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We study the exponential stability of the complex dynamical network described by differentially nonlinear equations which couple
with time delay and stochastic impulses. Some sufficient conditions are established to ensure pth moment exponential stable for the
stochastic impulsive systems (SIS) with time delay. An example with its numerical simulation is presented to illustrate the validation
of main results.

1. Introduction

As the extension and expansion of Internet network, the
Internet of things is the complex networks which aremade up
of interconnected nodes and used to describe various systems
of real world. In many systems such as signal processing sys-
tems, computer networks, automatic control systems, flying
object motions, and telecommunications, impulsive effects
are common phenomena due to instantaneous perturbations
at certain moments. Therefore, the study of the dynamical
networks with impulsive effects is important for under-
standing the dynamical behaviors of the most real-world
complex networks.The impulsive dynamic systems have been
studied extensively (see [1–4] and references therein). In
addition to impulsive effects, stochastic effects likewise exist
in real systems. In recent years stochastic impulsive dynamic
system is an emerging field drawing attention from various
disciplines of sciences and engineering.

Many real-world problems in science and engineering
can be modeled by nonlinear stochastic impulsive dynamic
systems (see [5, 6] and references therein). The stability
analysis is much more complicated because of the existence
of simultaneous impulsive effects and stochastic effects. So
far, there are several results on impulsive stochastic systems,

which we can find in [7–10]. However, to the best of the
authors’ knowledge, little study on impulsive stabilization
of stochastic delay systems has been done so far. Motivated
by the above consideration, in this paper we analysis this
system and obtain sufficient conditions to ensure the 𝑝th
moment asymptotic stability of stochastic impulsive systems
with arbitrarily infinite delays. It is shown that an unstable
stochastic delay system can be successfully stabilized by
impulses and the results can be easily applied to stochastic
systems with arbitrarily time delays.

2. Preliminaries

Let 𝑅𝑛 denote the 𝑛-dimensional real space and let 𝜏 > 0

be a positive real number. Let PC([−𝜏, 0]; 𝑅𝑛) denotes the
family of piecewise continuous functions from [−𝜏, 0] to 𝑅

𝑛.
PC([−𝜏, 0]; 𝑅𝑛) = 𝜑 : [−𝜏, 0] → 𝑅

𝑛

|𝜑(𝑡
+

) = 𝜑(𝑡), 𝜑(𝑡)
exists, and 𝜑(𝑡

−

) = 𝜑(𝑡) for 𝑡 ∈ (−𝜏, 0], with the norm ‖𝜑‖ =

sup
−𝜏≤𝜃≤0

|𝜑(𝜃)|, where 𝜑(𝑡+) and 𝜑(𝑡−) denote the right-hand
and left-hand limit of function 𝜑(𝑡) at 𝑡, respectively.

Consider the impulsive stochastic differential equation as
follows:

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
𝑡
) 𝑑𝑡 + 𝑔 (𝑡, 𝑥

𝑡
) 𝑑𝑤 (𝑡) , 𝑡 ≥ 0, 𝑡 ̸= 𝑡

𝑘
,
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Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) ,

𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (𝑡
0
) = 𝜉, 𝑡 = [−𝜏, 0] ,

(1)

where the initial value 𝜉 ∈ PC([−𝜏, 0]; 𝑅𝑛), 𝑥(𝑡) =

[𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇, 𝑥
𝑡
is regarded as a PC-valued

stochastic process, 𝑥
𝑡
= {𝑥(𝑡+𝜃) : −𝜏 ≤ 𝜃 ≤ 0)}, 𝑓 : 𝑅

+

×𝑅
𝑛

×

PC([−𝜏, 0]; 𝑅𝑛) → 𝑅
𝑛,𝑔 : 𝑅

+

×PC([−𝜏, 0]; 𝑅𝑛) → 𝑅
𝑛×𝑚, and

𝑤(𝑡) is an𝑚-dimensional standard Brownianmotion defined
on the complete probability space.

Definition 1. Let 𝐶2,1(𝑅𝑛 × [𝑡
0
− 𝜏,∞); 𝑅

+

) denote the family
of all nonnegative functions 𝑉(𝑥, 𝑡) on 𝑅

𝑛

× [𝑡
0
− 𝜏,∞) that

are continuously twice differentiable in 𝑥 and once in 𝑡. For a
𝑉 ∈ 𝐶

2,1

(𝑅
𝑛

×[𝑡
0
−𝜏,∞); 𝑅

+

), one can define the Kolmogorov
operatorL𝑉 as follows:

L𝑉 (𝑥, 𝑡) = 𝑉
𝑡
(𝑥, 𝑡) + 𝑉

𝑥
(𝑥, 𝑡) 𝑓 (𝑥, 𝑡)

+
1

2
Tr {𝑔𝑇 (𝑥, 𝑡) 𝑉

𝑥𝑥
𝑔 (𝑥, 𝑡)} ,

(2)

where𝑉
𝑡
= 𝜕𝑉(𝑥, 𝑡)/𝜕𝑡,𝑉

𝑥
= (𝜕𝑉(𝑥, 𝑡)/𝜕𝑥

1
, . . . , 𝜕𝑉(𝑥, 𝑡)/𝜕𝑥

𝑛
),

and 𝑉
𝑥𝑥

= 𝜕
2

𝑉(𝑥, 𝑡)/𝜕𝑥
2

.

Definition 2. The trivial solution of SIS (1) is said to be the𝑝th
moment exponential stable if there exist positive constants
𝛼 > 0 and𝐾 ≥ 1 such that

𝐸‖𝑥 (𝑡)‖
𝑝

≤ 𝐾𝑒
−𝛼(𝑡−𝑡0)

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩
𝑝

, 𝑡 > 𝑡
0
, 𝑡 ∈ 𝑅

+

. (3)

The following lemmas can be found in [11].

Lemma 3. Let 𝑥, 𝑦 ≥ 0, 𝑎, 𝑏 > 1, then

𝑥𝑦 ≤
𝑥
𝑎

𝑎
+
𝑦
𝑏

𝑏
,

1

𝑎
+
1

𝑏
= 1. (4)

Lemma 4. Let 𝑥, 𝑦 ≥ 0, 𝑝 ≥ 𝑗 ≥ 0, then

𝑥
𝑝−𝑗

𝑦
𝑗

≤
(𝑝 − 𝑗) 𝑥

𝑝

+ 𝑗𝑦
𝑝

𝑝
. (5)

3. Main Results

In this section, we shall focus on sufficient conditions to
achieve exponential stability of the SIS by employing Razu-
mikhin techniques and Lyapunov functions. Moreover, we
will design the impulsive control for the stabilization of
unstable stochastic systems by using the obtained results.

Theorem 5. If there exist positive constants 𝑝, 𝑐
1
, 𝑐
2
, 𝜆, 𝑑
𝑘
> 1,

and suppose there exists a function 𝑉 such that

(i) 𝑐
1
|𝑥|
𝑝

≤ 𝑉(𝑥, 𝑡) ≤ 𝑐
2
|𝑥|
𝑝;

(ii) 𝐸𝑉(𝑥, 𝑡+
𝑘
) ≤ 𝑑
𝑘
𝐸𝑉(𝑥, 𝑡

𝑘
);

(iii) 𝐸L𝑉(𝜑, 𝑡) ≤ 𝑐𝐸𝑉(𝜑, 𝑡), for all 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
];

(iv) ln 𝑑
𝑘
≤ 𝜆(𝑡
𝑘
− 𝑡
𝑘−1

), 𝑘 = 1, 2, . . ..

Then the corresponding system (1) is the 𝑝th moment exponen-
tial stable.

Proof. For any 𝑡 ∈ [𝑡
1
, 𝑡
2
], we can get from the conditions (ii)

and (iii)

𝐸𝑉 (𝑡) = 𝐸𝑉 (𝑡
+

1
) + ∫

𝑡

𝑡1

𝑐𝐸𝑉 (𝑥 (𝑠) , 𝑠) 𝑑𝑠

≤ 𝑑
1
[𝐸𝑉 (0) + ∫

𝑡1

0

𝑐𝐸𝑉 (𝑥 (𝑠) , 𝑠) 𝑑𝑠]

+ ∫

𝑡

𝑡1

𝑐𝐸𝑉 (𝑥 (𝑠) , 𝑠) 𝑑𝑠 = 𝑑
1
𝐸𝑉 (0)

+ 𝑑
1
∫

𝑡1

0

𝑐𝐸𝑉 (𝑥 (𝑠) , 𝑠) 𝑑𝑠 + ∫

𝑡

𝑡1

𝑐𝐸𝑉 (𝑥 (𝑠) , 𝑠) 𝑑𝑠.

(6)

In general for 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
], one can find that

𝐸𝑉 (𝑡) ≤ ∏

0≤𝑡𝑘≤𝑡

𝑑
𝑘
𝐸𝑉 (0) + ∫

𝑡

0

∏

𝑠≤𝑡𝑘≤𝑡

𝑑
𝑘
𝑐𝐸𝑉 (𝑥 (𝑠) , 𝑠) 𝑑𝑠.

(7)

From condition (iv), we get

∏

𝑠≤𝑡𝑘≤𝑡

𝑑
𝑘
≤ 𝑒
𝜆(𝑡2−𝑡1) ⋅ 𝑒

𝜆(𝑡3−𝑡2) ⋅ ⋅ ⋅ 𝑒
𝜆(𝑡𝑘−𝑡𝑘−1)

= 𝑒
𝜆(𝑡𝑘−𝑡1) = 𝑒

𝜆(𝑡−𝑠)

⋅ 𝑒
𝜆(𝑡𝑘−𝑡) ⋅ 𝑒

𝜆(𝑠−𝑡1).

(8)

For 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
], 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑘
be impulsive points in [𝑠, 𝑡), 𝑡 >

𝑠, 𝜆 < 0, then we obtain

∏

𝑠≤𝑡𝑘≤𝑡

𝑑
𝑘
≤ 𝑒
𝜆(𝑡−𝑠)

⋅ 𝑒
𝜆(𝑡𝑘−𝑡) ≤ 𝑒

𝜆(𝑡−𝑠)

⋅ 𝑒
𝜆(𝑡𝑘−𝑡𝑘−1) ≤ 𝛾𝑒

𝜆(𝑡−𝑠)

. (9)

By (7) and (8), then we can get

𝐸𝑉 (𝑡) ≤ 𝛾𝐸𝑉 (0) 𝑒
𝜆𝑡

+ ∫

𝑡

0

𝛾𝑒
𝜆(𝑡−𝑠)

𝑐𝐸𝑉 (𝑥 (𝑠) , 𝑠) 𝑑𝑠

≤ 𝛾 sup
−𝜏≤𝜃≤0

𝐸𝑉 (𝜎) 𝑒
𝜆𝑡

.

(10)

It follows from condition (i), that

𝑐
1
𝐸|𝑥 (𝑡)|

𝑝

≤ 𝐸𝑉 (𝑡) ≤ 𝛾 sup
−𝜏≤𝜃≤0

𝐸𝑉 (𝜎) 𝑒
𝜆𝑡

≤ 𝛾𝑐
2
𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

𝑒
𝜆𝑡

,

(11)

which implies

𝐸|𝑥 (𝑡)|
𝑝

≤
𝛾𝑐
2

𝑐
1

𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

𝑒
𝜆𝑡

. (12)

System (1) is the 𝑝th moment exponentially stable. The proof
is complete.
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Theorem 6. Assume that
(i) 𝐸𝑉

𝑡
≤ 𝜂𝐸𝑉(𝑥(𝑡)), 𝐸𝑉

𝑥
≤ 𝜂
1
𝐸𝑉(𝑥(𝑡))

(𝑝−1)/𝑝, 𝐸𝑉
𝑥𝑥

≤

𝜂
2
𝐸𝑉(𝑥(𝑡))

(𝑝−2)/𝑝;
(ii) 𝐸|𝑓(𝑥

𝑡
)|
𝑝

≤ 𝜂
3
sup
−𝜏≤𝜃≤0

𝐸𝑉(𝑥
𝑡
),

𝐸(Tr{𝑔(𝑥
𝑡
)
𝑇

𝑔(𝑥
𝑡
)})
𝑝/2

≤ 𝜂
4
sup
−𝜏≤𝜃≤0

𝐸𝑉(𝑥(𝑡 − 𝜏));
(iii) 𝐸𝑉(𝑥(𝑡 + 𝜃)) ≤ 𝑞𝐸𝑉(𝑥(𝑡)), 𝜃 ∈ (−𝜏, 0];
and conditions of Theorem 5 hold simultaneously, then

the system is pth exponential stable, where 𝐸 denotes the
expectation.

Proof. Take

L𝑉 = 𝑉
𝑡
+ 𝑉
𝑥
𝑓 (𝑥
𝑡
) +

1

2
Tr {𝑔𝑇 (𝑥

𝑡
) 𝑉
𝑥𝑥
𝑔 (𝑥
𝑡
)} (13)

then take the mathematical expectation of both sides of the
Formula (12), we obtain

𝐸L𝑉 = 𝐸𝑉
𝑡
+ 𝐸 (𝑉

𝑥
𝑓) +

1

2
𝐸 [Tr {𝑔𝑇𝑉

𝑥𝑥
𝑔}] . (14)

Using Lemma 3, from (i) and (ii), we obtain

𝐸 (𝑉
𝑥
𝑓 (𝑥, 𝑥

𝑡
))

≤ 𝐸𝑉
𝑥
⋅ 𝐸𝑓 (𝑥, 𝑥

𝑡
) ≤ 𝜂
1
𝐸(𝑉)
(𝑝−1)/𝑝

⋅ 𝐸
󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑥

𝑡
)
󵄨󵄨󵄨󵄨

≤
𝜂
1
(𝑝 − 1)

𝑝
𝐸𝑉 +

1

𝑝
𝜂
3
⋅ 𝐸

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑥
𝑡
)
󵄨󵄨󵄨󵄨
𝑝

≤
𝜂
1
(𝑝 − 1)

𝑝
𝐸𝑉

+
1

𝑝
𝜂
3
⋅ 𝑞 ⋅ sup
−𝜏≤𝜃≤0

𝐸𝑉 (𝑥 (𝑡)) ,

𝐸 [Tr {𝑔𝑇 (𝑥
𝑡
) 𝑉
𝑥𝑥
𝑔 (𝑥
𝑡
)}]

≤ 𝐸𝑉
𝑥𝑥

⋅ 𝐸 [Tr {𝑔𝑇 (𝑥
𝑡
) 𝑔 (𝑥
𝑡
)}] ≤ 𝜂

2
𝐸(𝑉 (𝑥))

(𝑝−2)/𝑝

⋅ 𝐸 (Tr {𝑔𝑇 (𝑥
𝑡
) 𝑔 (𝑥
𝑡
)}) ≤

𝜂
2
(𝑝 − 2)

𝑝
𝐸𝑉 (𝑥)

+
2

𝑝
𝐸[Tr {𝑔𝑇𝑔}]

𝑝/2

≤
𝜂
2
(𝑝 − 2)

𝑝
𝐸𝑉 (𝑥)

+
2𝜂
4

𝑝
⋅ sup
−𝜏≤𝜃≤0

𝐸𝑉 (𝑥 (𝑡 − 𝜏)) ≤
𝜂
2
(𝑝 − 2)

𝑝
𝐸𝑉 (𝑥)

+
2𝜂
4

𝑝
⋅ 𝑞 ⋅ sup
−𝜏≤𝜃≤0

𝐸𝑉 (𝑥 (𝑡)) .

(15)

It follows that

𝐸L𝑉 ≤ 𝜂
1
𝐸𝑉 (𝑥 (𝑡)) +

𝜂
1
(𝑝 − 1)

𝑝
𝐸𝑉 (𝑥 (𝑡))

+
𝜂
2
(𝑝 − 2)

𝑝
𝐸𝑉 (𝑥) +

1

𝑝
𝜂
3
⋅ 𝑞 ⋅ sup
−𝜏≤𝜃≤0

𝐸𝑉 (𝑥 (𝑡))

+
2𝜂
4

𝑝
⋅ 𝑞 ⋅ sup
−𝜏≤𝜃≤0

𝐸𝑉 (𝑥 (𝑡)) .

(16)

Consequently, by the above statement, the conditions of
Theorem 5 are all satisfied.Then, the conclusion follows from
Theorem 5 and the proof is complete.

Remark 7. From the above consequence, we know that the
unstable stochastic system 𝑑𝑥(𝑡) = 𝑓(𝑡, 𝑥, 𝑥

𝑡
)𝑑𝑡 + 𝑔(𝑡, 𝑥

𝑡
)

𝑑𝑤(𝑡) can be exponentially stabilized by the impulsive control
𝑢
𝑘
(𝑥) = 𝐼

𝑘
(𝑥), 𝑡
𝑘
, 𝑘 ∈ 𝑁. Moreover, the steps of the impulsive

control design satisfy the conditions of Theorem 5.

Remark 8. Consider a special case of system (1) shown as
follows:

𝑑𝑥 (𝑡) = [𝐴𝑥 + 𝑓
1
(𝑡, 𝑥 (𝑡 − 𝜏))] 𝑑𝑡 + 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏)) 𝑑𝑤 (𝑡) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) ,

𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (𝑡
0
) = 𝜉, 𝑡 = [−𝜏, 0] ,

(17)

there exist nonnegative function 𝛼
𝑖
(𝑡), 𝛽
𝑖
(𝑡) such that

(i) |𝑓
1
(𝑡, 𝑥(𝑡 − 𝜏))| ≤ Σ

𝑚

𝑖=1
𝛼
𝑖
(𝑡)|𝑥(𝑡 − 𝜏

𝑖
)|,

(ii) ‖𝑔(𝑡, 𝑥(𝑡 − 𝜏))‖
2

𝐹
≤ Σ
𝑚

𝑖=1
𝛽
𝑖
(𝑡)|𝑥(𝑡 − 𝜏

𝑖
)|
2,

where 𝜏 = max
1≤𝑖≤𝑚

𝜏
𝑖
, 𝜆max(⋅) denotes the largest eigenvalue

of a symmetricmatrix.Thenwe derive the following theorem.

Theorem 9. Assume that there exist positive constants 𝜅
1
, 𝜅
2
,

𝜅
3
such that

𝜅
1
+ (𝑝 − 1) 𝜅

2
+
(𝑝 − 2) 𝜅

3

2
> 0,

𝜅
2
+ 𝜅
3
> 0

(18)

hold, where 𝜅
1

= 𝜆max(𝐴), 𝜅2 = Θ
𝑚

𝑖=1
𝛼
𝑖
(𝑡), 𝜅
3

= (𝑝 − 1)

Θ
𝑚

𝑖=1
𝛽
𝑖
(𝑡), and if the conditions of Theorems 5 and 6 are

satisfied, then the trivial solution of system (17) is p-moment
exponentially stable.

Proof. Let 𝑃 = 𝑄
𝑇

𝑄, and 𝑉(𝑡, 𝑥) = (𝑥
𝑇

𝑃𝑥)
𝑝/2

= |𝑄𝑥|
𝑝. Then

by Itô formula, we have

L𝑉 = 𝑉
𝑡
+ 𝑉
𝑥
[𝐴𝑥 + 𝑓

1
(𝑥 (𝑡 − 𝜏))] +

1

2
Tr {𝑔𝑇𝑉

𝑥𝑥
𝑔}

= 𝑝|𝑄𝑥|
𝑝−1

[𝑄𝐴𝑥 + 𝑄𝑓
1
(𝑡, 𝑥 (𝑡 − 𝜏))] +

𝑝 (𝑝 − 1)

2

× |𝑄𝑥|
𝑝−2 Tr {𝑔𝑇 (𝑡, 𝑥 (𝑡 − 𝜏)) 𝑃𝑔 (𝑡, 𝑥 (𝑡 − 𝜏))} .

(19)

By condition (ii), we have

Tr {𝑔𝑇 (𝑡, 𝑥 (𝑡 − 𝜏)) 𝑃𝑔 (𝑡, 𝑥 (𝑡 − 𝜏))}

=
󵄩󵄩󵄩󵄩𝑄𝑔 (𝑡, 𝑥 (𝑡 − 𝜏))

󵄩󵄩󵄩󵄩
2

𝐹
≤ Σ
𝑚

𝑖=1
𝛽
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑄𝑥 (𝑡 − 𝜏
𝑖
)
󵄨󵄨󵄨󵄨
2

.

(20)
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Substituting (20) into (19), and using conditions, we obtain

L𝑉 ≤ 𝑝|𝑄𝑥|
𝑝−1

[𝜆max (𝐴) |𝑄𝑥| + Σ
𝑚

𝑖=1
𝛼
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑄𝑥 (𝑡 − 𝜏
𝑖
)
󵄨󵄨󵄨󵄨]

+
𝑝 (𝑝 − 1)

2
|𝑄𝑥|
𝑝−2

Σ
𝑚

𝑖=1
𝛽
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑄𝑥 (𝑡 − 𝜏
𝑖
)
󵄨󵄨󵄨󵄨
2

.

(21)

Using Lemma 4, we get

L𝑉 ≤ |𝑄𝑥|
𝑝

[𝜆
max

(𝐴) + (𝑝 − 1) Σ
𝑚

𝑖=1
𝛼
𝑖
(𝑡)

+
(𝑝 − 1) (𝑝 − 2)

2
Σ
𝑚

𝑖=1
𝛽
𝑖
(𝑡)]

+ [Σ
𝑚

𝑖=1
𝛼
𝑖
(𝑡) + (𝑝 − 1) Σ

𝑚

𝑖=1
𝛽
𝑖
(𝑡)]

󵄨󵄨󵄨󵄨𝑄𝑥 (𝑡 − 𝜏
𝑖
)
󵄨󵄨󵄨󵄨
𝑝

= [𝜅
1
+ (𝑝 − 1) 𝜅

2
+
(𝑝 − 2) 𝜅

3

2
]𝑉 (𝑡, 𝑥)

+ [𝜅
2
+ 𝜅
3
] 𝑉 (𝑡, 𝑥 (𝑡 − 𝜏

𝑖
)) .

(22)

Summing up the above statements, we can see that all
the conditions ofTheorem 5 and condition (iii) ofTheorem 6
are satisfied. Then the conclusion follows from Theorem 6
immediately and the proof is completed.

4. Example

In this section, we present an example to demonstrate
our theoretical results. Considering a nonlinear stochastic
impulsive system as follows:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡)) 𝑑𝑡 + 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑑𝑤 (𝑡) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑁,

(23)

where𝑓(𝑥) = 𝑥(𝑡), 𝑔(𝑥, 𝑥
𝑡
) ≤ (1/4)(𝑥

2

+𝑥
2

𝑡
), 𝐼
𝑘
= −0.4, 𝜏 = 2.

Step 1. Calculate the parameters.
Without loss of generality, we choose 𝑐

1
= 𝑐
2
= 1, 𝑝 = 2,

𝑑
𝑘
= 0.37 such that they satisfy the conditions of (i) and (ii)

of Theorem 5.

Step 2. Choose 𝑉(𝑥, 𝑡) = 𝑥
2, then it is easy to calculate from

the Itô formula that

𝐸L𝑉 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) = 2𝐸|𝑥 (𝑡)|
2

+ 𝐸
󵄨󵄨󵄨󵄨𝑔(𝑥, 𝑥𝑡)

󵄨󵄨󵄨󵄨
2

≤
9

4
𝐸𝑉 (𝑥 (𝑡)) +

1

4
𝐸𝑉 (𝑥 (𝑡 − 𝜏))

(24)

which satisfies condition (iii) of Theorem 5

𝐸L𝑉 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ≤ 𝑐𝐸𝑉 (𝑥 (𝑡)) , (25)

where take 𝑞 = 5, 𝜆 = 0.5, 𝑡
𝑘+1

− 𝑡
𝑘
= 0.2.
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Figure 1: Instability of the stochastic delay system (23) without
impulsive effect.
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Figure 2: Impulsive Stabilization of the stochastic delay system (23).

Step 3. By calculation, we obtain 𝑐 = 3.5, then

ln 𝑑
𝑘
= −1.02 < − (𝑐 + 𝜆) (𝑡

𝑘+1
− 𝑡
𝑘
) = −0.8. (26)

It satisfies condition (iv) of Theorem 5 which means that
the system (23) is exponentially stable. Figure 1 gives the
trajectory of the state of (23). It is obvious that the system
is not stable without impulsive effect. Figure 1 shows that the
solution of the stochastic delayed system (23) is unstable.
Figure 2 shows the stability of the delay system with the
impulsive controller.

5. Conclusion

In this paper, we have investigated the p-moment stability
and applied the technique of Razumikhin techniques and
Lyapunov functions to impulsive stochastic systems. Some
sufficient conditions about the stability of impulsive stochas-
tic systems in terms of two measures are derived. As a
beneficial supplement in the study of impulsive stochastic
systems with time delay, the concluded criteria are not only
effective but also convenient in practical applications of
specific systems in engineering and physics, etc. We also
provided an illustrative example to show the effectiveness of
our results.
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