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In this work we study existence results for mixed Volterra-Fredholm neutral functional integrodifferential equations with infinite
delay in Banach spaces. To obtain a priori bounds of solutions required in Krasnoselski-Schaefer type fixed point theorem, we have
used an integral inequality established by B. G. Pachpatte. The variants for obtained results are given. An example is considered to
illustrate the obtained results.

1. Introduction

In this paper we establish existence results for the mixed
Volterra-Fredholm neutral functional integrodifferential
equations with infinite delay of the form

𝑑

𝑑𝑡
[𝑥 (𝑡) − 𝑔(𝑡, 𝑥

𝑡
, ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠)]

= 𝐴𝑥 (𝑡) + 𝑓(𝑡, 𝑥
𝑡
, ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠, ∫

𝑏

0

𝑤 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠) ,

𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑥
0
= 𝜙 ∈B

ℎ
,

(1)

where 𝐴 is the infinitesimal generator of a compact analytic
semigroup of bounded linear operators 𝑇(𝑡), 𝑡 ≥ 0 in a
Banach space𝑋, 𝑔 : 𝐽×B

ℎ
×𝑋 → 𝑋, 𝑒, 𝑘, ℎ : Δ×B

ℎ
→ 𝑋,

and 𝑓 : 𝐽×B
ℎ
×𝑋×𝑋 → 𝑋 are given functions,Δ = {(𝑡, 𝑠) :

0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏}, and B
ℎ
is a phase space defined later. The

histories 𝑥
𝑡
: (−∞, 0] → 𝑋, 𝑥

𝑡
(𝑠) = 𝑥(𝑡 + 𝑠), 𝑠 ≤ 0, belong to

the abstract phase spaceB
ℎ
.

Due to the importance of neutral functional differential
and integrodifferential equationswith infinite delay in diverse
fields of appliedmathematics, these equations have generated
considerable interest among researchers. Excellent account
on the work with infinite delay can be found in [1–5]. The
work in partial neutral functional differential equations with
unbounded delay was initiated by Hernández and Henŕıquez
[6, 7] and they have investigated the results pertaining to
existence ofmild, strong, andperiodic solutions to the neutral
functional differential equations. Recently, several works
reported on existence results and controllability problem
for various special forms of (1) and their variants with
impulse or inclusion. Hernández [8] proved existence results
for special form of (1) with 𝑒 = 0, ℎ = 0, by using
the Leray-Schauder alternative. Li et al. [9] investigated the
controllability problem when 𝑒 = 0 and 𝑓 = ∫𝑡

0
𝑘(𝑠, 𝑥
𝑠
)𝑑𝑠

by applying Sadovskii fixed point theorem. Henŕıquez [10,
11] has studied approximation and regularity of solutions
of functional differential equations with unbounded delay.
Chang et al. [12] established existence results for neutral
functional integrodifferential equations with infinite delay
using the resolvent operators and Krasnoselski-Schaefer type
fixed point theorem. The work related to existence and
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controllability results with the impulse effect and infinite
delay can be found in [13–15] and some of the references cited
therein. The recent investigations on this theme can also be
found in the work of Henriquez and dos Santos [16].

The authors [17–20] have studied existence, uniqueness,
continuous dependence, and other properties of the solution
of special forms of (1) with finite delay.

In this paper we investigate the existence results for (1)
by using Krasnoselski-Schaefer type fixed point theorem via
integral inequality by Pachpatte. We further prove existence
results for the same equation without using integral inequal-
ity with different assumptions on the functions involved in
the equation. To study (1), we use an abstract phase spaceB

ℎ

given by Yan [21] instead of seminormed space, introduced
by Hale and Kato in [3].

The paper is organized as follows. In Section 2, we present
the preliminaries. Section 3 is concerned with main results
and proof. In Section 4, we present an example to illustrate
the application of our results.

2. Preliminaries

We give some preliminaries from [21, 22] that will be used
in our subsequent discussion. Assume that ℎ : (−∞, 0] →
(0, +∞) is a continuous function with 𝑙 = ∫0

−∞
ℎ(𝑡)𝑑𝑡 < +∞.

For any 𝑎 > 0, we define

B
𝑎
= {𝜓 : [−𝑎, 0] 󳨀→ 𝑋 such that 𝜓 (𝑡)

is bounded and measurable}
(2)

and equip the spaceB
𝑎
with the norm

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩[−𝑎,0] = sup

𝑠∈[−𝑎,0]

󵄩󵄩󵄩󵄩𝜓 (𝑠)
󵄩󵄩󵄩󵄩 , ∀𝜓 ∈B𝑎. (3)

Let us define

B
ℎ
= {𝜓 : (−∞, 0] 󳨀→ 𝑋 such that for any 𝑐 > 0,

𝜓
󵄨󵄨󵄨󵄨[−𝑐,0] ∈B𝑐, ∫

0

−∞

ℎ (𝑠)
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩[𝑠,0]𝑑𝑠 < +∞} .

(4)

IfB
ℎ
is endowed with the norm

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩Bℎ
= ∫

0

−∞

ℎ (𝑠)
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩[𝑠,0]𝑑𝑠, ∀𝜓 ∈Bℎ, (5)

then it is clear that (B
ℎ
, ‖ ⋅ ‖Bℎ

) is a Banach space.
Now we consider the space

B
󸀠

ℎ
= {𝑥 : (−∞, 𝑏] 󳨀→ 𝑋 such that 𝑥|

𝐽
∈ 𝐶 (𝐽, 𝑋) ,

𝑥
0
∈B
ℎ
} .

(6)

Set ‖ ⋅ ‖
𝑏
to be a seminorm inB󸀠

ℎ
defined by

‖𝑥‖
𝑏
=
󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩Bℎ
+ sup {‖𝑥 (𝑠)‖ : 𝑠 ∈ [0, 𝑏]} , 𝑥 ∈B󸀠

ℎ
. (7)

Let 𝐴 : 𝐷(𝐴) → 𝑋 be the infinitesimal generator of
a compact analytic semigroup of bounded linear operators

𝑇(𝑡), 𝑡 ≥ 0 on a Banach space 𝑋 with the norm ‖ ⋅ ‖, and
let 0 ∈ 𝜌(𝐴); then it is possible to define the fractional
power (−𝐴)𝛼, for 0 < 𝛼 ≤ 1, as closed linear invertible
operator with domain 𝐷(−𝐴)𝛼 dense in 𝑋. The closedness
of 𝐷(−𝐴)𝛼 implies that 𝐷(−𝐴)𝛼 endowed with the graph
norm ‖𝑥‖

𝑋
= ‖𝑥‖ + ‖(−𝐴)

𝛼
𝑥‖ is a Banach space. Since

(−𝐴)
𝛼 is invertible, its graph norm ‖𝑥‖

𝑋
is equivalent to

the norm |𝑥| = ‖(−𝐴)𝛼𝑥‖. Thus 𝐷(−𝐴)𝛼 equipped with
the norm | ⋅ | is a Banach space which we denote by
𝑋
𝛼
.
The following lemmas play an important role in our

further discussions.

Lemma 1 (see [22]). The following properties hold.

(i) If 0 < 𝛽 < 𝛼 ≤ 1, then 𝑋
𝛼
⊂ 𝑋
𝛽
and the imbedding

is compact whenever the resolvent operator of 𝐴 is
compact.

(ii) For every 0 < 𝛼 ≤ 1, there exists 𝐶
𝛼
> 0 such that

󵄩󵄩󵄩󵄩(−𝐴)
𝛼
𝑇 (𝑡)
󵄩󵄩󵄩󵄩 ≤
𝐶
𝛼

𝑡𝛼
, 0 < 𝑡 ≤ 𝑏. (8)

Lemma 2 (see [23]). Let𝑋 be a Banach space, and letΦ
1
,Φ
2

be two operators on 𝑋 such that

(a) Φ
1
is contraction, and

(b) Φ
2
is completely continuous.

Then either

(i) the operator equationΦ
1
𝑥+Φ
2
𝑥 = 𝑥 has a solution or

(ii) the set𝐺 = {𝑥 ∈ 𝑋 : 𝜆Φ
1
(𝑥/𝜆)+𝜆Φ

2
𝑥 = 𝑥, 𝜆 ∈ (0, 1)}

is unbounded.

Lemma 3 (see [8]). Let 𝑢(⋅), V(⋅): [0, 𝑏] → [0,∞) be
continuous functions. If V(⋅) is nondecreasing and there are
constants 𝜃 > 0, 0 < 𝛼 < 1 such that

𝑢 (𝑡) ≤ V (𝑡) + 𝜃∫
𝑡

0

𝑢 (𝑠)

(𝑡 − 𝑠)
1−𝛼
𝑑𝑠, 𝑡 ∈ 𝐽, (9)

then

𝑢 (𝑡) ≤ exp [𝜃
𝑛
(Γ (𝛼))

𝑛
𝑡
𝑛𝛼

Γ (𝑛𝛼)
]

𝑛−1

∑

𝑗=0

(
𝜃𝑏
𝛼

𝛼
)

𝑗

V (𝑡) , (10)

for every 𝑡 ∈ [0, 𝑏] and every 𝑛 ∈ 𝑁 such that 𝑛𝛼 > 1, and Γ(⋅)
is the Gamma function.

Lemma 4 (see [24]). Assume 𝑥 ∈B󸀠
ℎ
; then for 𝑡 ∈ 𝐽, 𝑥

𝑡
∈B
ℎ
.

Moreover,

𝑙 ‖𝑥 (𝑡)‖ ≤
󵄩󵄩󵄩󵄩𝑥𝑡
󵄩󵄩󵄩󵄩Bℎ
≤
󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩Bℎ
+ 𝑙 sup
𝑠∈[0,𝑡]

‖𝑥 (𝑠)‖ , (11)

where 𝑙 = ∫0
−∞
ℎ(𝑡)𝑑𝑡 < +∞.
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Lemma 5 (see [25], p-47). Let 𝑧(𝑡), 𝑢(𝑡), V(𝑡), 𝑤(𝑡) ∈
𝐶([𝛼, 𝛽], 𝑅

+
), and 𝑘 ≥ 0 be a real constant and

𝑧 (𝑡) ≤ 𝑘 + ∫

𝑡

𝛼

𝑢 (𝑠) [𝑧 (𝑠) + ∫

𝑠

𝛼

V (𝜎) 𝑧 (𝜎) 𝑑𝜎

+ ∫

𝛽

𝛼

𝑤 (𝜎) 𝑧 (𝜎) 𝑑𝜎] 𝑑𝑠,

for 𝑡 ∈ [𝛼, 𝛽] .

(12)

If

𝑟
∗
= ∫

𝛽

𝛼

𝑤 (𝜎) exp(∫
𝜎

𝛼

[𝑢 (𝜏) + V (𝜏)] 𝑑𝜏) 𝑑𝜎 < 1, (13)

then

𝑧 (𝑡) ≤
𝑘

1 − 𝑟∗
exp(∫

𝑡

𝛼

[𝑢 (𝑠) + V (𝑠)] 𝑑𝑠) , for 𝑡 ∈ [𝛼, 𝛽] .

(14)

Definition 6. A function 𝑥 : (−∞, 𝑏] → 𝑋 is called a mild
solution of the problem (1) if 𝑥

0
= 𝜙 ∈ B

ℎ
on (−∞, 0],

the restriction of 𝑥(⋅) to the interval 𝐽 is continuous, and for
each 𝑠 ∈ [0, 𝑡) the function 𝐴𝑇(𝑡 − 𝑠)𝑔(𝑠, 𝑥

𝑠
, ∫
𝑠

0
𝑒(𝑠, 𝜏, 𝑥

𝜏
)𝑑𝜏)

is integrable and the integral equation

𝑥 (𝑡) = 𝑇 (𝑡) [𝜙 (0) − 𝑔 (0, 𝜙, 0)]

+ 𝑔(𝑡, 𝑥
𝑡
, ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠)

+ ∫

𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥
𝑠
, ∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏)𝑑𝑠, 𝑡 ∈ 𝐽,

(15)

is satisfied.

Definition 7. Amap 𝑓: 𝐽 ×B
ℎ
×𝑋 ×𝑋 → 𝑋 is said to be an

𝐿
1 -Caratheodory if

(i) for each 𝑡 ∈ 𝐽, the function 𝑓(𝑡, ⋅, ⋅, ⋅) :B
ℎ
×𝑋×𝑋 →

𝑋 is continuous;
(ii) for each (𝜓, 𝑥, 𝑦) ∈ B

ℎ
× 𝑋 × 𝑋; the function

𝑓(⋅, 𝜓, 𝑥, 𝑦) : 𝐽 → 𝑋 is strongly measurable;
(iii) for each positive integer 𝑚 > 0, there exists 𝛼

𝑚
∈

𝐿
1
(𝐽, 𝑅
+
) such thatand for almost all 𝑡 ∈ 𝐽.

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝜓, 𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑚 (𝑡) , ∀

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩Bℎ
≤ 𝑚,

‖𝑥‖ ≤ 𝑚,
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑚,

(16)

3. Existence Results

In this section we state and prove ourmain results.We list the
following hypotheses for our convenience.

(H1) 𝐴 is the infinitesimal generator of a compact analytic
semigroup of bounded linear operators 𝑇(𝑡), 𝑡 > 0 in
𝑋 and 0 ∈ 𝜌(𝐴) such that

‖𝑇 (𝑡)‖ ≤ 𝑀, ∀𝑡 ≥ 0,

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
1−𝛼
𝑇 (𝑡 − 𝑠)

󵄩󵄩󵄩󵄩󵄩
≤
𝐶
1−𝛼

(𝑡 − 𝑠)
1−𝛼
, 0 < 𝑡 ≤ 𝑏,

(17)

where 0 ≤ 𝛼 < 1.
(H2) There exist constants 0 < 𝛽 < 1, 𝐿

1
, 𝐿
2
> 0 such that

𝑔 is𝑋
𝛽
-valued, (−𝐴)𝛽𝑔 is continuous, and

(i) ‖𝑒(𝑡, 𝑠, 𝜓) − 𝑒(𝑡, 𝑠, 𝜒)‖ ≤ 𝐿
1
‖𝜓 − 𝜒‖Bℎ

, 𝑡, 𝑠 ∈ 𝐽, 𝜓,
𝜒 ∈B

ℎ
,

(ii) ‖(−𝐴)𝛽𝑔(𝑡, 𝜓, 𝑥) − (−𝐴)
𝛽
𝑔(𝑡, 𝜒, 𝑦)‖ ≤

𝐿
2
[‖𝜓 − 𝜒‖Bℎ

+ ‖𝑥 − 𝑦‖], 𝑡 ∈ 𝐽, 𝜓, 𝜒 ∈B
ℎ
with

𝐶
0
= 𝑙𝐿
2
(1 + 𝑏𝐿

1
) [
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
+
(𝐶
1−𝛽
𝑏
𝛽
)

𝛽
] < 1. (18)

(H3) There exist integrable functions 𝑝, 𝑞, 𝑟: 𝐽 → [0,∞)
such that

(i) ‖𝑘(𝑡, 𝑠, 𝜓)‖ ≤ 𝑞(𝑠)‖𝜓‖Bℎ , (𝑡, 𝑠) ∈ Δ, 𝜓 ∈Bℎ,
(ii) ‖𝑤(𝑡, 𝑠, 𝜓)‖ ≤ 𝑟(𝑠)‖𝜓‖Bℎ , (𝑡, 𝑠) ∈ Δ, 𝜓 ∈Bℎ,
(iii) ‖𝑓(𝑡, 𝜓, 𝑥, 𝑦)‖ ≤ 𝑝(𝑡) (‖𝜓‖Bℎ + ‖𝑥‖ + ‖𝑦‖), for

each (𝑡, 𝜓, 𝑥, 𝑦) ∈ 𝐽 ×B
ℎ
× 𝑋 × 𝑋.

(H4) For each (𝑡, 𝑠) ∈ Δ, the functions 𝑘(𝑡, 𝑠, ⋅), 𝑤(𝑡, 𝑠, ⋅):
B
ℎ
→ 𝑋 are continuous and for each 𝜓 ∈ B

ℎ
,

the functions 𝑘(⋅, ⋅, 𝜓), 𝑤(⋅, ⋅, 𝜓): Δ → 𝑋 are strongly
measurable.

(H5) 𝑓 is an 𝐿1-Caratheodory.

(H6) The condition ∫
𝑏

0
𝑟(𝜎) exp(∫𝜎

0
[𝐵
0
𝐾
1
𝑝(𝜏) +

𝑞(𝜏)]𝑑𝜏)𝑑𝜎 := 𝑅 < 1 holds, where

𝐵
0
= exp[

𝐾
𝑛

2
(Γ (𝛽))

𝑛

𝑏
𝑛𝛽

Γ (𝑛𝛽)
]

𝑛−1

∑

𝑗=0

(
𝐾
2
𝑏
𝛽

𝛽
)

𝑗

,

𝑛 ∈ 𝑁 such that 𝑛𝛽 > 1,

𝐾
1
=

𝑙𝑀

1 − 𝑙𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩

,

𝐾
2
=

𝑙𝐿
2
(1 + 𝑏𝐿

1
) 𝐶
1−𝛽

1 − 𝑙𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩

.

(19)

We set 𝑐
1
= 𝑏 sup

(𝑡,𝑠)∈Δ
‖𝑒(𝑡, 𝑠, 0)‖ and 𝑐

2
= ‖(−𝐴)

𝛽
‖sup
𝑡∈𝐽
‖𝑔(𝑡,

0, 0)‖.
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Using the hypotheses (H1), (H2) and Lemma 1, we have
the following inequality:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥

𝑠
, ∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
1−𝛽
𝑇 (𝑡 − 𝑠)

󵄩󵄩󵄩󵄩󵄩
{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(−𝐴)
𝛽
𝑔(𝑠, 𝑥

𝑠
, ∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏)

−(−𝐴)
𝛽
𝑔 (𝑠, 0, 0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+ 𝑐
2
}

≤
𝐶
1−𝛽

(𝑡 − 𝑠)
1−𝛽
{𝐿
2
[
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
] + 𝑐
2
}

≤
𝐶
1−𝛽

(𝑡 − 𝑠)
1−𝛽
{𝐿
2
[
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+ ∫

𝑠

0

󵄩󵄩󵄩󵄩𝑒 (𝑠, 𝜏, 𝑥𝜏) − 𝑒 (𝑠, 𝜏, 0)
󵄩󵄩󵄩󵄩 𝑑𝜏

+ 𝑐
1
] + 𝑐
2
}

≤
𝐶
1−𝛽

(𝑡 − 𝑠)
1−𝛽
{𝐿
2
[(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+ 𝑐
1
] + 𝑐
2
} .

(20)

Thus from Bochner theorem, it follows that 𝐴𝑇(𝑡 −
𝑠)𝑔(𝑠, 𝑥

𝑠
, ∫
𝑠

0
𝑒(𝑠, 𝜏, 𝑥

𝜏
)𝑑𝜏) is integrable on [0, 𝑡).

Throughout this paper, for brevity we set

𝐹 = 𝑀
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩 + 𝑀
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
[𝐿
2

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐵ℎ
+ 𝑐
2
]

+
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
(𝐿
2
𝑐
1
+ 𝑐
2
) +
𝐶
1−𝛽
(𝐿
2
𝑐
1
+ 𝑐
2
) 𝑏
𝛽

𝛽
.

(21)

In the following theorem we establish a priori bound for
the mild solution of the following system by using Pachpatte
inequality:

𝑑

𝑑𝑡
[𝑥 (𝑡) − 𝜆𝑔(𝑡, 𝑥

𝑡
, ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠)]

= 𝐴𝑥 (𝑡) + 𝜆𝑓(𝑡, 𝑥
𝑡
, ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠, ∫

𝑏

0

𝑤 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠) ,

𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑥
0
= 𝜙 ∈B

ℎ
,

(22)

where 𝜆 ∈ (0, 1). By Definition 6, the mild solution of the
system (22) is given by

𝑥 (𝑡) = 𝑇 (𝑡) [𝜙 (0) − 𝜆𝑔 (0, 𝜙, 0)]

+ 𝜆𝑔(𝑡, 𝑥
𝑡
, ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠)

+ 𝜆∫

𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥
𝑠
, ∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠

+ 𝜆∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏)𝑑𝑠,

𝑡 ∈ 𝐽,

𝑥
0
= 𝜙 ∈B

ℎ
.

(23)

Theorem 8. If hypotheses (H1)–(H6) are satisfied and letting
𝑥(𝑡) be a mild solution of the system (22), then ‖𝑥

𝑡
‖Bℎ

≤

𝐵
0
𝐾
3
/(1 − 𝑅) exp(∫𝑏

0
[𝐵
0
𝐾
1
𝑝(𝑠) + 𝑞(𝑠)]𝑑𝑠) := 𝐾, 𝑡 ∈ 𝐽, where

𝐾
3
=

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩Bℎ
+ 𝑙𝐹

1 − 𝑙𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩

. (24)

Proof. Using the hypotheses (H1)–(H3) in (23), we get

‖𝑥 (𝑡)‖

≤ 𝑀
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩 + 𝑀
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩

× [
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
𝛽
𝑔 (0, 𝜙, 0) − (−𝐴)

𝛽
𝑔 (𝑡, 0, 0)

󵄩󵄩󵄩󵄩󵄩
+ 𝑐
2
]

+
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(−𝐴)
𝛽
𝑔(𝑡, 𝑥

𝑡
, ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠)

− (−𝐴)
𝛽
𝑔 (𝑡, 0, 0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+ 𝑐
2
}

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
1−𝛽
𝑇 (𝑡 − 𝑠)

󵄩󵄩󵄩󵄩󵄩

× {

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(−𝐴)
𝛽
𝑔(𝑠, 𝑥

𝑠
, ∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏)

−(−𝐴)
𝛽
𝑔 (𝑡, 0, 0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+ 𝑐
2
}𝑑𝑠
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+ ∫

𝑡

0

‖𝑇 (𝑡 − 𝑠)‖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑠, 𝑥
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑠

≤ 𝑀
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩 +𝑀
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
[𝐿
2

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩Bℎ
+ 𝑐
2
]

+
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
{𝐿
2
[
󵄩󵄩󵄩󵄩𝑥𝑡
󵄩󵄩󵄩󵄩Bℎ

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
] + 𝑐
2
}

+ ∫

𝑡

0

𝐶
1−𝛽

(𝑡 − 𝑠)
1−𝛽

× {𝐿
2
[
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
] + 𝑐
2
}𝑑𝑠

+ ∫

𝑡

0

𝑀𝑝(𝑠) [
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+ ∫

𝑠

0

𝑞 (𝜏)
󵄩󵄩󵄩󵄩𝑥𝜏
󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏

+ ∫

𝑏

0

𝑟 (𝜏)
󵄩󵄩󵄩󵄩𝑥𝜏
󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏] 𝑑𝑠

≤ 𝑀
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩 +𝑀
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
[𝐿
2

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩Bℎ
+ 𝑐
2
]

+
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
{𝐿
2
[(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩𝑥𝑡
󵄩󵄩󵄩󵄩Bℎ
+ 𝑐
1
] + 𝑐
2
}

+ ∫

𝑡

0

𝐶
1−𝛽

(𝑡 − 𝑠)
1−𝛽

× {𝐿
2
[(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+ 𝑐
1
] + 𝑐
2
} 𝑑𝑠

+ ∫

𝑡

0

𝑀𝑝(𝑠) [
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+ ∫

𝑠

0

𝑞 (𝜏)
󵄩󵄩󵄩󵄩𝑥𝜏
󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏

+∫

𝑏

0

𝑟 (𝜏)
󵄩󵄩󵄩󵄩𝑥𝜏
󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏] 𝑑𝑠

≤ 𝑀
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩 +𝑀
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
[𝐿
2

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩Bℎ
+ 𝑐
2
]

+
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
(𝐿
2
𝑐
1
+ 𝑐
2
) +
𝐶
1−𝛽
(𝐿
2
𝑐
1
+ 𝑐
2
) 𝑏
𝛽

𝛽

+
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩𝑥𝑡
󵄩󵄩󵄩󵄩Bℎ

+ 𝐶
1−𝛽
𝐿
2
(1 + 𝑏𝐿

1
) ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩𝐵ℎ

(𝑡 − 𝑠)
1−𝛽
𝑑𝑠

+ ∫

𝑡

0

𝑀𝑝(𝑠) [
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+ ∫

𝑠

0

𝑞 (𝜏)
󵄩󵄩󵄩󵄩𝑥𝜏
󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏

+∫

𝑏

0

𝑟 (𝜏)
󵄩󵄩󵄩󵄩𝑥𝜏
󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏] 𝑑𝑠

= 𝐹 +
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩𝑥𝑡
󵄩󵄩󵄩󵄩Bℎ

+ 𝐶
1−𝛽
𝐿
2
(1 + 𝑏𝐿

1
) ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩𝐵ℎ

(𝑡 − 𝑠)
1−𝛽
𝑑𝑠

+ ∫

𝑡

0

𝑀𝑝(𝑠) [
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+ ∫

𝑠

0

𝑞 (𝜏)
󵄩󵄩󵄩󵄩𝑥𝜏
󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏

+ ∫

𝑏

0

𝑟 (𝜏)
󵄩󵄩󵄩󵄩𝑥𝜏
󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏] 𝑑𝑠.

(25)

From inequality (25) and Lemma 4, we have

󵄩󵄩󵄩󵄩𝑥𝑡
󵄩󵄩󵄩󵄩Bℎ
≤
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩Bℎ
+ 𝑙 sup
𝑠∈[0,𝑡]

|𝑥 (𝑠)|

≤
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩Bℎ
+ 𝑙𝐹

+ 𝑙
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
𝐿
2
(1 + 𝑏𝐿

1
) sup
𝑠∈[0,𝑡]

󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ

+ 𝑙𝐶
1−𝛽
𝐿
2
(1 + 𝑏𝐿

1
) ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ

(𝑡 − 𝑠)
1−𝛽
𝑑𝑠

+ ∫

𝑡

0

𝑙𝑀𝑝 (𝑠) [
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+ ∫

𝑠

0

𝑞 (𝜏)
󵄩󵄩󵄩󵄩𝑥𝜏
󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏

+ ∫

𝑏

0

𝑟 (𝜏)
󵄩󵄩󵄩󵄩𝑥𝜏
󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏] 𝑑𝑠,

𝑡 ∈ 𝐽.

(26)

Define the function 𝜇(𝑡) = sup{‖𝑥
𝑠
‖Bℎ

: 0 ≤ 𝑠 ≤ 𝑡}, 𝑡 ∈ 𝐽; then
𝜇(𝑡) is nondecreasing on 𝐽, and we get

𝜇 (𝑡) ≤
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩Bℎ
+ 𝑙𝐹 + 𝑙

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
𝐿
2
(1 + 𝑏𝐿

1
) 𝜇 (𝑡)

+ 𝑙𝐶
1−𝛽
𝐿
2
(1 + 𝑏𝐿

1
) ∫

𝑡

0

𝜇 (𝑠)

(𝑡 − 𝑠)
1−𝛽
𝑑𝑠

+ ∫

𝑡

0

𝑙𝑀𝑝 (𝑠) [𝜇 (𝑠) + ∫

𝑠

0

𝑞 (𝜏) 𝜇 (𝜏) 𝑑𝜏

+ ∫

𝑏

0

𝑟 (𝜏) 𝜇 (𝜏) 𝑑𝜏] 𝑑𝑠.

(27)
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Therefore,

𝜇 (𝑡) ≤

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩Bℎ
+ 𝑙𝐹

1 − 𝑙𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩

+
𝑙𝐿
2
(1 + 𝑏𝐿

1
) 𝐶
1−𝛽

1 − 𝑙𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝜇 (𝑠)

(𝑡 − 𝑠)
1−𝛽
𝑑𝑠

+
𝑙𝑀

1 − 𝑙𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩

× ∫

𝑡

0

𝑝 (𝑠) [𝜇 (𝑠) + ∫

𝑠

0

𝑞 (𝜏) 𝜇 (𝜏) 𝑑𝜏

+ ∫

𝑏

0

𝑟 (𝜏) 𝜇 (𝜏) 𝑑𝜏] 𝑑𝑠

= 𝐾
3
+ 𝐾
1
∫

𝑡

0

𝑝 (𝑠) [𝜇 (𝑠) + ∫

𝑠

0

𝑞 (𝜏) 𝜇 (𝜏) 𝑑𝜏

+ ∫

𝑏

0

𝑟 (𝜏) 𝜇 (𝜏) 𝑑𝜏] 𝑑𝑠

+ 𝐾
2
∫

𝑡

0

𝜇 (𝑠)

(𝑡 − 𝑠)
1−𝛽
𝑑𝑠.

(28)

Using Lemma 3, we have

𝜇 (𝑡) ≤ 𝐵
0
(𝐾
3
+ 𝐾
1
∫

𝑡

0

𝑝 (𝑠)

× [𝜇 (𝑠) + ∫

𝑠

0

𝑞 (𝜏) 𝜇 (𝜏) 𝑑𝜏

+ ∫

𝑏

0

𝑟 (𝜏) 𝜇 (𝜏) 𝑑𝜏] 𝑑𝑠)

= 𝐵
0
𝐾
3
+ ∫

𝑡

0

𝐵
0
𝐾
1
𝑝 (𝑠)

× [𝜇 (𝑠) + ∫

𝑏

0

𝑟 (𝜏) 𝜇 (𝜏) 𝑑𝜏

+ ∫

𝑠

0

𝑞 (𝜏) 𝜇 (𝜏) 𝑑𝜏] 𝑑𝑠,

(29)

where

𝐵
0
= exp[

𝐾
𝑛

2
(Γ (𝛽))

𝑛

𝑏
𝑛𝛽

Γ (𝑛𝛽)
]

𝑛−1

∑

𝑗=0

(
𝐾
2
𝑏
𝛽

𝛽
)

𝑗

. (30)

Thanks to Pachpatte’s inequality given in Lemma 5 and
applying it with 𝑧(𝑡) = 𝜇(𝑡) and using hypothesis (H6), we
obtain

𝜇 (𝑡) ≤
𝐵
0
𝐾
3

1 − 𝑅
exp(∫

𝑡

0

[𝐵
0
𝐾
1
𝑝 (𝑠) + 𝑞 (𝑠)] 𝑑𝑠) , 𝑡 ∈ 𝐽.

(31)

This implies that ‖𝑥
𝑡
‖Bℎ
≤ 𝐾, 𝑡 ∈ 𝐽.

Now we define the operator Ψ : 𝐵󸀠
ℎ
→ 𝐵
󸀠

ℎ
by

Ψ𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝜙 (𝑡) , 𝑡 ∈ (−∞, 0]

𝑇 (𝑡) [𝜙 (0) − 𝑔 (0, 𝜙, 0)]

+𝑔(𝑡, 𝑥
𝑡
, ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠)

+∫

𝑡

0

𝐴𝑇 (𝑡 − 𝑠)

×𝑔(𝑠, 𝑥
𝑠
, ∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠

+∫

𝑡

0

𝑇 (𝑡 − 𝑠)

×𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏)𝑑𝑠, 𝑡 ∈ 𝐽.

(32)

For 𝜙 ∈B
ℎ
, define 𝜙 by

𝜙 (𝑡) = {
𝜙 (𝑡) , 𝑡 ∈ (−∞, 0] ,

𝑇 (𝑡) 𝜙 (0) , 𝑡 ∈ 𝐽 = [0, 𝑏] ;
(33)

then 𝜙 ∈B󸀠
ℎ
. Let 𝑥(𝑡) = 𝑦(𝑡) + 𝜙(𝑡), −∞ < 𝑡 ≤ 𝑏. It is easy to

see that 𝑥 satisfies (15) if and only if 𝑦 satisfies 𝑦
0
= 0 and

𝑦 (𝑡)

= −𝑇 (𝑡) 𝑔 (0, 𝜙, 0)

+ 𝑔(𝑡, 𝑦
𝑡
+ 𝜙
𝑡
, ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑦
𝑠
+ 𝜙
𝑠
) 𝑑𝑠)

+ ∫

𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑦
𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏) 𝑑𝑠

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, 𝑦
𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤(𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)𝑑𝑠.

(34)

LetB󸀠󸀠
ℎ
= {𝑦 ∈ B󸀠

ℎ
: 𝑦
0
= 0 ∈ B

ℎ
}; then for any 𝑦 ∈ B󸀠󸀠

ℎ
we

have

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑏 =
󵄩󵄩󵄩󵄩𝑦0
󵄩󵄩󵄩󵄩Bℎ
+ sup {󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩 : 0 ≤ 𝑠 ≤ 𝑏}

= sup {󵄩󵄩󵄩󵄩𝑦 (𝑠)
󵄩󵄩󵄩󵄩 : 0 ≤ 𝑠 ≤ 𝑏} ;

(35)
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thus (B󸀠󸀠
ℎ
, ‖ ⋅ ‖
𝑏
) is a Banach space. Define 𝐵

𝑚
= {𝑦 ∈ B󸀠󸀠

ℎ
:

‖𝑦‖
𝑏
≤ 𝑚} for some 𝑚 > 0; then 𝐵

𝑚
⊆ B󸀠󸀠
ℎ
is uniformly

bounded, and for 𝑦 ∈ 𝐵
𝑚
, from Lemma 4, we have

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑡
+ 𝜙
𝑡

󵄩󵄩󵄩󵄩󵄩Bℎ
≤
󵄩󵄩󵄩󵄩𝑦𝑡
󵄩󵄩󵄩󵄩Bℎ
+
󵄩󵄩󵄩󵄩󵄩
𝜙
𝑡

󵄩󵄩󵄩󵄩󵄩Bℎ

≤
󵄩󵄩󵄩󵄩𝑦0
󵄩󵄩󵄩󵄩Bℎ
+ 𝑙 sup
𝑠∈[0,𝑡]

󵄩󵄩󵄩󵄩𝑦 (𝑠)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝜙
0

󵄩󵄩󵄩󵄩󵄩Bℎ
+ 𝑙 sup
𝑠∈[0,𝑡]

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑠)
󵄩󵄩󵄩󵄩󵄩

≤ 𝑙𝑚 +
󵄩󵄩󵄩󵄩󵄩
𝜙
0

󵄩󵄩󵄩󵄩󵄩Bℎ
+ 𝑙 sup
𝑠∈[0,𝑏]

󵄩󵄩󵄩󵄩𝑇 (𝑠) 𝜙 (0)
󵄩󵄩󵄩󵄩

≤ 𝑙 (𝑚 +𝑀
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩) +
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩Bℎ
= 𝑚
󸀠
.

(36)

Define the operator Ψ :B󸀠󸀠
ℎ
→ B󸀠󸀠

ℎ
by

Ψ𝑦 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

0, 𝑡 ∈ (−∞, 0]

−𝑇 (𝑡) 𝑔 (0, 𝜙, 0)

+𝑔(𝑡, 𝑦
𝑡
+ 𝜙
𝑡
,

∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑦
𝑠
+ 𝜙
𝑠
) 𝑑𝑠)

+∫

𝑡

0

𝐴𝑇 (𝑡 − 𝑠)

×𝑔(𝑠, 𝑦
𝑠
+ 𝜙
𝑠
,

∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏) 𝑑𝑠

+∫

𝑡

0

𝑇 (𝑡 − 𝑠)

×𝑓(𝑠, 𝑦
𝑠
+ 𝜙
𝑠
,

∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤(𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)𝑑𝑠, 𝑡 ∈ 𝐽.

(37)

In the view of Krasnoselski-Schaefer type fixed point theo-
rem,we decomposeΨ asΨ

1
+Ψ
2
, whereΨ

1
andΨ

2
are defined

onB󸀠󸀠
ℎ
, respectively, by

Ψ
1
𝑦 (𝑡)

= −𝑇 (𝑡) 𝑔 (0, 𝜙, 0)

+ 𝑔(𝑡, 𝑦
𝑡
+ 𝜙
𝑡
, ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑦
𝑠
+ 𝜙
𝑠
) 𝑑𝑠)

+ ∫

𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑦
𝑠
+ 𝜙
𝑠
,

∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏) 𝑑𝑠,

𝑡 ∈ 𝐽,

(38)

Ψ
2
𝑦 (𝑡) = ∫

𝑡

0

𝑇 (𝑡 − 𝑠)

× 𝑓(𝑠, 𝑦
𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤(𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)𝑑𝑠, 𝑡 ∈ 𝐽.

(39)

Observe that the operatorΨ having a fixed point is equivalent
toΨhaving one.Next, our aim is to prove that the operatorΨ

1

is a contraction, whileΨ
2
is a completely continuous operator.

Theorem 9. If the hypotheses (H1) and (H2) are satisfied, then
Ψ
1
is a contraction onB󸀠󸀠

ℎ
.

Proof. Let any 𝑢, V ∈B󸀠󸀠
ℎ
; then by using the hypotheses (H1),

(H2) and Lemma 4, from (38) for each 𝑡 ∈ 𝐽, we have

󵄩󵄩󵄩󵄩󵄩
Ψ
1
𝑢 (𝑡) − Ψ

1
V (𝑡)
󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(−𝐴)
𝛽
[(−𝐴)

𝛽
𝑔(𝑡, 𝑢

𝑡
+ 𝜙
𝑡
, ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑢
𝑠
+ 𝜙
𝑠
) 𝑑𝑠)

− (−𝐴)
𝛽
𝑔(𝑡, V

𝑡
+ 𝜙
𝑡
,

∫

𝑡

0

𝑒 (𝑡, 𝑠, V
𝑠
+ 𝜙
𝑠
) 𝑑𝑠)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
1−𝛽
𝑇 (𝑡 − 𝑠)

󵄩󵄩󵄩󵄩󵄩

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(−𝐴)
𝛽
𝑔(𝑠, 𝑢

𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑢
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)

−(−𝐴)
𝛽
𝑔(𝑠, V

𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑒 (𝑠, 𝜏, V
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

≤
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
𝐿
2
[
󵄩󵄩󵄩󵄩𝑢𝑡 − V𝑡

󵄩󵄩󵄩󵄩
Bℎ

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒 (𝑡, 𝑠, 𝑢

𝑠
+ 𝜙
𝑠
)

−𝑒 (𝑡, 𝑠, V
𝑠
+ 𝜙
𝑠
)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠]

+ ∫

𝑡

0

𝐶
1−𝛽

(𝑡 − 𝑠)
1−𝛽
𝐿
2
[
󵄩󵄩󵄩󵄩𝑢𝑠 − V𝑠

󵄩󵄩󵄩󵄩
Bℎ
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+ ∫

𝑠

0

󵄩󵄩󵄩󵄩󵄩
𝑒 (𝑠, 𝜏, 𝑢

𝜏
+ 𝜙
𝜏
)

−𝑒 (𝑠, 𝜏, V
𝜏
+ 𝜙
𝜏
)
󵄩󵄩󵄩󵄩󵄩
𝑑𝜏] 𝑑𝑠

≤
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩𝑢𝑡 − V𝑡

󵄩󵄩󵄩󵄩Bℎ

+ 𝐶
1−𝛽
𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩𝑢𝑡 − V𝑡

󵄩󵄩󵄩󵄩Bℎ
∫

𝑡

0

𝑑𝑠

(𝑡 − 𝑠)
1−𝛽

≤ 𝐿
2
(1 + 𝑏𝐿

1
) [
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
+
𝐶
1−𝛽
𝑏
𝛽

𝛽
]
󵄩󵄩󵄩󵄩𝑢𝑡 − V𝑡

󵄩󵄩󵄩󵄩Bℎ

≤ 𝐿
2
(1 + 𝑏𝐿

1
) [
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
+
𝐶
1−𝛽
𝑏
𝛽

𝛽
]

× [
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩Bℎ
+
󵄩󵄩󵄩󵄩V0
󵄩󵄩󵄩󵄩Bℎ
+ 𝑙 sup
𝑠∈[0,𝑡]

‖𝑢 (𝑠) − V (𝑠)‖]

≤ 𝑙𝐿
2
(1 + 𝑏𝐿

1
) [
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
+
𝐶
1−𝛽
𝑏
𝛽

𝛽
] sup
𝑠∈[0,𝑏]

‖𝑢 (𝑠) − V (𝑠)‖ ,

(40)

since ‖𝑢
0
‖Bℎ
= 0, ‖V

0
‖Bℎ
= 0.

This implies that
󵄩󵄩󵄩󵄩󵄩
Ψ
1
𝑢 − Ψ

1
V
󵄩󵄩󵄩󵄩󵄩𝑏
≤ 𝐶
0
‖𝑢 − V‖

𝑏
. (41)

Since 𝐶
0
< 1, Ψ

1
is contraction onB󸀠󸀠

ℎ
.

Theorem 10. If the hypotheses (H1), (H3)–(H5) are satisfied,
then Ψ

2
:B󸀠󸀠
ℎ
→ B󸀠󸀠

ℎ
is completely continuous operator.

Proof. We give the proof in the following steps.

Step 1. Ψ
2
maps bounded sets into bounded sets inB󸀠󸀠

ℎ
.

Let any 𝑦 ∈ 𝐵
𝑚
= {𝑦 ∈B󸀠󸀠

ℎ
: ‖𝑦‖
𝑏
≤ 𝑚}.Then it is enough

to prove that ‖Ψ
2
𝑦‖
𝑏
≤ Λ for some constant Λ. By using the

hypotheses (H1), (H3) and condition (36) from (39), we have
󵄩󵄩󵄩󵄩󵄩
Ψ
2
𝑦 (𝑡)
󵄩󵄩󵄩󵄩󵄩

≤ ∫

𝑡

0

𝑀𝑝(𝑠) [
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑠
+ 𝜙
𝑠

󵄩󵄩󵄩󵄩󵄩Bℎ
+ ∫

𝑠

0

𝑞 (𝜏)
󵄩󵄩󵄩󵄩󵄩
𝑦
𝜏
+ 𝜙
𝜏

󵄩󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏

+ ∫

𝑏

0

𝑟 (𝜏)
󵄩󵄩󵄩󵄩󵄩
𝑦
𝜏
+ 𝜙
𝜏

󵄩󵄩󵄩󵄩󵄩Bℎ
𝑑𝜏] 𝑑𝑠

≤ ∫

𝑡

0

𝑀𝑝(𝑠) [𝑚
󸀠
+ ∫

𝑠

0

𝑚
󸀠
𝑞 (𝜏) 𝑑𝜏 + ∫

𝑏

0

𝑚
󸀠
𝑟 (𝜏) 𝑑𝜏] 𝑑𝑠

≤ ∫

𝑏

0

𝑀𝑚
󸀠
𝑝 (𝑠) [1 + ∫

𝑏

0

{𝑞 (𝜏) + 𝑟 (𝜏)} 𝑑𝜏] 𝑑𝑠 := Λ.

(42)

Thus for each 𝑦 ∈ 𝐵
𝑚
, we have ‖Ψ

2
𝑦‖
𝑏
≤ Λ.

Step 2.Ψ
2
maps bounded sets into equicontinuous sets ofB󸀠󸀠

ℎ
.

Let 𝑦 ∈ 𝐵
𝑚
and 𝑡
1
, 𝑡
2
∈ (−∞, 𝑏]. Then from (39), using

the hypotheses (H1) and (H3) and condition (36), we have the
following three cases.

Case 1. Let 0 < 𝑡
1
< 𝑡
2
≤ 𝑏. Then, we have

󵄩󵄩󵄩󵄩󵄩
Ψ
2
𝑦 (𝑡
1
) − Ψ
2
𝑦 (𝑡
2
)
󵄩󵄩󵄩󵄩󵄩

≤ ∫

𝑡1−𝜖

0

󵄩󵄩󵄩󵄩𝑇 (𝑡1 − 𝑠) − 𝑇 (𝑡2 − 𝑠)
󵄩󵄩󵄩󵄩

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓(𝑠, 𝑦
𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤(𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑠

+ ∫

𝑡1

𝑡1−𝜖

󵄩󵄩󵄩󵄩𝑇 (𝑡1 − 𝑠) − 𝑇 (𝑡2 − 𝑠)
󵄩󵄩󵄩󵄩

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓(𝑠, 𝑦

𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤(𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑠

+ ∫

𝑡2

𝑡1

󵄩󵄩󵄩󵄩𝑇 (𝑡2 − 𝑠)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓(𝑠, 𝑦

𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤(𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑠

≤ ∫

𝑡1−𝜖

0

󵄩󵄩󵄩󵄩𝑇 (𝑡1 − 𝑠) − 𝑇 (𝑡2 − 𝑠)
󵄩󵄩󵄩󵄩𝑚
󸀠
𝑝 (𝑠)

× [1 + ∫

𝑏

0

{𝑞 (𝜏) + 𝑟 (𝜏)} 𝑑𝜏] 𝑑𝑠

+ ∫

𝑡1

𝑡1−𝜖

󵄩󵄩󵄩󵄩𝑇 (𝑡1 − 𝑠) − 𝑇 (𝑡2 − 𝑠)
󵄩󵄩󵄩󵄩𝑚
󸀠
𝑝 (𝑠)

× [1 + ∫

𝑏

0

{𝑞 (𝜏) + 𝑟 (𝜏)} 𝑑𝜏] 𝑑𝑠

+ ∫

𝑡2

𝑡1

󵄩󵄩󵄩󵄩𝑇 (𝑡2 − 𝑠)
󵄩󵄩󵄩󵄩𝑚
󸀠
𝑝 (𝑠)

× [1 + ∫

𝑏

0

{𝑞 (𝜏) + 𝑟 (𝜏)} 𝑑𝜏] 𝑑𝑠.

(43)

Case 2. Let 𝑡
1
≤ 0 ≤ 𝑡

2
≤ 𝑏. Then, we have

󵄩󵄩󵄩󵄩󵄩
Ψ
2
𝑦 (𝑡
1
) − Ψ
2
𝑦 (𝑡
2
)
󵄩󵄩󵄩󵄩󵄩

≤ ∫

𝑡2

0

󵄩󵄩󵄩󵄩𝑇 (𝑡2 − 𝑠)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓(𝑠, 𝑦

𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤(𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑠

≤ ∫

𝑡2

0

𝑀𝑚
󸀠
𝑝 (𝑠) [1 + ∫

𝑏

0

{𝑞 (𝜏) + 𝑟 (𝜏)} 𝑑𝜏] 𝑑𝑠.

(44)
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Case 3. If 𝑡
1
≤ 𝑡
2
≤ 0, then ‖Ψ

2
𝑦(𝑡
1
) − Ψ
2
𝑦(𝑡
2
)‖ = 0.

From Cases 1–3, we deduce that the right-hand side of
the above inequality tends to zero as 𝑡

2
− 𝑡
1
tends to 0 for

𝜖 sufficiently small, since the compactness of 𝑇(𝑡), 𝑡 > 0,
implies the continuity in the uniformoperator topology.Thus
the set {Ψ

2
𝑦 : 𝑦 ∈ 𝐵

𝑚
} is equicontinuous.

Step 3. Ψ
2
maps 𝐵

𝑚
into a precompact set inB󸀠󸀠

ℎ
.

Together with Arzela-Ascoli theorem and Steps 1–2 to
proveΨ

2
𝐵
𝑚
is precompact inB󸀠󸀠

ℎ
, it is sufficient to show that

the set {(Ψ
2
𝑦)(𝑡) : 𝑦 ∈ 𝐵

𝑚
} is precompact in 𝑋. Let 0 < 𝑡 ≤ 𝑏

be fixed, and let 𝜖 be a real number satisfying 0 < 𝜖 < 𝑡. For
𝑦 ∈ 𝐵

𝑚
, we define the operators

(Ψ̃
𝜖

2
𝑦) (𝑡)

= ∫

𝑡−𝜖

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, 𝑦
𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤(𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)𝑑𝑠

= 𝑇 (𝜖) ∫

𝑡−𝜖

0

𝑇 (𝑡 − 𝑠 − 𝜖)

× 𝑓(𝑠, 𝑦
𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤(𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)𝑑𝑠.

(45)

Since 𝑇(𝜖) is compact operator, the set 𝑉
𝜖
(𝑡) = {(Ψ

𝜖

2
𝑦)(𝑡) :

𝑦 ∈ 𝐵
𝑚
} is precompact in𝑋, for every 𝜖, 0 < 𝜖 < 𝑡. Moreover,

for each 𝑦 ∈ 𝐵
𝑚
, we have

󵄩󵄩󵄩󵄩󵄩
(Ψ
2
𝑦) (𝑡) − (Ψ̃

𝜖

2
𝑦) (𝑡)

󵄩󵄩󵄩󵄩󵄩

≤ ∫

𝑡

𝑡−𝜖

𝑚
󸀠
𝑀𝑝(𝑠) [1 + ∫

𝑏

0

{𝑞 (𝜏) + 𝑟 (𝜏)} 𝑑𝜏] 𝑑𝑠 󳨀→ 0,

as 𝜖 → 0+.

(46)

Therefore there are precompact sets arbitrarily close to the set
{(Ψ
2
𝑦)(𝑡) : 𝑦 ∈ 𝐵

𝑚
}. Thus the set {(Ψ

2
𝑦)(𝑡) : 𝑦 ∈ 𝐵

𝑚
} is

precompact in𝑋.

Step 4. Ψ
2
:B󸀠󸀠
ℎ
→ B󸀠󸀠

ℎ
is continuous.

Let {𝑦(𝑛)}+∞
𝑛=0
⊆B󸀠󸀠
ℎ
, with 𝑦(𝑛) → 𝑦 inB󸀠󸀠

ℎ
.Then there is a

number𝑚 > 0 such that ‖𝑦(𝑛)(𝑡)‖ ≤ 𝑚 for all 𝑛 and a. e. 𝑡 ∈ 𝐽,
so 𝑦(𝑛) ∈ 𝐵

𝑚
and 𝑦 ∈ 𝐵

𝑚
.

By using the hypotheses (H4), (H5) and condition (36)
we have

𝑓(𝑡, 𝑦
(𝑛)

𝑡
+ 𝜙
𝑡
, ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝑦
(𝑛)

𝑠
+ 𝜙
𝑠
) 𝑑𝑠,

∫

𝑏

0

𝑤(𝑡, 𝑠, 𝑦
(𝑛)

𝑠
+ 𝜙
𝑠
) 𝑑𝑠)

󳨀→ 𝑓(𝑡, 𝑦
𝑡
+ 𝜙
𝑡
, ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝑦
𝑠
+ 𝜙
𝑠
) 𝑑𝑠,

∫

𝑏

0

𝑤(𝑡, 𝑠, 𝑦
𝑠
+ 𝜙
𝑠
) 𝑑𝑠) ,

(47)

for each 𝑡 ∈ 𝐽, and since
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓(𝑡, 𝑦

(𝑛)

𝑡
+ 𝜙
𝑡
, ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝑦
(𝑛)

𝑠
+ 𝜙
𝑠
) 𝑑𝑠,

∫

𝑏

0

𝑤(𝑡, 𝑠, 𝑦
(𝑛)

𝑠
+ 𝜙
𝑠
) 𝑑𝑠)

− 𝑓(𝑡, 𝑦
𝑡
+ 𝜙
𝑡
, ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝑦
𝑠
+ 𝜙
𝑠
) 𝑑𝑠,

∫

𝑏

0

𝑤(𝑡, 𝑠, 𝑦
𝑠
+ 𝜙
𝑠
) 𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 2𝑚
󸀠
𝑝 (𝑠) [1 + ∫

𝑏

0

{𝑞 (𝜏) + 𝑟 (𝜏)} 𝑑𝜏] ,

(48)

we have by the dominated convergence theorem that
󵄩󵄩󵄩󵄩󵄩
Ψ
2
𝑦
(𝑛)
− Ψ
2
𝑦
󵄩󵄩󵄩󵄩󵄩𝑏

= ∫

𝑡

0

‖𝑇 (𝑡 − 𝑠)‖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑠

0

𝑓(𝑠, 𝑦
(𝑛)

𝑠
+ 𝜙
𝑠
,

∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑦
(𝑛)

𝜏
+ 𝜙
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤(𝑠, 𝜏, 𝑦
(𝑛)

𝜏
+ 𝜙
𝜏
) 𝑑𝜏)

− 𝑓(𝑠, 𝑦
𝑠
+ 𝜙
𝑠
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏,

∫

𝑏

0

𝑤(𝑠, 𝜏, 𝑦
𝜏
+ 𝜙
𝜏
) 𝑑𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑠

󳨀→ 0 as 𝑛 󳨀→ ∞.
(49)

Therefore,
󵄩󵄩󵄩󵄩󵄩
Ψ
2
𝑦
(𝑛)
− Ψ
2
𝑦
󵄩󵄩󵄩󵄩󵄩𝑏
= sup
𝑡∈𝐽

󵄩󵄩󵄩󵄩󵄩
Ψ
2
𝑦
(𝑛)
(𝑡) − Ψ

2
𝑦 (𝑡)
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0. (50)

This implies that Ψ
2
is continuous.

From Steps 1–4, we can conclude that the operator Ψ
2

is completely continuous and thus satisfies condition (b) in
Lemma 2.
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Theorem 11. Assume that the hypotheses (H1)–(H6) hold.
Then the problem (1) has at least one mild solution on (−∞, 𝑏].

Proof. Let 𝐺 = {𝑦 ∈ B󸀠󸀠
ℎ
: 𝑦 = 𝜆Ψ

1
(𝑦/𝜆) + 𝜆Ψ

2
𝑦 for some

𝜆 ∈ (0, 1)}. Then for any 𝑦 ∈ 𝐺, the function 𝑥 = 𝑦 + 𝜙 is a
mild solution of the system (22) for which we have proved in
Theorem 8 that ‖𝑥

𝑡
‖Bℎ
≤ 𝐾, 𝑡 ∈ 𝐽, and hence from Lemma 4,

we have

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑏 =
󵄩󵄩󵄩󵄩𝑦0
󵄩󵄩󵄩󵄩Bℎ
+ sup {󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩 : 𝑡 ∈ [0, 𝑏]}

= sup {󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 : 𝑡 ∈ [0, 𝑏]}

≤ sup {‖𝑥 (𝑡)‖ : 𝑡 ∈ [0, 𝑏]}

+ sup {󵄩󵄩󵄩󵄩󵄩𝜙 (𝑡)
󵄩󵄩󵄩󵄩󵄩
: 𝑡 ∈ [0, 𝑏]}

≤ sup {𝑙−1󵄩󵄩󵄩󵄩𝑥𝑡
󵄩󵄩󵄩󵄩Bℎ
: 𝑡 ∈ [0, 𝑏]}

+ sup {󵄩󵄩󵄩󵄩𝑇 (𝑡) 𝜙 (0)
󵄩󵄩󵄩󵄩 : 𝑡 ∈ [0, 𝑏]}

≤ 𝑙
−1
𝐾 +𝑀

󵄩󵄩󵄩󵄩𝜙 (0)
󵄩󵄩󵄩󵄩 ,

(51)

which yields that the set 𝐺 is bounded.
Consequently, by virtue of Lemma 2, Theorem 9, and

Theorem 10, the equation Ψ
1
𝑦 + Ψ

2
𝑦 = 𝑦 has a solution

𝑦
∗
∈ B󸀠󸀠
ℎ
. Let 𝑥(𝑡) = 𝑦∗(𝑡) + 𝜙(𝑡), 𝑡 ∈ (−∞, 𝑏]; then 𝑥 is a

fixed point of the operator Ψ which is a mild solution of the
problem (1).

Theorem 12. Assume that (H1), (H2), (H4), (H5), and the
following hypotheses are satisfied.

(𝐻3)
󸀠 There exist integrable functions 𝑝, 𝑞, 𝑟 : 𝐽 → [0,∞)
such that

(i) ‖ ∫𝑡
0
𝑘(𝑡, 𝑠, 𝜓)‖ ≤ 𝑞(𝑡)‖𝜓‖Bℎ

, (𝑡, 𝑠) ∈ Δ, 𝜓 ∈B
ℎ
,

(ii) ‖ ∫𝑏
0
𝑤(𝑡, 𝑠, 𝜓)‖ ≤ 𝑟(𝑡)‖𝜓‖Bℎ

, (𝑡, 𝑠) ∈ Δ, 𝜓 ∈B
ℎ
,

(iii) ‖𝑓(𝑡, 𝜓, 𝑥, 𝑦)‖ ≤ 𝑝(𝑡)Ω(‖𝜓‖Bℎ + ‖𝑥‖ + ‖𝑦‖), for
each (𝑡, 𝜓, 𝑥, 𝑦) ∈ 𝐽 × B

ℎ
× 𝑋 × 𝑋, where Ω :

[0,∞) → [0,∞) is continuous nondecreasing
function such that

Ω(𝛾 (𝑡) 𝑟) ≤ 𝛾 (𝑡)Ω (𝑟) , 𝛾 (𝑡) = 1 + 𝑝 (𝑡) + 𝑞 (𝑡) , (52)

for each 𝑡 ∈ 𝐽 and 𝑟 ≥ 0.

(𝐻6)
󸀠 The condition 𝐵

0
𝐾
1
∫
𝑏

𝑜
𝑝(𝑠)𝛾(𝑠)𝑑𝑠 < ∫

∞

𝐵0𝐾3

𝑑𝑠/Ω(𝑠)

holds, where 𝐵
0
, 𝐾
1
, and 𝐾

3
are as in (H6) and (24).

Then the problem (1) has at least one mild solution on (−∞, 𝑏].

Proof. Let 𝑥(𝑡) be the solution of (22). By using the hypothe-
ses (H1), (H2), and (𝐻3)󸀠 and (23), we obtain

‖𝑥 (𝑡)‖

≤ 𝐹 +
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩𝑥𝑡
󵄩󵄩󵄩󵄩Bℎ

+ 𝐶
1−𝛽
𝐿
2
(1 + 𝑏𝐿

1
) ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ

(𝑡 − 𝑠)
1−𝛽
𝑑𝑠

+ ∫

𝑡

0

𝑀𝑝(𝑠)Ω (
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+ 𝑞 (𝑠)

󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
+ 𝑟 (𝑠)

󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
) 𝑑𝑠

≤ 𝐹 +
󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩𝑥𝑡
󵄩󵄩󵄩󵄩Bℎ

+ 𝐶
1−𝛽
𝐿
2
(1 + 𝑏𝐿

1
) ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ

(𝑡 − 𝑠)
1−𝛽
𝑑𝑠

+ ∫

𝑡

0

𝑀𝑝(𝑠) 𝛾 (𝑠)Ω (
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
) 𝑑𝑠.

(53)

By an application of Lemma 4, we get
󵄩󵄩󵄩󵄩𝑥𝑡
󵄩󵄩󵄩󵄩Bℎ

≤
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩Bℎ
+ 𝑙𝐹 + 𝑙

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−𝛽󵄩󵄩󵄩󵄩󵄩
𝐿
2
(1 + 𝑏𝐿

1
)
󵄩󵄩󵄩󵄩𝑥𝑡
󵄩󵄩󵄩󵄩Bℎ

+ 𝑙𝐶
1−𝛽
𝐿
2
(1 + 𝑏𝐿

1
) ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ

(𝑡 − 𝑠)
1−𝛽
𝑑𝑠

+ ∫

𝑡

0

𝑙𝑀𝑝 (𝑠) 𝛾 (𝑠)Ω (
󵄩󵄩󵄩󵄩𝑥𝑠
󵄩󵄩󵄩󵄩Bℎ
) 𝑑𝑠.

(54)

Define the function 𝜇 as in the proof of Theorem 8 and,
proceeding on the same line, we obtain

𝜇 (𝑡) ≤ 𝐾
3
+ 𝐾
1
∫

𝑡

0

𝑝 (𝑠) 𝛾 (𝑠)Ω (𝜇 (𝑠)) 𝑑𝑠

+ 𝐾
2
∫

𝑡

0

𝜇 (𝑠)

(𝑡 − 𝑠)
1−𝛽
𝑑𝑠, 𝑡 ∈ 𝐽.

(55)

Applying Lemma 3 to the above inequality, we obtain

𝜇 (𝑡) ≤ 𝐵
0
(𝐾
3
+ 𝐾
1
∫

𝑡

0

𝑝 (𝑠) 𝛾 (𝑠)Ω (𝜇 (𝑠)) 𝑑𝑠) , 𝑡 ∈ 𝐽.

(56)

Let

𝑤 (𝑡) = 𝐵
0
(𝐾
3
+ 𝐾
1
∫

𝑡

0

𝑝 (𝑠) 𝛾 (𝑠)Ω (𝜇 (𝑠)) 𝑑𝑠) , 𝑡 ∈ 𝐽.

(57)

Then 𝑤(0) = 𝐵
0
𝐾
3
, 𝜇(𝑡) ≤ 𝑤(𝑡), 𝑡 ∈ 𝐽, and

𝑤
󸀠
(𝑡) = 𝐵

0
𝐾
1
𝑝 (𝑡) 𝛾 (𝑡) Ω (𝜇 (𝑡)) , 𝑡 ∈ 𝐽. (58)

SinceΩ is nondecreasing function, we have

𝑤
󸀠
(𝑡) ≤ 𝐵

0
𝐾
1
𝑝 (𝑡) 𝛾 (𝑡) Ω (𝑤 (𝑡)) , 𝑡 ∈ 𝐽. (59)



International Journal of Differential Equations 11

Therefore,

𝑤
󸀠
(𝑡)

Ω (𝑤 (𝑡))
≤ 𝐵
0
𝐾
1
𝑝 (𝑡) 𝛾 (𝑡) , 𝑡 ∈ 𝐽. (60)

Integrating from 0 to 𝑡 and using the change of variables 𝑡 →
𝑠 = 𝑤(𝑡) and the hypothesis (H6)󸀠, we obtain

∫

𝑤(𝑡)

𝐵0𝐾3

𝑑𝑠

Ω (𝑠)
𝑑𝑠 ≤ 𝐵

0
𝐾
1
∫

𝑏

0

𝑝 (𝑠) 𝛾 (𝑠) 𝑑𝑠

< ∫

∞

𝐵0𝐾3

𝑑𝑠

Ω (𝑠)
𝑑𝑠, 𝑡 ∈ 𝐽.

(61)

This implies that𝑤(𝑡) < ∞. So there is constant𝐾∗ such that
𝑤(𝑡) ≤ 𝐾

∗, 𝑡 ∈ 𝐽, and hence ‖𝑥
𝑡
‖Bℎ
≤ 𝜇(𝑡) ≤ 𝑤(𝑡) ≤ 𝐾

∗,
𝑡 ∈ 𝐽, where𝐾∗ depends on the functions 𝑝, 𝛾, andΩ.

Define the operators Ψ, Ψ
1
, and Ψ

2
as discussed above.

Note that the set 𝐺 = {𝑦 ∈ B󸀠󸀠
ℎ
: 𝑦 = 𝜆Ψ

1
(𝑦/𝜆) +

𝜆Ψ
2
𝑦 for some 𝜆 ∈ (0, 1)} is bounded by 𝑙−1𝐾∗ + 𝑀‖𝜙(0)‖.

Theorem 9 satisfies condition (a) in Lemma 2. The proof
of Ψ
2
is completely continuous operator which can be

completed using the hypotheses (𝐻
1
), (𝐻
3
)
󸀠, (𝐻
4
), and (𝐻

5
)

and closely looking at the proof of Theorem 10. Finally by
applying Lemma 2, the problem (1) has mild solution on
(−∞, 𝑏].

Theorem 13. Assume that the hypotheses (H1), (H2), (H4),
and (H5) are satisfied. In addition suppose the following.

(𝐻3)
󸀠󸀠 There exist integrable functions 𝑝, 𝑞, 𝑟 : 𝐽 → [0,∞)
such that

(i) ‖ ∫𝑡
0
𝑘(𝑡, 𝑠, 𝜓)‖ ≤ 𝑞(𝑡) Ω(‖𝜓‖Bℎ

), (𝑡, 𝑠) ∈ Δ, 𝜓 ∈

B
ℎ
,

(ii) ‖ ∫𝑏
0
𝑤(𝑡, 𝑠, 𝜓)‖ ≤ 𝑟(𝑡) Ω(‖𝜓‖Bℎ

), (𝑡, 𝑠) ∈ Δ, 𝜓 ∈

B
ℎ
,

(iii) ‖𝑓(𝑡, 𝜓, 𝑥, 𝑦)‖ ≤ 𝑝(𝑡) Ω(‖𝜓‖Bℎ) + ‖𝑥‖ + ‖𝑦‖, for
each (𝑡, 𝜓, 𝑥, 𝑦) ∈ 𝐽 × B

ℎ
× 𝑋 × 𝑋, where Ω:

[0,∞) → [0,∞) is continuous nondecreasing
function.

(𝐻6)
󸀠󸀠 The condition 𝐵

0
𝐾
1
∫
𝑏

𝑜
[𝑝(𝑠) + 𝑞(𝑠) + 𝑟(𝑠)]𝑑𝑠 <

∫
∞

𝐵0𝐾3

(𝑑𝑠/Ω(𝑠)) holds, where 𝐵
0
, 𝐾
1
, and 𝐾

3
are as in

(H6) and (24).

Then the problem (1) has at least one mild solution on
(−∞, 𝑏].

Proof. Proceeding as in the proof ofTheorem 12with suitable
modification, we can complete the proof. Hence we omit the
details.

4. Application

Consider the following partial neutral mixed integrodifferen-
tial equation of the form

𝜕

𝜕𝑡
[V (𝑡, 𝑥) + 𝐺(𝑡, ∫

0

−∞

𝑃
1
(𝑠 − 𝑡) V (𝑠, 𝑥) 𝑑𝑠) ,

∫

𝑡

0

∫

𝑠

−∞

𝑃
2
(𝑠, 𝑥, 𝜏 − 𝑠) 𝑄

1
(V (𝜏, 𝑥)) 𝑑𝜏𝑑𝑠]

=
𝜕
2

𝜕𝑥2
V (𝑡, 𝑥)

+ 𝐻(𝑡, ∫

0

−∞

𝑃
3
(𝑠 − 𝑡) V (𝑠, 𝑥) 𝑑𝑠,

∫

𝑡

0

∫

𝑠

−∞

𝑃
4
(𝑠, 𝑥, 𝜏 − 𝑠) 𝑄

2
(V (𝜏, 𝑥)) 𝑑𝜏𝑑𝑠,

∫

𝑏

0

∫

𝑠

−∞

𝑃
5
(𝑠, 𝑥, 𝜏 − 𝑠)𝑄

3
(V (𝜏, 𝑥)) 𝑑𝜏𝑑𝑠) ,

(𝑥, 𝑡) ∈ [0, 𝜋] × [0, 𝑏] ,

V (𝑡, 0) = V (𝑡, 𝜋) = 0, 𝑡 ≥ 0

V (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) , 𝑡 ∈ (−∞, 0] , 𝑥 ∈ [0, 𝜋] ,
(62)

where 𝜙 ∈ B
ℎ
. Consider the space 𝑋 = 𝐿2[0, 𝜋] with the

norm | ⋅ |
𝐿
2 . Define the operator 𝐴 : 𝑋 → 𝑋 by 𝐴𝑤 = 𝑤󸀠󸀠

with the domain 𝐷(𝐴) = {𝑤 ∈ 𝑋 : 𝑤, 𝑤󸀠 are absolutely
continuous, 𝑤󸀠󸀠 ∈ 𝑋,𝑤(0) = 𝑤(𝜋) = 0}.

Then 𝐴𝑤 = ∑∞
𝑛=1
−𝑛
2
< 𝑤,𝑤

𝑛
> 𝑤
𝑛
, and 𝑤 ∈ 𝐷(𝐴),

where 𝑤
𝑛
(𝑥) = √2/𝜋 sin(𝑛𝑥), 𝑛 = 1, 2, . . ., is the orthogonal

set of eigen vectors of 𝐴. It is well known that 𝐴 is the
infinitesimal generator of an analytic semigroup 𝑇(𝑡), 𝑡 ≥ 0,
and is given by 𝑇(𝑡)𝑤 = ∑∞

𝑛=1
𝑒
−𝑛
2
𝑡
< 𝑤, 𝑤

𝑛
> 𝑤
𝑛
, and 𝑤 ∈ 𝑋.

Further for every 𝑤 ∈ 𝑋, (−𝐴)−1/2𝑤 = ∑∞
𝑛=1
(1/𝑛) < 𝑤,

𝑤
𝑛
> 𝑤
𝑛
, and ‖(−𝐴)−1/2‖ = 1. The operator (−𝐴)1/2 is given

by

(−𝐴)
1/2
𝑤 =

∞

∑

𝑛=1

𝑛 < 𝑤, 𝑤
𝑛
> 𝑤
𝑛
, (63)

with the domain 𝐷((−𝐴)1/2) = {𝑤 ∈ 𝑋 : ∑∞
𝑛=1
𝑛 < 𝑤, 𝑤

𝑛
>

𝑤
𝑛
∈ 𝑋}. It follows that ‖𝑇(𝑡)‖ ≤ 1. Let ℎ(𝑠) = 𝑒2𝑠, 𝑠 < 0; then

𝑙 = ∫
0

−∞
ℎ(𝑠)𝑑𝑠 = 1/2, and define

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩ℎ = ∫

0

−∞

ℎ (𝑠) sup
𝜃∈[𝑠,0]

󵄨󵄨󵄨󵄨𝜙(𝜃)
󵄨󵄨󵄨󵄨𝐿2𝑑𝑠. (64)
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Hence for (𝑡, 𝜙) ∈ [0, 𝑏] × B
ℎ
, where 𝜙(𝜃)(𝑥) = 𝜙(𝜃, 𝑥),

(𝜃, 𝑥) ∈ (−∞, 0] × [0, 𝜋]. Set

V (𝑡) (𝑦) = V (𝑡, 𝑦)

𝑒 (𝑡, 𝑠, 𝜓) (𝑦) = ∫

0

−∞

𝑃
2
(𝑡, 𝑦, 𝜃)𝑄

1
(𝜓 (𝜃) (𝑦)) 𝑑𝜃,

𝑘 (𝑡, 𝑠, 𝜓) (𝑦) = ∫

0

−∞

𝑃
4
(𝑡, 𝑦, 𝜃)𝑄

2
(𝜓 (𝜃) (𝑦)) 𝑑𝜃,

𝑤 (𝑡, 𝑠, 𝜓) (𝑦) = ∫

0

−∞

𝑃
5
(𝑡, 𝑦, 𝜃)𝑄

3
(𝜓 (𝜃) (𝑦)) 𝑑𝜃,

𝑔 (𝑡, 𝜓, ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝜓) 𝑑𝑠) (𝑦)

= 𝐺(𝑡, ∫

0

−∞

𝑃
1
(𝜃) 𝜓 (𝜃) (𝑦) 𝑑𝜃,

∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝜓) (𝑦) 𝑑𝑠)

𝑓(𝑡, 𝜓, ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝜓) 𝑑𝑠, ∫

𝑏

0

𝑤 (𝑡, 𝑠, 𝜓) 𝑑𝑠) (𝑦)

= 𝐻(𝑡, ∫

0

−∞

𝑃
3
(𝜃) 𝜙 (𝜃) (𝑦) 𝑑𝜃,

∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝜓) (𝑦) 𝑑𝑠,

∫

𝑏

0

𝑤 (𝑡, 𝑠, 𝜓) (𝑦) 𝑑𝑠) .

(65)

With these choices of functions, the system (1) is the
abstract formulation of the system (62). By imposing suitable
conditions on the above defined functions to verify the
assumptions ofTheorem 10, we conclude that system (62) has
at least one mild solution on (−∞, 𝑏].

5. Conclusion

The integral inequality established by B. G. Pachpatte is
used to obtain the bound and different existence results are
established for more general equations which include the
study of Volterra and Fredholm functional integrodifferential
equations.
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