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We consider an ill-posed initial boundary value problem for the Helmholtz equation. This problem is reduced to the inverse
continuation problem for theHelmholtz equation.We prove the well-posedness of the direct problem and obtain a stability estimate
of its solution.We solve numerically the inverse problemusing theTikhonov regularization,Godunov approach, and the Landweber
iteration. Comparative analysis of these methods is presented.

1. Introduction

Let us consider the initial boundary value problem (contin-
uation problem) for the Helmholtz equation in the domain
Ω = (0, 𝑙) × (0, 𝜋):

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+ 𝑘
2

𝑢 = 0, (𝑥, 𝑦) ∈ Ω,

𝑢
𝑥
(0, 𝑦) = 0, 𝑦 ∈ [0, 𝜋] ,

𝑢 (0, 𝑦) = 𝑓 (𝑦) , 𝑦 ∈ [0, 𝜋] ,

𝑢
𝑦
(𝑥, 0) = 𝑢

𝑦
(𝑥, 𝜋) = 0, 𝑥 ∈ [0, 𝑙] ,

(1)

where 𝑘 is a given constant. To find the function 𝑢(𝑥, 𝑦) inΩ
from 𝑓(𝑦) is required.

The continuation problem is ill-posed problem; its solu-
tion is unique, but it does not depend continuously on the
Cauchy data [1–10]. Note that the problem was studied by
many authors. For example, Tuan and Quan [11] considered
the case 0 < 𝑘 < 1 and proposed a regularization tech-
nique which allows one to obtain a stable solution in

a two-dimensional domain. Regińska and Regiński [12]
showed that if 𝑘 satisfies a certain condition, then the Cauchy
problem for the Helmholtz equation has a stable solution in
a three-dimensional domain. Isakov and Kindermann [13]
used the singular value decomposition to prove that in a
simple domain the considered problem becomes more stable
with increasing 𝑘. The same result was obtained numerically
for the general case. The uniqueness of the solution of the
investigated problemwas proved, for example, by Arendt and
Regińska [14], where the concept of weak normal derivative
was introduced in formulating the problem. In [15, 16]
singular values of the continuation problemwere obtained for
the two-dimensional Helmholtz equation with complex wave
number for simple geometry.

We consider two approaches to the numerical solution
of the problem (1). The first consists of formulating problem
(1) in an operator form A𝑞 = 𝑓 and minimizing the coast
functional 𝐽(𝑞) = ⟨A𝑞 − 𝑓,A𝑞 − 𝑓⟩ by the Landweber
iteration [7]. In the second approach, problem (1) is reduced
to the system of linear algebraic equations which is solved
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using theTikhonov regularization andGodunov approach. In
this work we present a comparative analysis of the proposed
methods for the numerical solution of the problem (1).

2. The Direct and Inverse Problems

Let us consider the direct (well-posed) problem of finding the
function 𝑢(𝑥, 𝑦) from the relations

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+ 𝑘
2

𝑢 = 0, (𝑥, 𝑦) ∈ Ω, (2)

𝑢
𝑥
(0, 𝑦) = 0, 𝑦 ∈ [0, 𝜋] , (3)

𝑢 (𝑙, 𝑦) = 𝑞 (𝑦) , 𝑦 ∈ [0, 𝜋] , (4)

𝑢
𝑦
(𝑥, 0) = 𝑢

𝑦
(𝑥, 𝜋) = 0, 𝑥 ∈ [0, 𝑙] (5)

and note that the continuation problem (1) can be reduced
to the inverse problem of finding function 𝑞(𝑦) from (2)–(5)
using the additional information

𝑢 (0, 𝑦) = 𝑓 (𝑦) , 𝑦 ∈ [0, 𝜋] . (6)

Let us consider some theoretical results [7, 17].

Definition 1. A function 𝑢 ∈ 𝐿
2
(Ω) is called a generalized

solution of the direct problem (2)–(5), if for any 𝜔 ∈ 𝐻2(Ω)
such that

𝜔
𝑥
(0, 𝑦) = 0, 𝑦 ∈ [0, 𝜋] ,

𝜔 (𝑙, 𝑦) = 0, 𝑦 ∈ [0, 𝜋] ,

𝜔
𝑦
(𝑥, 0) = 𝜔

𝑦
(𝑥, 𝜋) = 0, 𝑥 ∈ [0, 𝑙] ,

(7)

the following equality holds:

∫

𝑙

0

∫

𝜋

0

𝑢 ⋅ (𝜔
𝑥𝑥
+ 𝜔
𝑦𝑦
+ 𝑘
2

𝜔) 𝑑𝑦 𝑑𝑥

− ∫

𝜋

0

𝑞 (𝑦) 𝜔
𝑥
(𝑙, 𝑦) 𝑑𝑦 = 0.

(8)

Theorem 2 (existence of a generalized solution of the direct
problem). If 𝑞 ∈ 𝐿

2
(0, 𝜋) and 𝑘2𝑙2 < 1, then the direct problem

(2)–(5) has a unique generalized solution 𝑢 ∈ 𝐿
2
(Ω) and the

following estimate is true:

‖𝑢‖
𝐿
2
(Ω)

≤
𝑞
𝐿
2
(0,𝜋)

√𝑙

1 − 𝑘2𝑙2
. (9)

Proof. Let us introduce the auxiliary problem

𝜔
𝑥𝑥
+ 𝜔
𝑦𝑦
= 𝑢, (𝑥, 𝑦) ∈ Ω, (10)

𝜔
𝑥
(0, 𝑦) = 0, 𝑦 ∈ [0, 𝜋] , (11)

𝜔 (𝑙, 𝑦) = 0, 𝑦 ∈ [0, 𝜋] , (12)

𝜔
𝑦
(𝑥, 0) = 𝜔

𝑦
(𝑥, 𝜋) = 0, 𝑥 ∈ [0, 𝑙] . (13)

Integrating the identity

𝜔𝑢 = 𝜔 (𝜔
𝑥𝑥
+ 𝜔
𝑦𝑦
) = (𝜔

𝑥
𝜔)
𝑥
− 𝜔
2

𝑥
+ (𝜔
𝑦
𝜔)
𝑦

− 𝜔
2

𝑦
(14)

over the domainΩ and considering (10)–(13), we obtain

∫

𝑙

0

∫

𝜋

0

𝜔𝑢𝑑𝑦𝑑𝑥 = ∫

𝜋

0

𝜔
𝑥
𝜔


𝑙,𝑦

0,𝑦
𝑑𝑦 + ∫

𝑙

0

𝜔
𝑦
𝜔


𝑥,𝜋

𝑥,0

𝑑𝑥

− ∫

𝑙

0

∫

𝜋

0

(𝜔
2

𝑥
+ 𝜔
2

𝑦
) 𝑑𝑦 𝑑𝑥,

(15)

whence

∫

𝑙

0

∫

𝜋

0

(𝜔
2

𝑥
+ 𝜔
2

𝑦
) 𝑑𝑦 𝑑𝑥 ≤ ‖𝜔‖

𝐿
2
(Ω)
⋅ ‖𝑢‖
𝐿
2
(Ω)
. (16)

Taking into account (12) and the equality

𝜔 (𝑙, 𝑦) = 𝜔 (𝑥, 𝑦) + ∫

𝑙

𝑥

𝜔
𝜉
(𝜉, 𝑦) 𝑑𝜉

𝜔(𝑥, 𝑦)


2

= ∫

𝑙

𝑥

𝜔
2

𝜉
(𝜉, 𝑦) 𝑑𝜉 ≤ ∫

𝑙

0

1 ⋅ 𝜔
2

𝜉
(𝜉, 𝑦) 𝑑𝜉

≤ ∫

𝑙

0

1𝑑𝜉 ⋅ ∫

𝑙

0

𝜔
2

𝜉
(𝜉, 𝑦) 𝑑𝜉 = 𝑙 ⋅ ∫

𝑙

0

𝜔
2

𝜉
(𝜉, 𝑦) 𝑑𝜉,

(17)

we have

𝜔(𝑥, 𝑦)


2

≤ 𝑙 ⋅ ∫

𝑙

0

𝜔
2

𝜉
(𝜉, 𝑦) 𝑑𝜉,

∫

𝑙

0

∫

𝜋

0

𝜔(𝑥, 𝑦)


2

𝑑𝑦𝑑𝑥 ≤ ∫

𝑙

0

∫

𝜋

0

(𝑙 ⋅ ∫

𝑙

0

𝜔
2

𝜉
(𝜉, 𝑦) 𝑑𝜉)𝑑𝑦𝑑𝑥

‖𝜔‖
𝐿
2
(Ω)

≤ 𝑙
2

⋅

𝜔
𝜉

𝐿
2
(Ω)

.

(18)

Combining (16) and (18) yields
𝜔𝑥

𝐿
2
(Ω)

≤ 𝑙 ⋅ ‖𝑢‖
𝐿
2
(Ω)
,

‖𝜔‖
𝐿
2
(Ω)

≤ 𝑙
2

⋅ ‖𝑢‖
𝐿
2
(Ω)
.

(19)

From the identities

𝜔
𝑥
𝑢 = 𝜔

𝑥
(𝜔
𝑥𝑥
+ 𝜔
𝑦𝑦
) =

1

2
(𝜔
2

𝑥
)
𝑥

+ 𝜔
𝑥
𝜔
𝑦𝑦

=
1

2
(𝜔
2

𝑥
)
𝑥

+ (𝜔
𝑥
𝜔
𝑦
)
𝑦

−
1

2
(𝜔
2

𝑦
)
𝑥

,

(20)

it follows that
1

2
(𝜔
2

𝑥
)
𝑥

+ (𝜔
𝑥
𝜔
𝑦
)
𝑦

= 𝜔
𝑥
𝑢 +

1

2
(𝜔
2

𝑦
)
𝑥

. (21)

Integrating (21) on Ω, we get

1

2
∫

𝜋

0

𝜔
2

𝑥
(𝑙, 𝑦) 𝑑𝑦 = ∫

𝑙

0

∫

𝜋

0

𝜔
𝑥
𝑢 𝑑𝑦𝑑𝑥 +

1

2
∫

𝜋

0

𝜔
2

𝑦
(𝑙, 𝑦) 𝑑𝑦

−
1

2
∫

𝜋

0

𝜔
2

𝑦
(0, 𝑦) 𝑑𝑦

≤
𝜔𝑥

𝐿
2
(Ω)
⋅ ‖𝑢‖
𝐿
2
(Ω)

≤ 𝑙‖𝑢‖
2

𝐿
2
(Ω)
.

(22)
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Due to (8), we obtain

∫

𝑙

0

∫

𝜋

0

(𝑢
2

+ 𝑘
2

𝜔𝑢) 𝑑𝑦 𝑑𝑥

≤
𝑞(𝑦)

𝐿
2
(0,𝜋)

⋅
𝜔𝑥 (𝑙, 𝑦)

𝐿
2
(0,𝜋)

.

(23)

Hence,

‖𝑢‖
2

𝐿
2
(Ω)

≤
𝑞 (𝑦)

 ⋅
𝜔𝑥 (𝑙, 𝑦)

 + 𝑘
2

‖𝜔‖ ⋅ ‖𝑢‖

≤
𝑞 (𝑦)

 ⋅
√𝑙 ‖𝑢‖ + 𝑘

2

‖𝑢‖ ⋅ 𝑙
2

‖𝑢‖ ,

‖𝑢‖
𝐿
2
(Ω)

≤
𝑞 (𝑦)

 ⋅
√𝑙

1 − 𝑘2𝑙2
.

(24)

Thus, we have proved the well-posedness of the direct
problem, which allows us to apply well-elaborated computa-
tional methods. Also, a stability estimate has been obtained
in 𝐿
2
.

3. Landweber Iteration

3.1. Formulation in the Operator Form and Description of the
Algorithm. Let us reduce the inverse problem (2)–(6) to the
operator equation. Let us consider the operatorA such that

A : 𝑞 (𝑦) → 𝑢 (0, 𝑦) , (25)

where 𝑢(𝑥, 𝑦) is the solution of the direct problem (2)–(5).
Then the inverse problem (2)–(6) takes the form

A𝑞 = 𝑓. (26)

We will find the solution of the problem (26) by minimizing
the following functional [7, 18–20]:

𝐽 (𝑞) =
A𝑞 − 𝑓



2

= ∫

𝜋

0

[𝑢 (0, 𝑦; 𝑞) − 𝑓 (𝑦)]
2

𝑑𝑦 (27)

using the Landweber iteration

𝑞
𝑛+1

= 𝑞
𝑛
− 𝛼𝐽


𝑞
𝑛
, (28)

where 𝛼 ∈ (0, 1/‖A‖2) is the descent parameter [7].
Let us describe the iterative algorithm. First we choose the

initial approximation 𝑞
0
and we suppose that we calculated

successively 𝑞
𝑛
by formula (28). Assuming that we have found

𝑞
𝑛
, we show below how to calculate 𝑞

𝑛+1
.

(1) Solve the direct problem (2)–(5) with the known 𝑞
𝑛
.

(2) Calculate 𝐽(𝑞
𝑛
) by formula (27).

(3) Check the stopping criterion 𝐽(𝑞
𝑛
) ≤ 𝜂𝜀

2 [21]. Finish
if 𝑞
𝑛
meets this inequality.

(4) Solve the adjoint problem

𝜓
𝑥𝑥
+ 𝜓
𝑦𝑦
+ 𝑘
2

𝜓 = 0, (𝑥, 𝑦) ∈ Ω,

𝜓 (𝑙, 𝑦) = 0, 𝑦 ∈ [0, 𝜋] ,

𝜓
𝑥
(0, 𝑦) = 2 (𝑢 (0, 𝑦) − 𝑓 (𝑦)) , 𝑦 ∈ [0, 𝜋] ,

𝜓
𝑦
(𝑥, 𝜋) = 𝜓

𝑦
(𝑥, 0) = 0, 𝑥 ∈ [0, 𝑙] .

(29)

(5) Calculate the gradient 𝐽(𝑞
𝑛
) by the formula

𝐽


𝑞 = 𝜓
𝑥
(𝑙, 𝑦) . (30)

(6) Calculate the next approximation 𝑞
𝑛+1

= 𝑞
𝑛
− 𝛼𝐽


𝑞
𝑛

and proceed to step 1.

3.2. The Numerical Solution of the Direct and Adjoint Prob-
lems. The direct and adjoint problems are solved using the
direct finite-difference method. For discretizing the direct
problem, we construct a grid inΩ with steps ℎ

𝑥
= 𝑙/𝑁

𝑥
, ℎ
𝑦
=

𝜋/𝑁
𝑦
, where 𝑁

𝑥
, 𝑁
𝑦
are positive integers. Let us denote the

grid by 𝜔
ℎ
= {𝑥 = 𝑖ℎ

𝑥
, 𝑦 = 𝑗ℎ

𝑦
; 𝑖 = 0,𝑁

𝑥
, 𝑗 = 0,𝑁

𝑦
}. After

exchanging derivatives by finite-difference analoges with the
second order, we obtain the following discrete direct problem
(2)–(5):

𝑢
𝑖+1,𝑗

− 2𝑢
𝑖,𝑗
+ 𝑢
𝑖−1,𝑗

ℎ2
𝑥

+

𝑢
𝑖,𝑗+1

− 2𝑢
𝑖,𝑗
+ 𝑢
𝑖,𝑗−1

ℎ2
𝑦

+ 𝑘
2

𝑢
𝑖,𝑗
= 0,

𝑖 = 1,𝑁
𝑥
− 1, 𝑗 = 1,𝑁

𝑦
− 1,

𝑢
1,𝑗
− 𝑢
0,𝑗

ℎ
𝑥

= 0, 𝑗 = 1,𝑁
𝑦
− 1,

𝑢
𝑁
𝑥
,𝑗
= 𝑞
𝑗
, 𝑗 = 1,𝑁

𝑦
− 1,

𝑢
𝑖,1
− 𝑢
𝑖,0

ℎ
𝑦

=

𝑢
𝑖,𝑁
𝑥

− 𝑢
𝑖,𝑁
𝑥
−1

ℎ
𝑦

= 0, 𝑖 = 0,𝑁
𝑥
.

(31)

By introducing the parameters 𝑎 = 1/ℎ2
𝑥
, 𝑏 = 1/ℎ

2

𝑦
, 𝑐 = 𝑘2 −

2𝑎 − 2𝑏, we get

𝑎𝑢
𝑖−1,𝑗

+ 𝑏𝑢
𝑖,𝑗−1

+ 𝑐𝑢
𝑖,𝑗
+ 𝑏𝑢
𝑖,𝑗+1

+ 𝑎𝑢
𝑖+1,𝑗

= 0,

𝑖 = 1,𝑁
𝑥
− 1, 𝑗 = 1,𝑁

𝑦
− 1,

𝑢
1,𝑗
− 𝑢
0,𝑗
= 0, 𝑗 = 1,𝑁

𝑦
− 1,

𝑢
𝑁
𝑥
,𝑗
= 𝑞
𝑗
, 𝑗 = 1,𝑁

𝑦
− 1,

𝑢
𝑖,1
− 𝑢
𝑖,0
= 𝑢
𝑖,𝑁
𝑥

− 𝑢
𝑖,𝑁
𝑥
−1
= 0, 𝑖 = 0,𝑁

𝑥
.

(32)

Thus, we obtain the system of algebraic equations

𝐴
𝑇
𝑋
𝑇
= 𝐵
𝑇
, (33)

where 𝐴
𝑇
is a matrix of size (𝑁

𝑥
+ 1)(𝑁

𝑦
+ 1), 𝑋

𝑇
is an

unknown vector of the form

𝑋
𝑇
= (𝑢
0,0
, 𝑢
0,1
, 𝑢
0,2
, . . . , 𝑢

0,𝑁
𝑦

, 𝑢
1,0
, 𝑢
1,1
, 𝑢
1,2
, . . . ,

𝑢
1,𝑁
𝑦

, . . . , 𝑢
𝑁
𝑥
,0
, 𝑢
𝑁
𝑥
,1
, 𝑢
𝑁
𝑥
,2
, . . . , 𝑢

𝑁
𝑥
,𝑁
𝑦

) ,

(34)

and 𝐵
𝑇
is the data vector (boundary and additional condi-

tions).
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Similarly, the discrete adjoint problem (29) has the form

𝑎𝜓
𝑖−1,𝑗

+ 𝑏𝜓
𝑖,𝑗−1

+ 𝑐𝜓
𝑖,𝑗
+ 𝑏𝜓
𝑖,𝑗+1

+ 𝑎𝜓
𝑖+1,𝑗

= 0,

𝑖 = 1,𝑁
𝑥
− 1, 𝑗 = 1,𝑁

𝑦
− 1,

𝜓
1,𝑗
− 𝜓
0,𝑗
= 2 (𝑢

0,𝑗
− 𝑓
𝑗
) , 𝑗 = 1,𝑁

𝑦
− 1,

𝜓
𝑁
𝑥
,𝑗
= 0, 𝑗 = 1,𝑁

𝑦
− 1,

𝜓
𝑖,1
− 𝜓
𝑖,0
= 𝜓
𝑖,𝑁
𝑥

− 𝜓
𝑖,𝑁
𝑥
−1
= 0, 𝑖 = 0,𝑁

𝑥
.

(35)

As above, this problem can be reformulated in a matrix form

𝐴
𝑇
𝑌
𝑇
= 𝐵
𝑇
, (36)

where

𝑌
𝑇
= (𝜓
0,0
, 𝜓
0,1
, 𝜓
0,2
, . . . , 𝜓

0,𝑁
𝑦

, 𝜓
1,0
, 𝜓
1,1
, 𝜓
1,2
, . . . ,

𝜓
1,𝑁
𝑦

, . . . , 𝜓
𝑁
𝑥
,0
, 𝜓
𝑁
𝑥
,1
, 𝜓
𝑁
𝑥
,2
, . . . , 𝜓

𝑁
𝑥
,𝑁
𝑦

)

(37)

is an unknown vector and 𝐵
𝑇
is the data vector (boundary

and additional conditions of the adjoint problem).

3.3. Results of the Numerical Experiment. Let 𝑙 = 1, 𝑁
𝑥
=

𝑁
𝑦
= 20. We choose the parameter 𝑘 = 0.9. In order to

test the algorithm, we assume that the exact solution has the
form 𝑞(𝑦) = 1 − cos(2𝑦) and calculate the corresponding
additional information 𝑓. Then, let 𝑞

0
(𝑦) = 0.1 be the initial

approximation; we try to restore the original exact solution
using the Landweber iteration with 𝛼 = 0.01. If the data
are given with an error 𝜀, we choose the following one as a
stopping criterion: 𝐽(𝑞

𝑛
) ≤ 𝜂𝜀

2 [21].
The computational experiment was carried out for differ-

ent noise levels. Tables 1, 2, and 3 show the calculation results
obtained using PC Intel(R)Core(TM) i7 processor with a
frequency 3.9GHz.

The approximate solution in the case of 𝜀 = 0.05 is shown
in Figure 1.

We observe that in the case of no noise the functional
𝐽(𝑞) decreases monotonically, while in the other cases the
decrease stops after 100 iterations. This phenomenon can be
explained by the error that arises in solving the direct and
adjoint problems. Note that in the case of noise, the stopping
criterion does not guarantee theminimal error in the solution
of the inverse problem. However, the criterion ensures that
the error is of the same order as that of theminimal one, since
further calculation leads to an increase in the error.

4. Regularization Methods

In this section we consider a discrete analog of problem (1)
and study the stability of its solution. Tikhonov regularization
method and Godunov approach method are applied.

4.1. The Discretization of Problem (1). We reduce the contin-
uation problem (1) to the system of linear algebraic equations
as follows [22]:

𝐴𝑋 = 𝐵, (38)
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Figure 1:  indicates exact solution;  indicates solution obtained
by the Landweber iteration.
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Figure 2:  indicates exact solution 𝑞(𝑦) ;  indicates solution
obtained by the Tikhonov regularization.

where 𝐴 is a matrix of size (𝑁
𝑥
+ 1)(𝑁

𝑦
+ 1), 𝐵 is the data

vector, and𝑋 is the desired vector of the form

𝑋 = (𝑢
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𝑁
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,𝑁
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) .

(39)

Assuming 𝑙 = 1, 𝑁
𝑥
= 𝑁
𝑦
= 50, 𝑘 = 0.9, and 𝑞(𝑦) =

1− cos(2𝑦), we calculate the norm and the condition number
𝜇(𝐴) of the matrices 𝐴 and 𝐴

𝑇
corresponding to the original

problem (1) and the direct problem (2)–(5), respectively.
The matrix 𝐴 is ill-conditioned [23] (see decreasing of

its singular values in Figure 4). The condition number and
matrix norma of the discrete direct problem are presented in
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Table 1: Calculation results in the case of no noise 𝜀 = 0.

Number The number of iterations 𝑛 ‖𝑞
𝑇
− 𝑞‖ 𝐽(𝑞) Runtime

1 10 0.8243 0.094 4 sec
2 100 0.0632 9.42 ⋅ 10

−5 40 sec
3 1000 0.0414 9.55 ⋅ 10

−7 6min 40 sec
4 5000 0.0311 1.74 ⋅ 10

−8 33min 30 sec
5 7318 0.0304 9.29 ⋅ 10

−9 49min

Table 2: Calculation results in the case of noise within 1% 𝜀 = 0.01.

Number The number of iterations 𝑛 ‖𝑞
𝑇
− 𝑞‖ 𝐽(𝑞) Runtime

1 10 0.83 0.09 4 sec
2 100 0.077 4.91 ⋅ 10

−4 40 sec
3 1000 0.047 3.38 ⋅ 10

−4 6min 33 sec
4 1508 0.051 3.32 ⋅ 10

−4 10min

Table 3: Calculation results in the case of noise within 5% 𝜀 = 0.05.

Number The number of iterations 𝑛 ‖𝑞
𝑇
− 𝑞‖ 𝐽(𝑞) Runtime

1 10 0.86 9.07 ⋅ 10
−2 4 sec

2 100 0.165 9.20 ⋅ 10
−3 40 sec

3 1000 0.210 8.33 ⋅ 10
−3 6min 32 sec

4 2000 0.297 8.15 ⋅ 10
−3 13min 4 sec

5 2418 0.326 8.10 ⋅ 10
−3 15min 48 sec

Table 4: The characteristics of the matrices 𝐴 and 𝐴
𝑇
.

Matrix 𝜇(𝐴) ‖𝐴‖

𝐴 6.02 ⋅ 10
17 321098.0

𝐴
𝑇

3.42 ⋅ 10
6 321098.0

Table 4 and Figure 5. We see that the direct problem is well-
posed.

In view of the ill-conditioning of the matrix 𝐴, that
is, the ill-posedness of the original problem, we will use
regularization methods.

4.2. Tikhonov Regularization. The Tikhonov regularization
consists of replacing the system 𝐴𝑋 = 𝐵 by the system (𝛼𝐼 +

𝐴
∗

𝐴)𝑋 = 𝐴
∗

𝐵 [7]. We choose the regularization parameter
𝛼, minimizing the discrepancy ‖𝑋

𝛼
𝑖

‖ − ‖𝑋
𝛼
𝑖−1

‖ according to
[24].

As above, we put 𝑁
𝑥
= 𝑁
𝑦
= 20, 𝑘 = 0.9, and 𝑞(𝑦) =

1 − cos(2𝑦) and calculate with 𝜀 = 0, 𝜀 = 0.01, and 𝜀 = 0.05.
The approximate solution in the case of 𝜀 = 0.05 is shown in
Figure 2.

4.3. Godunov Approach. S. K. Godunov proposed consider-
ing the extended system

[
(1 − 𝛼)𝐴

𝛼𝐷
]𝑋 = [

(1 − 𝛼) 𝑓

0
] , (40)
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Figure 3:  indicates exact solution 𝑞(𝑦);  indicates solution
obtained by the Godunov regularization.

whereas𝐷 contains some a priori information concerning the
inverse problem solution.We take as a priori information the
existence of the second derivative of the solution [25].

We choose 𝛼 to minimize ‖𝑋
𝛼
𝑖

‖ − ‖𝑋
𝛼
𝑖−1

‖.
For 𝑁

𝑥
= 𝑁
𝑦
= 20, 𝑘 = 0.9, and 𝑞(𝑦) = 1 − cos(2𝑦),

we calculate with different values of 𝜀. The result is shown in
Figure 3.
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Figure 4: Singular values of matrix 𝐴 for𝑁 = 50.
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Figure 5: Singular values of matrix 𝐴
𝑇
for𝑁 = 50.

Table 5: Comparative analysis of methods in the case of no noise.

Number Name methods ‖𝑞
𝑇
− 𝑞‖ Runtime

1 Landweber iteration 0.030 49min
2 Tikhonov regularization 0.021 23 sec
3 Godunov regularization 0.019 46 sec

5. Comparative Analysis of Methods

Tables 5, 6, and 7 present the results of the numerical solution
of the problem (1) with different levels of noise. We see that
the Godunovmethod is more accurate compared to the other
methods. The same is demonstrated in Figure 6.
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Figure 6:  indicates exact solution 𝑞(𝑦); e indicates Landweber
iteration; ◼ indicates Tikhonov regularization; indicates Godunov
regularization.

Table 6:Comparative analysis ofmethods in the case of noisewithin
1%.

Number Name methods ‖𝑞
𝑇
− 𝑞‖ Runtime

1 Landweber iteration 0.051 10min
2 Tikhonov regularization 0.190 15 sec
3 Godunov regularization 0.055 17 sec

Table 7: Comparative analysis ofmethods in the case of noisewithin
5%.

Number Name methods ‖𝑞
𝑇
− 𝑞‖ Runtime

1 Landweber iteration 0.5349 18min 24 sec
2 Tikhonov regularization 0.4088 7 sec
3 Godunov regularization 0.2989 12 sec
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