
Research Article
Robustness Analysis of Floating-Point Programs by
Self-Composition

Liqian Chen, Jiahong Jiang, Banghu Yin, Wei Dong, and Ji Wang

National Laboratory for Parallel and Distributed Processing, National University of Defense Technology,
Changsha 410073, China

Correspondence should be addressed to Liqian Chen; lqchen@nudt.edu.cn

Received 14 February 2014; Accepted 7 April 2014; Published 20 May 2014

Academic Editor: Xiaoyu Song

Copyright © 2014 Liqian Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Robustness is a key property for critical systems that run in uncertain environments, to ensure that small input perturbations
can cause only small output changes. Current critical systems often involve lots of floating-point computations which are inexact.
Robustness analysis of floating-point programs needs to consider both the uncertain inputs and the inexact computation. In this
paper, we propose to leverage the idea of self-composition to transform the robustness analysis problem into a reachability problem,
which enables the use of standard reachability analysis techniques such as software model checking and symbolic execution for
robustness analysis. To handle floating-point arithmetic, we employ an abstraction that encompasses the effect of rounding and
that can encompass all rounding modes. It converts floating-point expressions into linear expressions with interval coefficients in
exact real arithmetic. On this basis, we employ interval linear programming to compute the maximum output change or maximum
allowed input perturbation for the abstracted programs. Preliminary experimental results of our prototype implementation are
encouraging.

1. Introduction

Uncertainty and inexactness in computing have attracted
much attention in computer science. In Cyber Physical Sys-
tems (CPS), the discrete world of computation is integrated
with the continuous world of physical processes. Moreover,
CPS run in the open environmental context and thus have
to deal with uncertain data which may come from noisy
sensor data or approximate computation. Hence, inputs for
programs in CPS are of intrinsic uncertainty. On the other
hand, due to finite precision on computers, physical values
are truncated into digital ones. In modern computers, real
numbers are approximated by a finite set of floating-point
numbers. Due to the pervasive rounding errors, numerical
computation using floating-point arithmetic is not exact.
Since many safety-critical CPS systems (such as aircrafts,
automobiles, and medical devices) often involve lots of
numerical computations, there is a great need to ensure that
these programs are robust with respect to the uncertain input
as well as the inexact computation.

Although robustness is long known as a standard cor-
rectness property for control systems [1], considering the
robustness of programs is quite recent [2–5]. Intuitively,
robustness of a program means that small input perturba-
tions of the program can cause only small output changes.
Much existing work on analyzing robustness of programs
assumes that the analyzed program is in exact real arithmetic,
although floating-point computation is pervasive in practical
applications. This paper targets the analysis of robustness
properties of floating-point programs.

A program using floating-point arithmetic often exhibits
more robustness issues than that using exact real arithmetic,
due to the misunderstandings and nonintuitive behaviors
of floating-point semantics. Although floating-point arith-
metic is quite different from the exact real arithmetic, most
developers of floating-point programs will write programs
as if computations were done in exact arithmetic. For
the same input, the control flow of the program using
floating-point arithmetic can be different from the one that
would be taken assuming exact real arithmetic. Similarly,
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for two inputs whose values are close to each other, the
resulting two control flows of the same program can be
different (even when following exact real arithmetic). Two
different control flows may lead to very large difference in
outputs.

We illustrate the robustness problemdue to floating-point
computation using a motivating example shown in Figure 1,
which is a “classroom” example of a robustness problem
frequently used in the field of geometric computations [6].
The program Orientation implements the 2D orientation
test that decideswhether a point 𝑟 lies to the left of, to the right
of, or on the line→𝑝𝑞 defined by the 2 points 𝑝, 𝑞, by evaluating
the sign of a determinant det which is expressed in terms of
the coordinates of the input points. Due to rounding errors,
the floating-point computation of the determinant det may
lead to a wrong result when the true determinant (via
exact real arithmetic) is close to zero. From the robustness
point of view, for this program, even a very small input
perturbation may lead to an output change of 1 or 2. If the
rounding modes for the floating-point operations are not
determinate in the program, the output change can be 2 even
when there is no perturbation in the inputs (by running the
program in different rounding modes). This misinformation
may then lead to a failure of a computational geometry
application (e.g., crash or not terminate) or produce wrong
results [6].

Analyzing robustness of floating-point programs is more
challenging than analyzing programs assuming exact real
arithmetic, since besides the input perturbations, we need
to consider also the inexactness of floating-point compu-
tation. The floating-point program itself acts as if inputs
were perturbated due to the pervasive rounding errors or
nondeterminate rounding modes. There exist a few known
pitfalls of analyzing and verifying floating-point programs
[7].

In this paper, we present a robustness analysis method
for floating-point programs. The key idea is to leverage the
self-composition technique from the field of secure infor-
mation flow to transform the robustness analysis problem
into a reachability (safety) problem. Then we use standard
rechability analysis techniques such as softwaremodel check-
ing and symbolic execution to analyze the self-composed
programs. To cope with floating-point arithmetic, we uti-
lize a rounding mode insensitive abstraction method to
abstract floating-point expressions into linear expressions
with interval coefficients in the field of reals. On this basis,
we use interval linear programming to compute the max-
imum output change (when given the input perturbation)
or the maximum allowed input perturbation (when given
the output change) for the abstracted programs. The pre-
liminary experimental results are promising on benchmark
programs.

The rest of the paper is organized as follows. Section 2
reviews the IEEE 754 floating-point arithmetic and the basic
theory of interval linear systems as well as interval linear
programming. Section 3 presents the robustness analysis
approach via self-composition for programs (that assume
exact real arithmetic). Section 4 presents the techniques
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floatpqx = qx − px, pqy = qy − py;
floatprx = rx − px, pry = ry − py;
floatdet = pqx ∗ pry − pqy ∗ prx;

int Orientation (float px, float py, float qx, float qy, float rx, float ry)

if (det > 0) return 1;

return 0;
if (det < 0) return −1;

Figure 1: Floating-point implementation for orientation test of 2D
points.

to handle floating-point arithmetic. Section 5 presents our
prototype implementation together with preliminary experi-
mental results. Section 6 discusses some related work before
Section 7 concludes.

2. Preliminaries

In this section,we briefly provide the backgroundon the IEEE
754 floating-point arithmetic and the basic theory on interval
arithmetics as well as interval linear programming.

2.1. The IEEE 754 Floating-Point Arithmetic. A digital com-
puter cannot represent all possible real numbers in mathe-
matics exactly. In computing, floating-point numbers provide
an approach to represent a finite subset of the real numbers.
In this paper, we focus on analyzing programs with respect
to the binary formats of the IEEE 754 floating-point standard
[8] which is the most commonly used floating-point repre-
sentation and is followed by almost all modern computers.

In the IEEE 754 standard, the binary representation of a
floating-point number 𝑥 can be described as 𝑥 = (−1)

𝑆
×𝑀×

2
𝐸, where

(i) 𝑆 is the 1-bit sign of 𝑥, which represents that 𝑥 is
positive (when 𝑆 = 0) or negative (when 𝑆 = 1);

(ii) 𝐸 = 𝑒− bias is called the exponent, where 𝑒 is a biased
e-bit unsigned integer and bias = 2

e−1
− 1;

(iii) 𝑀 = 𝑚
0.𝑚1𝑚2 . . . 𝑚p is called the significand, where

𝑓 = .𝑚1𝑚2 . . . 𝑚p represents a p-bit fraction and 𝑚0

is the hidden bit without need of storage.

The values of e, bias, p depend on the floating-point formats.
The IEEE 754 standard supports several formats, among
which the basic formats include

(i) 32-bit single-precision format, where e = 8 (and thus
bias = 127), p = 23;
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(ii) 64-bit double-precision format, where e = 11 (and
thus bias = 1023), p = 52.

According to the value of 𝑒, the floating-point numbers can
be divided into the following categories:

(i) normalized number (−1)𝑆 × 1.𝑓 × 2
𝑒−bias, when 1 ≤

𝑒 ≤ 2
e
− 2;

(ii) denormalized number (−1)𝑆×0.𝑓×21−bias, when 𝑒 = 0

and 𝑓 ̸= 0;
(iii) + 0 or −0, when 𝑒 = 0 and 𝑓 = 0;
(iv) +∞ or −∞, when 𝑒 = 2

e
− 1 and 𝑓 = 0;

(v) NaN (Not a Number), when 𝑒 = 2
e
− 1 and 𝑓 ̸= 0.

Let F be the set of floating-point formats. For each f ∈ F, we
define

(i) 𝑚𝑓f
def
= 2

1−bias−p, the smallest nonzero positive
floating-point number;

(ii) 𝑀𝑓f
def
= (2 − 2

−p
)2
2
e
−bias−2, the largest noninfinity

floating-point number.

In general, the result of a floating-point operationmaynot
be exactly representable in the floating-point representation,
and thus the result needs to be rounded into a floating-
point number.The IEEE 754 standard supports four rounding
modes: toward nearest, toward +∞, toward −∞, and toward
zero. In this paper, in order to distinguish floating-point
arithmetic operations from exact real arithmetic ones, we
introduce additional notations. As usual, {+, −, ×, /} are used
as exact rational arithmetic operations. The corresponding
floating-point operations are denoted by {⊕f,𝑟, ⊖f,𝑟, ⊗f,𝑟, ⊘f,𝑟},
tagged with a floating-point format f ∈ F and a rounding
mode 𝑟 ∈ {+∞, −∞, 0, 𝑛} (𝑛 representing rounding to
nearest). We also use ? to denote arbitrary rounding mode.

Due to rounding errors, many well-known algebraic
properties (such as associativity and distributivity) over the
reals do not hold for floating-point arithmetic.

Example 1. Consider the following expressions in the 32-bit
single-precision floating-point arithmetic:

(2
24
⊕32,? − 2

24
) ⊕32,?1 = 1

(2
24
⊕
32,−∞

1) ⊕
32,−∞

− 2
24

= 0

(2
24
⊕
32,+∞

1) ⊕
32,+∞

− 2
24

= 2.

(1)

Note that in the 32-bit single-precision format, the significand
is 𝑀 = 𝑚

0
.𝑚
1
𝑚
2
. . . 𝑚23. However, to represent the exact

result of 2
24

+ 1 over the reals, we need one more bit
for the significand 𝑀 (say 𝑚24). Hence, rounding happens.
2
24
⊕
32,−∞

1 will result in 2
24, while 2

24
⊕
32,+∞

1 will result in
(1 + 2

−23
) × 2
24.

2.2. Interval Linear Systems and Interval Linear Programming.
Let 𝐴,𝐴 ∈ R𝑚×𝑛 be two matrices with 𝐴 ≤ 𝐴, where

comparison operators are defined element-wise; then the set
of matrices A ∈ IR𝑚×𝑛 defined by

A = [𝐴,𝐴] = {𝐴 ∈ R
𝑚×𝑛

: 𝐴 ≤ 𝐴 ≤ 𝐴} (2)

is called an intervalmatrix, and thematrices𝐴,𝐴 are called its
bounds. Let us define the centermatrix ofA as𝐴𝑐 = (1/2)(𝐴+

𝐴) and the radius matrix as Δ
𝐴

= (1/2)(𝐴 − 𝐴). Then, A =

[𝐴, 𝐴] = [𝐴
𝑐
− Δ
𝐴
, 𝐴
𝑐
+ Δ
𝐴
]. An interval vector is a one-

column interval matrix d = [𝑑, 𝑑] = {𝑑 ∈ R𝑚 : 𝑑 ≤ 𝑑 ≤ 𝑑},
where 𝑑, 𝑑 ∈ R𝑚 and 𝑑 ≤ 𝑑.

LetA be an𝑚×𝑛 interval matrix and 𝑏 be a vector of size
𝑚. The following system of interval linear inequalities

A𝑥 ≤ 𝑏 (3)

denotes an interval linear system, that is, the family of all
systems of linear inequalities 𝐴𝑥 ≤ 𝑏 such that 𝐴 ∈ A.

Definition 2 (weak solution). A vector 𝑥 ∈ R𝑛 is called aweak
solution of the interval linear system A𝑥 ≤ 𝑏, if it satisfies
𝐴𝑥 ≤ 𝑏 for some 𝐴 ∈ A. Furthermore, the set

Σ
∃ (
A, 𝑏) = {𝑥 ∈ R

𝑛
: ∃𝐴 ∈ A, 𝐴𝑥 ≤ 𝑏} (4)

is said to be the weak solution set of the system A𝑥 ≤ 𝑏.

The weak solution set of an interval linear system is
characterized by the following theorem [9].

Theorem 3. A vector 𝑥 ∈ R𝑛 is a weak solution of A𝑥 ≤ 𝑏 if
and only if it satisfies 𝐴𝑐𝑥 − Δ

𝐴
|𝑥| ≤ 𝑏.

Let A ∈ IR𝑚×𝑛 be an 𝑚 × 𝑛 interval matrix, 𝑏 ∈ R𝑚 be
an 𝑚-dimensional vector, and c ∈ IR𝑛 be an 𝑛-dimensional
interval vector. The family of linear programming (LP)
problems

𝑓 (𝐴, 𝑏, 𝑐) = max {𝑐𝑇𝑥 : 𝐴𝑥 ≤ 𝑏} (5)

with data satisfying

𝐴 ∈ A, 𝑐 ∈ c (6)

is called an interval linear programming (ILP) problem.
In this paper, we are only interested in computing the

upper bound 𝑓(A, 𝑏, c) = sup{𝑓(𝐴, 𝑏, 𝑐) : 𝐴 ∈ A, 𝑐 ∈ c}.
In general, according to Theorem 3, to compute the exact
𝑓(A, 𝑏, c), in the worst case up to 2

𝑛 LP problems have to be
solved, one for each orthant. Recall that a (closed) orthant
is one of the 2𝑛 subsets of an 𝑛-dimensional Euclidean space
defined by constraining each Cartesian coordinate axis to
be either nonnegative or nonpositive. In each orthant, we
consider the following LP problem:

max
𝑛

∑

𝑗=1

𝑐


𝑗
𝑥
𝑗

s.t. ⋀

0≤𝑖≤𝑚

𝑛

∑

𝑗=1

𝐴


𝑖𝑗
𝑥
𝑗
≤ 𝑏
𝑖
,

(7)
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where

𝑐


𝑗
= {

𝑐
𝑗

if 𝑥
𝑗
≥ 0

𝑐
𝑗

if 𝑥
𝑗
< 0

𝐴


𝑖𝑗
= {

𝐴
𝑖𝑗

if 𝑥𝑗 ≥ 0

𝐴𝑖𝑗 if 𝑥𝑗 < 0.

(8)

And 𝑓(A, 𝑏, c) will be the the maximum over all the optimal
values of the 2𝑛 LP problems with one per each orthant.

3. Robustness Analysis via Self-Composition

3.1. Robustness of Programs. In this paper, we follow the
definition for robustness of programs used byMajumdar and
Saha [5]. Let𝑓 be a functionwith inputs𝑥

1
, . . . , 𝑥

𝑛
and output

𝑦; that is,𝑦 = 𝑓(𝑥1, . . . , 𝑥𝑛).The function𝑓 is said to be (𝛿, 𝜖)-
𝑟𝑜𝑏𝑢𝑠𝑡 in the 𝑖th input 𝑥𝑖 if a perturbation of at most 𝛿 in the
input 𝑥𝑖 can only cause a change of at most 𝜖 in the output;
that is,

∀𝑥
𝑖
, 𝑥


𝑖
⋅






𝑥
𝑖
− 𝑥


𝑖






≤ 𝛿

⇒






𝑓 (𝑥
1, . . . , 𝑥𝑖, . . . , 𝑥𝑛) − 𝑓 (𝑥1, . . . , 𝑥



𝑖
, . . . , 𝑥𝑛)






≤ 𝜖,

(9)

where 𝛿, 𝜖 ∈ R are nonnegative constant parameters specified
by users. Recall that we consider the perturbation over only
one input at a time while assume that there is no perturbation
over all other inputs at the same time.

Moreover, in practice, users may be interested in the
maximum output change of 𝑦 with respect to 𝑥

𝑖
and 𝛿; that

is,

𝜖
𝛿

def
= max
𝑥,𝑥


{
{

{
{

{






𝑦 − 𝑦




|

𝑦 = 𝑓 (𝑥
1
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑛
)

𝑦

= 𝑓 (𝑥

1
, . . . , 𝑥



𝑖
, . . . , 𝑥

𝑛
)






𝑥
𝑖 − 𝑥


𝑖






≤ 𝛿

}
}

}
}

}

. (10)

Similarly, users may be interested in the maximum input
perturbation allowed over 𝑥

𝑖
with respect to 𝑦 and 𝜖; that is,

𝛿
𝜖

def
= max
𝑦,𝑦


{
{

{
{

{






𝑥
𝑖
− 𝑥


𝑖






|

𝑦 = 𝑓 (𝑥
1
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑛
)

𝑦

= 𝑓 (𝑥

1
, . . . , 𝑥



𝑖
, . . . , 𝑥

𝑛
)






𝑦 − 𝑦




≤ 𝜖

}
}

}
}

}

. (11)

Example 4. Consider the program shown in Figure 2, which
implements a piece-wise linear function. When 𝑥 = 1.001,
the two branches give the same result 𝑦 = 1002.001 in exact
real arithmetic (assuming floats are reals). It is easy to see that
in exact real arithmetic, this program is (0.1, 𝜖

0
)-𝑟𝑜𝑏𝑢𝑠𝑡 for all

𝜖
0
≥ 100.1 but is not (0.1, 𝜖

1
)-𝑟𝑜𝑏𝑢𝑠𝑡 for all 𝜖

1
< 100.1. This

can be deduced by observing that in exact real arithmetic,
given the input perturbation 𝛿 = 0.1, the maximum output
change of 𝑦 is 𝜖

𝛿
= 100.1; given the output change 𝜖 = 100.1,

the maximum input perturbation allowed over 𝑥 is 𝛿
𝜖
= 0.1.

(1) float piecewise linear(float x) {
(2) float y;
(3) if(x < 1.001)
(4) y = x + 1001.0;
(5) else
(6) y = x ∗ 1001.0;
(7) return y;
(8) }

Figure 2: A floating-point program piecewise linear.

3.2. Self-Composition. The idea of self-composition is firstly
used in the field of secure information flow [10, 11] to
characterize noninterference. Let 𝑃 be a program and 𝑃

 be a
copy of𝑃with each variable𝑥 in𝑃 replaced by a fresh variable
𝑥
. Using Hoare triples, noninterference can be characterized

as

{𝐿 = 𝐿

} 𝑃; 𝑃


{𝐿 = 𝐿


} , (12)

where 𝐿 denotes low-security variables. In other words, it
requires that running two instances of the same program
with equal low-security values and arbitrary high-security
values results in equal low-security values. Hence, via self-
composition, a secure information flow property of𝑃 reduces
to a reachability property over single program executions of
the program 𝑃; 𝑃

.
In this paper, we would like to leverage the idea of self-

composition to reduce the robustness problem of a program
𝑃 into an equivalent reachability problem over 𝑃; 𝑃. Assume
that program 𝑃 has 𝑛 input variables 𝑥

1
, . . . , 𝑥

𝑛
and an output

variable𝑦. Similarly, usingHoare triples, the (𝛿, 𝜖)-𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠
of program 𝑃 over the 𝑖th input 𝑥

𝑖
can be characterized as

{

{

{






𝑥
𝑖
− 𝑥


𝑖






≤ 𝛿 ∧ ⋀

1≤𝑗≤𝑛,𝑗 ̸= 𝑖

𝑥
𝑗
= 𝑥


𝑗

}

}

}

𝑃; 𝑃

{






𝑦 − 𝑦




≤ 𝜖} .

(13)

Example 5. Consider again the program piecewise
linear in Figure 2. The self-composition of the function
body is shown in Figure 3. To express the robustness property,
we add the assumption |𝑥 − 𝑥


| ≤ 𝛿 as a precondition at

the beginning of the self-composed program and add an
assertion |𝑦 − 𝑦


| ≤ 𝜖 as a postcondition at the end.

Essentially, the copied program 𝑃
 has the same program

code as 𝑃 but uses variables with different initial values.
Hence, there exists inherent symmetry and redundancy in
the self-composed programs. In order to make the following
analysis and verification process for self-composed programs
easier, program transformations can be used to optimize
the self-composed programs. In the field of secure informa-
tion flow analysis, Terauchi and Aiken [12] proposed type-
directed transformation to improve self-composition. The
main idea of type-directed transformation is not to self-
compose branch (or loop) statements when the branch (or
loop) condition is only dependent on the values of low-
security variables. In addition, for an assignment statement
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(1) assume(−𝛿 ≤ x − x ≤ 𝛿)
(2)
(3) if (x < 1.001)
(4) y = x + 1001.0;
(5) else
(6) y = x ∗ 1001.0;
(7)
(8) if (x < 1.001)
(9) y = x + 1001.0;
(10) else
(11) y = x ∗ 1001.0;
(12)
(13) assert(−𝜖 ≤ y − y ≤ 𝜖)

Figure 3: Self-composition of the piecewise linear program for
robustness analysis.

{𝑥 := 𝑒; }, when the right-hand expression 𝑒 is only dependent
on the values of low-security variables, its self-composition is
simplified as {𝑥 := 𝑒; 𝑥


:= 𝑥; }.

With respect to robustness, a similar transformation can
be applied. Intuitively, we could consider the perturbed input
variable 𝑥𝑖 as a high-security variable and all other input
variables 𝑥𝑗’s as low-security variables where 𝑗 ̸= 𝑖. Hence,
similarly to type directed transformation, we do not self-
compose branch (or loop) statements when the branch (or
loop) condition is not dependent on the values of perturbed
input variables. For an assignment statement {𝑥 := 𝑒; }, when
the right-hand expression 𝑒 is not dependent on the values of
perturbed input variables, its self-composition is simplified as
{𝑥 := 𝑒; 𝑥


:= 𝑥; }.

Example 6. Consider the function 𝑚𝑖𝑛 𝑝𝑙𝑢𝑠1 shown in
Figure 4, which implements min(𝑥 + 1, 𝑦) by adding 0.1

to 𝑥 ten times. The optimized self-composition result of
the function body after applying transformation is given in
Figure 5, when we consider the perturbation over the input
variable 𝑥 (while assuming no perturbation over 𝑦). More
specifically, since the loop condition 𝑖 < 10 in the original
program is not dependent on the value of the perturbed input
variable 𝑥, we do not self-compose the loop statement and
thus there is only one loop in the transformed resulting self-
composed program.

3.3. Robustness Analysis of Self-Composed Programs. Via self-
composition, the robustness analysis problem can be reduced
to solving a standard reachability (safety) problem.The recent
success of automatic analysis and verification tools (such
as SLAM [13], CBMC [14], and ASTRÉE [15]) aiming at
checking reachability properties in programs makes this
approach promising. In the following, we will present two
popular reachability analysis approaches that fit for analyzing
robustness, that is, software model checking and symbolic
execution.

3.3.1. Checking Robustness by Software Model Checking. Soft-
ware model checking [16] provides an automatic approach to
check whether a program satisfies a property by exploring

(1) float min plus1(float x, float y){
(2) float z;
(3) int i;
(4) i = 0;
(5) while (i < 10) {

(6) x = x + 0.1;
(7) i = i + 1;
(8) }

(9) if (y <= x) z = y;
(10) else z = x;
(11) return z;
(12) }

Figure 4: A floating-point program min plus1.

(1) assume(−𝛿 ≤ x − x ≤ 𝛿 and y = y)
(2)
(3) i = 0; i = i;
(4) while (i < 10) {

(5) x = x + 0.1; x = x + 0.1;
(6) i = i + 1; i = i;
(7) }
(8) if (y <= x) z = y;
(9) else z = x;
(10) if (y <= x) z = y;
(11) else z = x;
(12)
(13) assert(−𝜖 ≤ z − z ≤ 𝜖)

Figure 5: Transformed self-composition of the min plus1 program
for robustness analysis.

the state space of the program. For the robustness analysis
problem, the property to be checked is an assertion at the
end of the self-composed programs stating that the output
change is bounded by 𝜖, that is, assert (−𝜖 ≤ 𝑦 − 𝑦


≤ 𝜖).

A main advantage of using software model checking is that it
will generate a counterexample when the robustness property
does not hold. The counterexample shows an execution trace
which violates the robustness property. A counterexample is
very helpful for the users to identify the source of nonrobust-
ness.

3.3.2. Finding Maximum Output Change (or Input Perturba-
tion) by Symbolic Execution. Symbolic execution [17, 18] is
a technique to analyze a program by executing the program
with symbolic rather than concrete values as program inputs.
The process of symbolic execution essentially generates
and explores a symbolic execution tree which represents
all execution paths followed during the process. Each tree
node represents a symbolic execution state, while each edge
represents a program transition between the states. At any
tree node, the symbolic execution state includes a program
counter, a path condition (PC) that encodes the constraints on
the symbolic inputs to reach that node, a path function (PF)
that represents the current values of the program variables as
function of symbolic inputs when the path condition holds
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true. The path condition is a boolean expression over the
symbolic inputs. The path function describes the expected
result of the program, under the given path condition. Due
to conditional branches and loops in a program, the symbolic
execution of a program will result in a set of paths, each of
which is described by a pair ⟨PC,PF⟩ of the path condition
PC and the associated path function PF.

We now show how to use symbolic execution to conduct
a robustness analysis of program 𝑃 with inputs 𝑥1, . . . , 𝑥𝑛

and output 𝑦. First, the analysis algorithm performs symbolic
execution on the self-composed program 𝑃; 𝑃

. Assume that
the algorithm collects, at the end of the self-composed
program, a set S of pairs ⟨PC,PF⟩ of the path condition
PC and the associated path function PF. Then for each 𝑠 ≜

⟨PC,PF⟩ ∈ S, we compute the maximum output change 𝜖𝑠
𝛿
:

max 




PF
𝑦 − PF𝑦







s.t. (






𝑥
𝑖
− 𝑥


𝑖






≤ 𝛿 ∧ ⋀

1≤𝑗≤𝑛,𝑗 ̸= 𝑖

𝑥
𝑗
= 𝑥


𝑗
) ∧ PC.

(14)

Here, PF
𝑦
and PF

𝑦
 denote the symbolic expressions that the

path function PF maps the variables 𝑦 and 𝑦
 to, respectively.

Let 𝜖
𝛿
be the maximum element of {𝜖𝑠

𝛿
| 𝑠 ∈ S}; that is, 𝜖

𝛿
=

max({𝜖𝑠
𝛿
| 𝑠 ∈ S}). If 𝜖

𝛿
≤ 𝜖, then the original program 𝑃 is

(𝛿, 𝜖)-𝑟𝑜𝑏𝑢𝑠𝑡.
Similarly, given the bound of output change 𝜖, computing

the maximum allowed input perturbation is reduced to
solving a series of the following optimization problems for
each 𝑠 ≜ ⟨PC,PF⟩ ∈ S:

max 




𝑥
𝑖
− 𝑥


𝑖







s.t. ( ⋀

1≤𝑗≤𝑛,𝑗 ̸= 𝑖

𝑥
𝑗
= 𝑥


𝑗
) ∧ PC ∧






PF
𝑦
− PF
𝑦







≤ 𝜖.

(15)

And 𝛿
𝜖
will be the maximum element of {𝛿

𝑠

𝜖
| 𝑠 ∈ S}; that is,

𝛿𝜖 = max({𝛿
𝑠

𝜖
| 𝑠 ∈ S}).

4. Robustness Analysis of
Floating-Point Programs

In this section, we consider the robustness analysis problem
of floating-point programs. In Section 3.3, we propose to
utilize software model checking and symbolic execution
to perform robustness analysis of self-composed programs
(in exact real arithmetic). However, most existing software
model checkers and symbolic execution tools can not be
directly applied to floating-point programs, since they rely on
constraint solvers that often assume good algebraic properties
such as associativity and distributivity over the reals which
do not hold for floating-point arithmetic. To handle floating-
point arithmetic, we have to resort to bit-precise modeling
of floating-point arithmetic or abstracting floating-point
arithmetic to real number arithmetic.

CBMC (C BoundedModel Checker) [14] is one of the few
software model checkers that have considered floating-point

arithmetic. CBMC employs a sound and complete decision
procedure for floating-point arithmetic [19, 20]. It precisely
encodes floating-point operations as functions on bit-vectors.
Each floating-point operation is furthermodeled as a formula
in propositional logic.The formula is then handled by a SAT-
solver in the backend to check for satisfiability.

When we consider symbolic execution of floating-point
programs, both the path condition and the path function
will involve floating-point expressions. Hence, to compute
the maximum output change (or maximum allowed input
perturbation), we need optimization methods supporting
floating-point constraints. However, as far as we know, even
for linear programming, there is no available sound solver
supporting floating-point constraints. To this end, in this
paper, we abstract the optimization problem with floating-
point constraints into an interval linear programming prob-
lem (i.e., linear programming problem with interval coeffi-
cients) over the reals. The main idea is to use the so-called
floating-point linearization technique [21, 22] to abstract
floating-point expressions into linear real number expres-
sions with interval coefficients (in the form of Σ𝑖[𝑎𝑖, 𝑏𝑖]𝑥𝑖).

4.1. Floating-Point Abstraction. In this subsection, we will
explain how to abstract floating-point expressions into inter-
val linear expressions over the reals.

First, let us consider the upper bound on rounding errors
due to one floating-point operation. Let 𝑅f,𝑟(𝑥) denote the
floating-point rounding function that maps a real number 𝑥
to a floating-point number (or a runtime error due to, for
example, overflows) with respect to the floating-point format
f and the roundingmode 𝑟.The amount of the rounding error
due to 𝑅f,𝑟(𝑥) depends on the category of 𝑥.

(i) If 𝑥 is in the range of normalized numbers, then
|𝑅f,𝑟(𝑥) − 𝑥| ≤ 𝜀rel ⋅ |𝑥| where 𝜀rel = 2

−p (wherein p
is the number of bits of fraction in the significand of
the floating-point format f). In this case we consider
the relative rounding error 𝜀rel.

(ii) If 𝑥 is in the range of denormalized number, then
|𝑅f,𝑟(𝑥) − 𝑥| ≤ 𝜀abs, where 𝜀abs = 𝑚𝑓f (wherein
𝑚𝑓f is the smallest nonzero positive denormalized
floating-point number in the floating-point format
f , which is also the gap between two neighboring
denormalized numbers). In this case, we consider the
absolute rounding error 𝜀abs.

The rounding errors of these two cases can be unified as





𝑅f,𝑟 (𝑥) − 𝑥





≤ max (𝜀rel ⋅ |𝑥| , 𝜀abs) . (16)

Since max is not a linear operation, we derive an overapprox-
imation





𝑅f,𝑟 (𝑥) − 𝑥





≤ 𝜀rel ⋅ |𝑥| + 𝜀abs. (17)

Furthermore, when 𝑏 ≥ 0, |𝑦| ≤ 𝑏 is equivalent to 𝑦 =

[−1, 1] × 𝑏. Hence,

𝑅f,𝑟 (𝑥) − 𝑥 = [−1, 1] (𝜀rel ⋅ |𝑥| + 𝜀abs) ; (18)



Journal of Applied Mathematics 7

that is,

𝑅f,𝑟 (𝑥) = [1 − 𝜀rel, 1 + 𝜀rel] × 𝑥 + [−𝜀abs, 𝜀abs] . (19)

In general, we could abstract floating-point operations into
interval linear expressions in real number semantics. For
example,

𝑥⊕f,𝑟𝑦, (20)

that is,

𝑅f,𝑟 (𝑥 + 𝑦) (21)

can be abstracted into

[1 − 𝜀rel, 1 + 𝜀rel] × (𝑥 + 𝑦) + [−𝜀abs, 𝜀abs] ; (22)

that is,

[1 − 𝜀rel, 1 + 𝜀rel] × 𝑥 + [1 − 𝜀rel, 1 + 𝜀rel] × 𝑦 + [−𝜀abs, 𝜀abs] .
(23)

The advantage of this kind of rounding mode insensitive
floating-point abstractions is that the result is sound with
respect to arbitrary rounding modes, since 𝑅f,𝑟(𝑥) always
satisfies 𝑅f,−∞(𝑥) ≤ 𝑅f,𝑟(𝑥) ≤ 𝑅f,+∞(𝑥) while |𝑅f,𝑟(𝑥) −

𝑥| ≤ 𝜀rel ⋅ |𝑥| + 𝜀abs has already taken into account the
extreme cases of 𝑟 = −∞ and 𝑟 = +∞. This is of practical
importance, since wemay not know the exact roundingmode
for each floating-point operation. For example, C99 provides
the fesetround() function to set the current rounding
mode. Of course, when we know the exact rounding mode
for the floating-point operation, we could make the floating-
point abstraction more precise. For example, if the current
rounding mode is toward nearest, then

𝑅f,𝑛 (𝑥) = [1 −

𝜀rel
2

, 1 +

𝜀rel
2

] × 𝑥 + [−

𝜀abs
2

,

𝜀abs
2

] . (24)

In addition, if we know the range of 𝑥, we may also define
more precise floating-point abstractions. For example, if we
know that 𝑥 is in the range of denormalized numbers, then

𝑅f,𝑟 (𝑥) = 𝑥 + [−𝜀abs, 𝜀abs] . (25)

For the sake of generality, in this paper, we use the follow-
ing rounding mode insensitive floating-point abstraction:

𝑅
#
f,? (𝑥) = [1 − 𝜀rel, 1 + 𝜀rel] × 𝑥 + [−𝜀abs, 𝜀abs] , (26)

where we assume |𝑥| < 𝑀𝑓f .
More clearly, we use the following abstraction for

floating-point arithmetic:

𝑅
#
f,? (𝑥⊕f,?𝑦) = [1 − 𝜀rel, 1 + 𝜀rel] × 𝑥 + [1 − 𝜀rel, 1 + 𝜀rel]

× 𝑦 + [−𝜀abs, 𝜀abs]

𝑅
#
f,? (𝑥⊖f,?𝑦) = [1 − 𝜀rel, 1 + 𝜀rel] × 𝑥 + [−1 − 𝜀rel, −1 + 𝜀rel]

× 𝑦 + [−𝜀abs, 𝜀abs]

𝑅
#
f,? (𝑥⊗f,?𝑦) = [1 − 𝜀rel, 1 + 𝜀rel] × 𝑥 × 𝑦 + [−𝜀abs, 𝜀abs]

𝑅
#
f,? (𝑥⊘f,?𝑦) = [1 − 𝜀rel, 1 + 𝜀rel] ×

𝑥

𝑦

+ [−𝜀abs, 𝜀abs] .

(27)

Specially, for a constant number 𝑐 that appears in the source
code, we use the following abstraction:

𝑅
#
f,? (𝑐) = [𝑅

#
f,−∞ (𝑐) , 𝑅

#
f,+∞ (𝑐)] . (28)

4.2. Symbolic Execution of Abstracted Floating-Point Pro-
grams. From Section 4.1, we see that floating-point expres-
sions can be soundly abstracted into real number expressions
with interval coefficients. Since the multiplication 𝑥 × 𝑦 and
division 𝑥/𝑦 are not linear expressions when both 𝑥 and 𝑦 are
not constant numbers, in order to obtain linear expressions
with interval coefficients, we replace 𝑦 with its interval
range denoted as [𝑦, 𝑦]. In symbolic execution, 𝑦 is always
an expression over the symbolic input values. We assume
users provide the interval ranges for those symbolic input
values. Then, all floating-point expressions can be abstracted
as interval linear expressions. Therefore, the resulting path
conditions of symbolic execution consist of interval linear
constraints while the resulting path functions consist of
interval linear expressions.

Finally, the problems of computing the maximum output
change and the maximum allowed input perturbation are
reduced to solving a series of interval linear programming
problems. For example, computing the maximum output
change requires the solutions of the following interval linear
programming problems:

max Σ𝑖 [𝑎𝑖
, 𝑎𝑖] × 𝑥𝑖 + Σ𝑖 [𝑎



𝑖
, 𝑎


𝑖
] × 𝑥


𝑖
+ 𝑏

s.t. (






𝑥
𝑖
− 𝑥


𝑖






≤ 𝛿 ∧ ⋀

1≤𝑗≤𝑛,𝑗 ̸= 𝑖

𝑥
𝑗
= 𝑥


𝑗
)

∧⋀

𝑘

Σ𝑖 [𝐴𝑘𝑖
, 𝐴𝑘𝑖] × 𝑥𝑖 + Σ𝑖 [𝐴



𝑘𝑖
, 𝐴



𝑘𝑖
] × 𝑥


𝑖
≤ 𝑐𝑘,

(29)

where Σ
𝑖
[𝑎
𝑖
, 𝑎
𝑖
] × 𝑥

𝑖
+ Σ
𝑖
[𝑎


𝑖
, 𝑎


𝑖
] × 𝑥



𝑖
+ 𝑏 denotes the

abstracted output change PF
𝑦
− PF
𝑦
 (or PF

𝑦
 − PF

𝑦
) while

⋀
𝑘
Σ𝑖[𝐴𝑘𝑖

, 𝐴𝑘𝑖] × 𝑥𝑖 + Σ𝑖[𝐴


𝑘𝑖
, 𝐴



𝑘𝑖
] × 𝑥



𝑖
≤ 𝑐𝑘 denotes the

abstracted PC.

Example 7. Consider the self-composed program
piecewise linear in Example 5. Suppose we would
like to compute the maximum output change, given the
input perturbation 𝛿 = 0.1 over 𝑥. The self-composed
program includes four paths overall. Let us consider for
example the path that takes the else branch in both the
unprimed program 𝑃 and the primed program 𝑃

. Since 𝑥, 𝑦
are of float type, 𝜀rel = 2

−23 and 𝜀abs = 2
−149 for the 32-bit

single precision floating-point format. We will have

PC : 𝑥 ≥ 𝑅
#
f,−∞ (1.001) ∧ 𝑥


≥ 𝑅

#
f,−∞ (1.001)

PF
𝑦
: [1 − 2

−23
, 1 + 2

−23
]

× [𝑅
#
f,−∞ (1001.0) , 𝑅

#
f,+∞ (1001.0)] × 𝑥

+ [−2
−149

, 2
−149

]
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PF
𝑦
 : [1 − 2

−23
, 1 + 2

−23
]

× [𝑅
#
f,−∞ (1001.0) , 𝑅

#
f,+∞ (1001.0)] × 𝑥



+ [−2
−149

, 2
−149

] .

(30)

Thus, we get the following interval linear programming
problem:

max [1 − 2
−23

, 1 + 2
−23

]

× [𝑅
#
f,−∞ (1001.0) , 𝑅

#
f,+∞ (1001.0)] × 𝑥

+ [−1 − 2
−23

, −1 + 2
−23

]

× [𝑅
#
f,−∞ (1001.0) , 𝑅

#
f,+∞ (1001.0)] × 𝑥



+ [−2
−148

, 2
−148

]

(31)

s.t. 𝑥 − 𝑥

≤ 0.1 ∧ −𝑥 + 𝑥


≤ 0.1

∧ −𝑥 ≤ −𝑅
#
f,−∞ (1.001) ∧ −𝑥


≤ −𝑅

#
f,−∞ (1.001) .

(32)

Solving the above interval linear programming
problem by the method described in Section 2.2
will give us 100.10023889571252. After we deal with
all other paths in the same way, we will find that
100.10023889571252 is the maximum output change with
respect to the given input perturbation 0.1. Hence, the
program piecewise linear in floating-point arithmetic is
at least (0.1, 100.10023889571252)-𝑟𝑜𝑏𝑢𝑠𝑡.

5. Implementation and Experimental Results

We have implemented a robustness analysis tool RAFP, based
on the symbolic execution and floating-point abstraction
techniques presented in Section 4. Given an input pertur-
bation 𝛿 over one input variable of the program, RAFP
can compute the maximum output change. Furthermore,
if the user also provides a candidate output change 𝜖 and
would like to check whether the program is (𝛿, 𝜖)-𝑟𝑜𝑏𝑢𝑠𝑡,
RAFP will check this property during the process of com-
puting maximum output change and will stop once one
path violating the property is found. Also, given an output
change 𝜖, RAFP can compute the maximum allowed input
perturbation for floating-point programs. RAFP is built on
top of Symbolic PathFinder (SPF) [23] which is a symbolic
execution engine for Java programs.We use SPF to extract the
path conditions together with the associated path functions.
For linear programming, RAFPmakes use of the Java Binding
for GLPK (GNU Linear programming kit) called GLPK-Java
[24].

To conduct experiments on checking robustness prop-
erties of floating-point programs via software model check-
ing, we choose CBMC (C Bounded Model Checker) [14]
which implements bounded model checking for ANSI-C

programs using SAT/SMT solvers. CBMC utilizes a bit-
precise modeling for floating-point operations and employs
a sound and complete decision procedure for floating-
point arithmetic. CBMC provides an option --floatbv
to use IEEE floating point arithmetic and options for
choosing rounding modes. However, CBMC does not sup-
port to use different rounding modes for the floating-
point operations in the same program. In other words,
all floating-point operations in a program are of the same
rounding mode during the analysis. We use the default
rounding mode --round-to-nearest during our exper-
iments. Moreover, CBMC provides CPROVER assume()
and CPROVER assert() statements, which are needed for
robustness analysis of self-composed programs. Both state-
ments take Boolean conditions. The CPROVER assume()
statement restricts that the program traces should satisfy
the assumed condition. For the CPROVER assert() state-
ment, CBMCwill check whether the asserted condition holds
true for all runs of the program.

We have conducted experiments on a selection of bench-
mark examples using both RAFP and CBMC. Table 1 shows
the comparison of performance and the resulting output
changes. The column “𝛿in” shows the considered input per-
turbation over one input variable of the program.The column
“𝜖max” shows the resulting maximum output change com-
puted by RAFP with respect to the given input perturbation.
The column “𝜖unr” gives the largest possible output change
that we have tried with CBMC such that the program is not
(𝛿in, 𝜖unr)-𝑟𝑜𝑏𝑢𝑠𝑡with respect to the given input perturbation.
The column “𝜖

𝑟
” gives the smallest output change that we

have tried with CBMC such that the program is (𝛿in, 𝜖𝑟)-
𝑟𝑜𝑏𝑢𝑠𝑡with respect to the given input perturbation (Note that
CBMC can be used only to check whether a program is (𝛿, 𝜖)-
𝑟𝑜𝑏𝑢𝑠𝑡 and can not be used to compute the amount of output
change with respect to the given input perturbation. During
our experiments, we try CBMC with different candidate
values of 𝜖 to find 𝜖unr and 𝜖𝑟.). Since CBMC uses the same
rounding mode for all floating-point operations in the same
program during the analysis, the output change is always 0
when the given input perturbation is 0. Hence, for those rows
that specify input perturbation as 0, we do not need to run
CBMC and thus we mark the table entry with ⋆ in this case.
Our tool RAFP utilizes rounding mode insensitive floating-
point abstraction and thus in principle it holds that 𝜖max ≥

𝜖
𝑟
≥ 𝜖unr, which is confirmed by the experimental results.
The program piecewise linear corresponds to

the program shown in Example 4. Max1, MorePaths
come from JPF Continuity [25]. Max1 is a floating-
point program that implements max(𝑥, 𝑦), and thus
it is (𝛿in, 𝛿in)-𝑟𝑜𝑏𝑢𝑠𝑡. MorePaths is a floating-point
program that involves both a step function and a max
function, and thus it is (𝛿in, 1.0)-𝑟𝑜𝑏𝑢𝑠𝑡 for all 𝛿in ≤ 1.0.
Orientation (which corresponds to the program shown
in Figure 1) together with Filtered Orientation are
extracted from the computational geometry algorithms
library CGAL [26] and address robust geometric
computation. Filtered Orientation is an improved
version of Orientation via static filter technique. The
approximate result of computing the sign of a determinant
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Table 1: Experimental results for benchmark examples.

Program 𝛿in
RAFP CBMC

𝜖max 𝑡 (ms) 𝜖unr 𝑡 (ms) 𝜖
𝑟

𝑡 (ms)

piecewise linear

0 2.3889571220452006𝑒 − 4 29 ⋆ ⋆ ⋆ ⋆

0.01 10.010238895712442 33 ? >1 h ? >1 h
0.1 100.10023889571252 34 ? >1 h ? >1 h

Max1

0 1.4012987984203268𝑒 − 45 44 ⋆ ⋆ ⋆ ⋆

0.01 0.010000000000000007 55 0.0099 215 0.01 16066
0.1 0.10000000000000006 54 0.099 227 0.1 16262

MorePaths

0 1.0000000027939686 59 ⋆ ⋆ ⋆ ⋆

0.01 1.0000000027939686 79 0.99 279 1.0 379
0.1 1.0000000027939686 86 0.99 314 1.0 471

Orientation

0 2.0 55 ⋆ ⋆ ⋆ ⋆

0.1𝑒 − 8 ∗E 2.0 68 0 1840 1.0 6845
0.1𝑒 − 3 ∗E 2.0 73 0 1338 1.0 13327
0.1𝑒 − 2 ∗E 2.0 80 1.0 14165 2.0 413

Filtered Orientation

0 1.0 54 ⋆ ⋆ ⋆ ⋆

0.1𝑒 − 8 ∗E 1.0 70 0 1044 1.0 29641
0.1𝑒 − 2 ∗E 1.0 73 0 898 1.0 30261

0.1 ∗E 2.0 75 0 719 1.0 26463
E 2.0 68 1.0 13206 2.0 654

is compared with a given positive filter bound E (rather
than compared with zero). When the approximate result
is in the interval [−E,E], Filtered Orientation
gives 0. During our experiments, we set E = 1.5𝑒 − 5

(and for the sake of comparison, we express the input
perturbation in terms of E also for Orientation although
here E does not appear). The outputs of Orientation
and Filtered Orientation are always −1 (negative), 0
(zero), or 1 (positive). Hence, in Table 1, the resulting output
changes for these two programs are always 0, 1.0, or 2.0. From
Table 1, we could find that Filtered Orientation is more
robust than Orientation. For example, given the input
perturbation 𝛿 = 0.1𝑒 − 2 ∗ E, CBMC finds that for 𝜖 = 1.0,
Filtered Orientation is robust while Orientation is
not. Similarly, given the input perturbation 𝛿 = 0.1𝑒 − 2 ∗E,
RAFP gives 𝜖max = 1.0 for Filtered Orientation but
gives 𝜖max = 2.0 for Orientation.

The column “𝑡 (ms)” presents the analysis times in mil-
liseconds when the analyzers run on a 2.5GHz PC with 4GB
of RAM running Windows 7. (RAFP runs further on a Java
VirtualMachine (JVM)whileCBMCruns further on a virtual
machine VMWare running Fedora 12.) From Table 1, we
could see that RAFP outperforms CBMC in time efficiency.
Especially for piecewise linear, CBMC could not even
finish the analysis process in 1 hour. The low efficiency of
CBMC is because that CBMC uses a sound and complete
decision procedure for floating-point arithmetic. Especially,
themultiplication and division floating-point operationsmay
generate formulae that are expensive to decide and quite hard
for SAT solvers to solve [27]. Hence, checking robustness
properties of floating-point programs via CBMC may have
limitations in scalability due to the current expensive decision
procedures for floating-point logic. During our experiments,

the approach via symbolic execution of abstracted floating-
point programs is muchmore efficient. In principle, symbolic
execution may suffer from the path explosion problem.
However, the recent success of symbolic execution tools such
as KLEE [28] on analyzing large-scale programs [17] makes
this approach promising.

6. Related Work

6.1. Robustness Analysis of Programs. Robustness is a stan-
dard correctness property for control systems [1]. Robustness
analysis of programs has received increasing attention in
the recent years. Majumdar and Saha [5] took a first step
toward analyzing the robustness of programs in control
systems. They also utilized symbolic execution and opti-
mization techniques to compute the maximum difference
in program outputs with respect to the given input per-
turbation. However, they assumed exact real arithmetic in
the program. Continuity as one aspect of robustness for
software was firstly considered in [29]. Recently, Chaudhuri
et al. presented logic-based mostly automated methods to
determine whether a program is continuous [2] or Lipschitz
continuous [3, 4], and more recently to determine whether
a decision-making program is consistent under uncertainty
[30]. Quite recently, Shahrokni and Feldt [31] conducted a
systematic review of software robustness. However, much
existingwork on robustness analysis does not handle floating-
point arithmetic in the program. Bushnell [25] presented a
symbolic execution based approach to identify continuties
and discontinuties associatedwith path condition boundaries
for floating-point software, but it did not consider the
true floating-point semantics. Besides, Gazeau et al. [32]
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presented a nonlocal method for proving the robustness
of floating-point programs but which needs much manual
work. Recently, Goubault and Putot [33] proposed an abstract
interpretation based robustness analysis method for finite
precision implementations.

6.2. Safety Analysis of Floating Point Programs. Monniaux
[7] described common pitfalls in analyzing and verify-
ing floating-point programs. Abstract interpretation [34]
based techniques have shown quite successful on analysis
of floating-point programs. In [35], Goubault analyzed the
origin of the loss of precision in floating-point programs
based on abstract interpretation. Following this direction, a
static analyzer FLUCTUAT [36] was developed. The abstract
interpretation based static analyzer ASTRÉE [15] checks for
floating-point run-time errors based on the computed set of
reachable values for floating-point variables. As in ASTRÉE,
we rely on the floating-point abstraction technique of [21]
to soundly abstract floating-point expressions into ones over
the field of reals. Chen et al. [37, 38] utilized interval linear
constraints to design numerical abstract domains and to
construct sound floating-point implementations [39]. Ivančić
et al. [40] used bounded model checking based on SMT
solvers to detect numerical instabilities in floating-point
programs, based on a mixed integer-real model for floating-
point variables and operations. Brain et al. [41] recently
improved the bit-precise decision procedure for the theory
of floating-point arithmetic based on a strict lifting of the
conflict-driven clause learning algorithm in modern SAT
solvers to abstract domains. Barr et al. [42] presented a
method to automatically detect the floating-point exception
through symbolic execution.

6.3. Self-Composition. The idea of self-composition is firstly
used in the field of secure information flow [10, 11], to char-
acterize noninterference. Terauchi and Aiken [12] proposed
the type-directed transformation approach to make self-
composition work in practice with off-the-shelf automatic
safety analysis tools. Recently, Barthe et al. [43] proposed
a general notion of product program that is beneficial to
relational verification, which could be considered as the gen-
eralization of self-composition. Kovacs et al. [44] presented
a general method to analyze 2-hypersafety properties by
applying abstract interpretation on the self-compositions of
the control flow graphs of programs.

7. Conclusion

We have proposed a self-composition based approach for
robustness analysis of programs, which enablesmaking use of
off-the-shelf automatic reachability analysis tools to analyze
robustness properties of programs. Then, we have shown
how to use software model checking and symbolic execution
techniques on self-composed programs to analyze program
robustness properties. In particular, we have considered the
robustness analysis problem of floating-point programs. To

deal with floating-point arithmetic during symbolic execu-
tion, we have utilized a rounding mode insensitive floating-
point abstraction to abstract floating-point expressions into
interval linear expressions in exact real arithmetic. On
this basis, the maximum output change (when given the
input perturbation) or maximum allowed input perturbation
(when given the input perturbation) are computed based
on symbolic execution and interval linear programming for
abstracted floating-point programs. Experimental results of
our prototype implementation are encouraging.

It remains for future work to exploit the intrinsic sym-
metry of self-composed programs to reduce the number of
considered paths during robustness analysis. We also plan to
improve the prototype implementation and to conduct more
experiments on larger realistic floating-point programs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the 973 Program under Grant
no. 2014CB340703, the 863 Program under Grant no.
2011AA010106, the NSFC under Grant nos. 61202120,
61120106006, and 91318301 and the SRFDP under Grant no.
20124307120034.

References

[1] S. Pettersson and B. Lennartson, “Stability and robustness for
hybrid systems,” in Proceedings of the 35th IEEE Conference on
Decision and Control, pp. 1202–1207, December 1996.

[2] S. Chaudhuri, S. Gulwani, and R. Lublinerman, “Continuity
analysis of programs,” in Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’10), pp. 57–69, ACM, January 2010.

[3] S. Chaudhuri, S. Gulwani, and R. Lublinerman, “Continuity and
robustness of programs,” Communications of the ACM, vol. 55,
no. 8, pp. 107–115, 2012.

[4] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. NavidPour,
“Proving programs robust,” in Proceedings of the 19th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering
(FSE ’11), pp. 102–112, ACM, 2011.

[5] R. Majumdar and I. Saha, “Symbolic robustness analysis,” in
Proceedings of the Real-Time Systems Symposium (RTSS ’09), pp.
355–363, IEEE, December 2009.

[6] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. K. Yap,
“Classroom examples of robustness problems in geometric
computations,” in Proceedings of the European Symposium on
Algorithms (ESA ’04), vol. 3221 of Lecture Notes in Computer
Science, pp. 702–713, Springer, 2004.

[7] D. Monniaux, “The pitfalls of verifying floating-point com-
putations,” ACM Transactions on Programming Languages and
Systems, vol. 30, no. 3, article 12, 2008.

[8] IEEE Computer Society, “IEEE standard for binary floating
point arithmetic,” Tech. Rep. ANSI/IEEE Std 745-1985, 1985.



Journal of Applied Mathematics 11

[9] J. Rohn, “Solvability of systems of interval linear equations
and inequalities,” in Linear Optimization Problems with Inexact
Data, pp. 35–77, Springer, 2006.

[10] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information
flow by self-composition,” in Proceedings of the 17th IEEE
Computer Security FoundationsWorkshop (CSFW ’04), pp. 100–
114, IEEE, June 2004.
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