𝑘+1

)) ,

𝑌
𝑛𝑘
= (𝛼 − 1)𝑀𝜏

𝑚−2

𝑘
(𝑛 − 𝑘)

𝜆
𝑝
𝑘

𝑝
𝑘+1

> 0,

(23)

and𝑀 is as in Lemma 5. Then, (3) is oscillatory.

Proof. For the sake of contradiction, assume that (1) has a
nonoscillatory solution 𝑦

𝑛
. Without loss of generality, we

assume that 𝑦
𝑛
is eventually positive (the proof is similar

when 𝑦
𝑛
is eventually negative). That is, 𝑦

𝑛
> 0,𝑦

𝜏
𝑛

> 0

and 𝑦
𝜏
𝑛−𝑘

> 0 for all 𝑛 ≥ 𝑛
1
≥ 𝑛
0
. By Lemma 6, we have

Δ
𝑚−1

𝑦
𝑛
> 0, Δ𝑚𝑦

𝑛
≤ 0, and Δ𝑦

𝑛
> 0 for 𝑛 ≥ 𝑛

1
. Consider the

function

𝑤
𝑛
=

𝑝
𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
)

𝑄 (𝑦
𝜏
𝑛−𝑘

)

= 𝑝
𝑛
(

Δ
𝑚−1

𝑦
𝑛

𝑦
𝜏
𝑛−𝑘

)

𝛼−1

> 0, 𝑛 ≥ 𝑛
1
.

(24)

Taking into account that Δ𝑦
𝑛
> 0 and 𝑦

𝑛
is increasing and

𝜏
𝑛−𝑘

< 𝜏
𝑛
, we deduce that Δ𝑚𝑦

𝑛
≤ 0 and Δ𝑚−1𝑦

𝑛
is nonin-

creasing. Lemmas 3 and 4, (1), and (24) yield

Δ𝑤
𝑛
=

−𝑞
𝑛
(Δ
𝑚−1

𝑦
𝑛
)

𝛼−1

− 𝑟
𝑛
(𝑦
𝜏
𝑛

)

𝛼−1

(𝑦
𝜏
𝑛+1−𝑘

)

𝛼−1

−

𝑝
𝑛
(Δ
𝑚−1

𝑦
𝑛
)

𝛼−1

Δ(𝑦
𝜏
𝑛−𝑘

)

𝛼−1

(𝑦
𝜏
𝑛−𝑘

)

𝛼−1

(𝑦
𝜏
𝑛+1−𝑘

)

𝛼−1

≤ −𝑟
𝑛
−

𝑞
𝑛

𝑝
𝑛+1

𝑤
𝑛+1

−

(𝛼 − 1) 𝑝
𝑛
(Δ
𝑚−1

𝑦
𝑛
)

𝛼−1

(𝑦
𝜏
𝑛−𝑘

)

𝛼−2

Δ𝑦
𝜏
𝑛−𝑘

(𝑦
𝜏
𝑛−𝑘

)

𝛼−1

(𝑦
𝜏
𝑛+1−𝑘

)

𝛼−1



4 International Journal of Differential Equations

≤ −𝑟
𝑛
−

𝑞
𝑛

𝑝
𝑛+1

𝑤
𝑛+1

−

(𝛼 − 1) 𝑝
𝑛
(Δ
𝑚−1

𝑦
𝑛
)

𝛼−1

(𝑦
𝜏
𝑛−𝑘

)

𝛼−2

𝑀𝜏
𝑚−2

𝑛
Δ
𝑚−1

𝑦
𝜏
𝑛

(𝑦
𝜏
𝑛−𝑘

)

𝛼−1

(𝑦
𝜏
𝑛+1−𝑘

)

𝛼−1

≤ −𝑟
𝑛
−

𝑞
𝑛

𝑝
𝑛+1

𝑤
𝑛+1

−

(𝛼 − 1) 𝑝
𝑛
(Δ
𝑚−1

𝑦
𝑛
)

𝛼

𝑀𝜏
𝑚−2

𝑛

(𝑦
𝜏
𝑛+1−𝑘

)

𝛼

≤ −𝑟
𝑛
−

𝑞
𝑛

𝑝
𝑛+1

𝑤
𝑛+1

−

(𝛼 − 1)𝑀𝜏
𝑚−2

𝑛
𝑝
𝑛
(Δ
𝑚−1

𝑦
𝑛+1
)

𝛼

(𝑦
𝜏
𝑛+1−𝑘

)

𝛼

= −𝑟
𝑛
−

𝑞
𝑛

𝑝
𝑛+1

𝑤
𝑛+1

−

𝑝
𝑛
(𝛼 − 1)𝑀𝜏

𝑚−2

𝑛
𝑝
𝑛+1
(Δ
𝑚−1

𝑦
𝑛+1
)

𝛼

𝑝
𝑛+1
(𝑦
𝜏
𝑛+1−𝑘

)

𝛼

= −𝑟
𝑛
−

𝑞
𝑛

𝑝
𝑛+1

𝑤
𝑛+1

− (𝛼 − 1)𝑀𝜏
𝑚−2

𝑛

𝑝
𝑛

𝑝
𝑛+1

𝑤
𝛼/(𝛼−1)

𝑛+1
.

(25)

Multiplying by (𝑛 − 𝑘)𝜆 and summing up from 𝑛
1
to 𝑛 − 1, we

obtain

𝑛−1

∑

𝑘=𝑛
1

(𝑛 − 𝑘)
𝜆

𝑟
𝑘
≤ −

𝑛−1

∑

𝑘=𝑛
1

(𝑛 − 𝑘)
𝜆

Δ𝑤
𝑘

−

𝑛−1

∑

𝑘=𝑛
1

(𝑛 − 𝑘)
𝜆
𝑞
𝑘

𝑝
𝑘+1

𝑤
𝑘+1

−

𝑛−1

∑

𝑘=𝑛
1

(𝛼 − 1)𝑀𝜏
𝑚−2

𝑘
(𝑛 − 𝑘)

𝜆
𝑝
𝑘

𝑝
𝑘+1

𝑤
𝛼/(𝛼−1)

𝑘+1

≤ (𝑛 − 𝑛
1
)
𝜆

𝑤
𝑛
1

− 𝑤
𝑛

+

𝑛−1

∑

𝑘=𝑛
1

((𝑛 + 1 − 𝑘)
𝜆

−(𝑛 − 𝑘)
𝜆

(1 +

𝑞
𝑘

𝑝
𝑘+1

))𝑤
𝑘+1

−

𝑛−1

∑

𝑘=𝑛
1

(𝛼 − 1)𝑀𝜏
𝑚−2

𝑘
(𝑛 − 𝑘)

𝜆
𝑝
𝑘

𝑝
𝑘+1

𝑤
𝛼/(𝛼−1)

𝑘+1

≤ (𝑛 − 𝑛
1
)
𝜆

𝑤
𝑛
1

+

𝑛−1

∑

𝑘=𝑛
1

((𝑛 + 1 − 𝑘)
𝜆

−(𝑛 − 𝑘)
𝜆

(1 +

𝑞
𝑘

𝑝
𝑘+1

))𝑤
𝑘+1

−

𝑛−1

∑

𝑘=𝑛
1

(𝛼 − 1)𝑀𝜏
𝑚−2

𝑘
(𝑛 − 𝑘)

𝜆
𝑝
𝑘

𝑝
𝑘+1

𝑤
𝛼/(𝛼−1)

𝑘+1

(26)

or

1

(𝑛 − 𝑛
1
)
𝜆

[

[

𝑛−1

∑

𝑘=𝑛
1

(𝑛 − 𝑘)
𝜆

𝑟
𝑘
−

𝑛−1

∑

𝑘=𝑛
1

(𝑋
𝑛𝑘
𝑤
𝑘+1

− 𝑌
𝑛𝑘
𝑤
𝛼/(𝛼−1)

𝑘+1
)
]

]

≤ 𝑤
𝑛
1

,

(27)

where

𝑋
𝑛𝑘
= ((𝑛 + 1 − 𝑘)

𝜆

− (𝑛 − 𝑘)
𝜆

(1 +

𝑞
𝑘

𝑝
𝑘+1

)) ,

𝑌
𝑛𝑘
= (𝛼 − 1)𝑀𝜏

𝑚−2

𝑘
(𝑛 − 𝑘)

𝜆
𝑝
𝑘

𝑝
𝑘+1

> 0.

(28)

Let

𝐹 (𝑤
𝑘+1
) = 𝑋

𝑛𝑘
𝑤
𝑘+1

− 𝑌
𝑛𝑘
𝑤
𝛼/(𝛼−1)

𝑘+1
. (29)

Then, 𝐹 has maximum value at𝑤
𝑘+1

= ((𝛼−1)/𝛼)
𝛼−1

𝑋
𝛼−1

𝑛𝑘
𝑌
1−𝛼

𝑛𝑘
.

That is,

𝐹max =
(𝛼 − 1)

𝛼−1

𝛼
𝛼

𝑋
𝛼

𝑛𝑘
𝑌
1−𝛼

𝑛𝑘
. (30)

Therefore, (27) can be rewritten as

1

(𝑛 − 𝑛
1
)
𝜆

𝑛−1

∑

𝑘=𝑛
1

[(𝑛 − 𝑘)
𝜆

𝑟
𝑘
−

(𝛼 − 1)
𝛼−1

𝛼
𝛼

𝑋
𝛼

𝑛𝑘
𝑌
1−𝛼

𝑛𝑘
] ≤ 𝑤

𝑛
1

.

(31)

Hence, we have

lim sup
𝑛→∞

1

(𝑛 − 𝑛
1
)
𝜆

𝑛−1

∑

𝑘=𝑛
1

[(𝑛 − 𝑘)
𝜆

𝑟
𝑘
−

(𝛼 − 1)
𝛼−1

𝛼
𝛼

𝑋
𝛼

𝑛𝑘
𝑌
1−𝛼

𝑛𝑘
]

≤ 𝑤
𝑛
1

(32)

which contradicts condition (Λ2).The proof is complete.

Theorem 8. Let condition (Λ1) hold. Further, assume that
there exists a function 𝛿

𝑛
: N → R+ such that

(Λ3) lim sup
𝑛→∞

𝑛−1

∑

𝑘=𝑛
1

[𝛿
𝑘+1
𝑟
𝑘
−

1

𝛼
𝛼
(

Δ𝛿
𝑘

𝛿
𝑘

)

𝛼

(𝑀𝜏
𝑚−2

𝑘
)

1−𝛼

]

= ∞, 𝑛
1
≥ 𝑛
0
,

(33)

where𝑀 is as in Lemma 5. Then, (3) is oscillatory.

Proof. For the sake of contradiction, assume that (3) has a
nonoscillatory solution 𝑦

𝑛
. Without loss of generality, we

assume that 𝑦
𝑛
is eventually positive (the proof is similar

when 𝑦
𝑛
is eventually negative). That is, 𝑦

𝑛
> 0, 𝑦

𝜏
𝑛

> 0

and 𝑦
𝜏
𝑛−𝑘

> 0 for all 𝑛 ≥ 𝑛
1
≥ 𝑛
0
. By Lemma 6, we have



International Journal of Differential Equations 5

Δ
𝑚−1

𝑦
𝑛
> 0, Δ𝑚𝑦

𝑛
≤ 0, and Δ𝑦

𝑛
> 0 for 𝑛 ≥ 𝑛

1
. Consider the

function

𝑤
𝑛
= 𝛿
𝑛
𝑝
𝑛
(

Δ
𝑚−1

𝑦
𝑛

𝑦
𝜏
𝑛−𝑘

)

𝛼−1

> 0, 𝑛 ≥ 𝑛
1
. (34)

By utilizing the same approach as in the proof of Theorem 7,
we arrive at

Δ𝑤
𝑛
≤ −𝛿
𝑛+1
𝑟
𝑛
+

1

𝛼
𝛼
(

Δ𝛿
𝑛

𝛿
𝑛

)

𝛼

(𝑀𝜏
𝑚−2

𝑛
)

1−𝛼

. (35)

Summing up (35) from 𝑛
1
to 𝑛 − 1, we have

𝑛−1

∑

𝑘=𝑛
1

[𝛿
𝑘+1
𝑟
𝑘
−

1

𝛼
𝛼
(

Δ𝛿
𝑘

𝛿
𝑘

)

𝛼

(𝑀𝜏
𝑚−2

𝑘
)

1−𝛼

] ≤ 𝑤
𝑛
1

. (36)

Letting 𝑛 → ∞ in the above inequality and taking the upper
limit, we get a contradiction to (Λ3). The proof is complete.

Remark 9. In view of the statements of Theorems 7 and 8,
one can easily deduce that condition (Λ3) is a generalization
of (Λ2).

Example 10. Consider the fourth order half-linear functional
difference equation with damping

Δ [𝑛(Δ
3

𝑦
𝑛
)

2

] + 𝑛(Δ
3

𝑦
𝑛
)

2

+

1

𝑛

𝑦
2

𝑛−1
= 0, 𝑛 ≥ 2, (37)

where 𝑝
𝑛
= 𝑛, 𝑞

𝑛
= 𝑛, 𝑟

𝑛
= 1/𝑛, 𝜏

𝑛
= 𝑛 − 1, 𝑚 = 4, and

𝛼 = 3. It is easy to see that conditions (H1)–(H3) are satisfied.
It remains to check the validity of conditions Λ1 and Λ2.

For 𝑛 ≥ 2, we have

Γ1 :=

𝑛−1

∑

𝑠=𝑛
1

(

1

𝑝
𝑠

(1 −

𝑠−1

∏

]=𝑛
1

(1 −

𝑞]

𝑝]
)))

1/(𝛼−1)

=

𝑛−1

∑

𝑠=2

(

1

𝑠

)

1/2

.

(38)

It is clear that Γ1 → ∞ as 𝑛 → ∞.Therfore, condition (Λ1)
holds. For 𝑛 ≥ 2 and 𝜆 = 3 > 𝛼 − 1 = 2, we have

Γ2 :=

1

(𝑛 − 𝑛
1
)
𝜆

𝑛−1

∑

𝑘=𝑛
1

[(𝑛 − 𝑘)
𝜆

𝑟
𝑘
−

(𝛼 − 1)
𝛼−1

𝛼
𝛼

𝑋
𝛼

𝑛𝑘
𝑌
1−𝛼

𝑛𝑘
]

=

1

(𝑛 − 2)
3

𝑛−1

∑

𝑘=2

[

(𝑛 − 𝑘)
3

𝑘

−

4

27

𝑋
3

𝑛𝑘
𝑌
2

𝑛𝑘
] ,

(39)

where

𝑋
3

𝑛𝑘
= [

(𝑘 + 1) (𝑛 + 1 − 𝑘)
3

− (2𝑘 + 1) (𝑛 − 𝑘)
3

𝑘 + 1

]

3

,

𝑌
2

𝑛𝑘
=

(𝑘 + 1)
2

4𝑀
2
𝑘
2
(𝑘 − 2)

8

(𝑛 − 𝑘)
6
.

(40)

It is clear that Γ2 → ∞ as 𝑛 → ∞. Then, condition (Λ2)
holds. Thus, by the conclusion of Theorem 7, (37) is oscilla-
tory.

Example 11. Consider the sixth order half-linear functional
difference equation with damping

Δ [𝑛(Δ
5

𝑦
𝑛
)

2

] + 𝑛(Δ
5

𝑦
𝑛
)

2

+ 𝑛
2

𝑦
2

𝑛−1
= 0, 𝑛 ≥ 2, (41)

where 𝑝
𝑛
= 𝑛, 𝑞

𝑛
= 𝑛, 𝑟

𝑛
= 𝑛
2, 𝜏
𝑛
= 𝑛 − 1, 𝑚 = 6, and

𝛼 = 3. It is easy to see that conditions (H1)–(H3) are satisfied.
In Example 10, we have seen that (Λ1) is satisfied. It remains
to check the validity of condition (Λ3).

For 𝑛 ≥ 2 and 𝛿
𝑛
= 𝑛, we have

Γ3 :=

𝑛−1

∑

𝑘=𝑛
1

[𝛿
𝑘+1
𝑟
𝑘
−

1

𝛼
𝛼
(

Δ𝛿
𝑘

𝛿
𝑘

)

𝛼

(𝑀𝜏
𝑚−2

𝑘
)

1−𝛼

]

=

𝑛−1

∑

𝑘=2

[𝑘
2

(𝑘 + 1) −

1

27𝑀
2
𝑘
3
(𝑘 − 1)

8
]

=

𝑛−1

∑

𝑘=2

[

27𝑀
2

𝑘
5

(𝑘 + 1) (𝑘 − 1)
8

− 1

27𝑀
2
𝑘
3
(𝑘 − 1)

8
] .

(42)

It is clear that Γ3 → ∞ as 𝑛 → ∞. Then, condition
(Λ3) holds. Thus, by the conclusion of Theorem 8, (41) is
oscillatory.

Remark 12. It is not possible to decide the oscillatory behavior
of solutions of (37) and (41) by using any of the results
reported in [12, 13]. This implies that the results of our paper
extend and generalize some known theorems.

Remark 13. The main results of this paper remain valid for
nondelay difference equations of the form

Δ [𝑝
𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
)] + 𝑞

𝑛
𝑄(Δ
𝑚−1

𝑦
𝑛
) + 𝑟
𝑛
𝑄 (𝑦
𝑛
) = 0,

𝑛 ∈ N
𝑛
0

.

(43)
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