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Matrix completion that estimates missing values in visual data is an important topic in computer vision. Most of the recent studies
focused on the low rank matrix approximation via the nuclear norm. However, the visual data, such as images, is rich in texture
which may not be well approximated by low rank constraint. In this paper, we propose a novel matrix completion method, which
combines the nuclear norm with the local geometric regularizer to solve the problem of matrix completion for redundant texture
images. And in this paper we mainly consider one of the most commonly graph regularized parameters: the total variation norm
which is a widely used measure for enforcing intensity continuity and recovering a piecewise smooth image. The experimental
results show that the encouraging results can be obtained by the proposed method on real texture images compared to the state-
of-the-art methods.

1. Introduction

The problem of matrix completion, which can be seen as
the extension of recently developed compressed sensing (CS)
theory [1–3], plays an important role in the field of signal
and image processing [4–11]. This problem occurs in many
real applications in computer vision and pattern recognition,
such as image inpainting [12, 13], video denoising [14], and
recommender systems [15, 16]. Reconstruction algorithms
for matrix completion have received much attention. Cai et
al. [17] proposed an algorithm, namely, the singular value
thresholding (SVT) algorithm for matrix completion and
related nuclear norm minimization problems. In [18], a
simple and fast singular value projection (SVP) algorithm
for rank minimization with affine constraints is exploited.
Keshavan et al. [19] dealt with the matrix completion based
on singular value decomposition followed by local manifold
optimization. In order to achieve a better approximation of
the rank of matrix, Hu et al. [11] presented an approach
based on the truncated nuclear norm regularization (TNNR),
which is defined by the difference between the nuclear norm

and the sum of the largest few singular values. Since most
of the existing matrix completion models aim to solve the
low rank optimization via nuclear norm, we recall here this
model. For an incomplete matrix M ∈ R𝑚×𝑛 of rank 𝑟, the
model can be described as follows:

min
X

rank (X) s.t. X
Ω
= M
Ω
, (1)

where X ∈ R𝑚×𝑛 and M
Ω
= M
𝑖𝑗
, (𝑖, 𝑗) ∈ Ω, and Ω is the set

of locations corresponding to the observed entries.
Unfortunately, the rank minimization problem in (1) is

an NP-hard one, so the following convex relaxation is widely
used:

min
X
‖X‖
∗

s.t. X
Ω
= M
Ω
, (2)

where ‖ ⋅ ‖
∗
is the nuclear norm given by

‖X‖
∗
=

min(𝑚,𝑛)
∑

𝑘=1

𝜎
𝑘
, (3)

where 𝜎
𝑘
denotes the 𝑘th largest singular value of X.
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In this paper, our objective is to exploit the intrinsic
geometry of the data distribution and incorporate it as
an additional regularization term to deal with the images
which are rich in texture. The total variation (TV) norm
has demonstrated its usefulness as a graph regularizer in the
field of image processing, so we propose here a method that
combines the nuclear norm with the linear TV approximate
norm to solve the problem of matrix completion. We call
it the linear total variation approximate regularized nuclear
norm (LTVNN) minimization problem. This combination
optimization problem will be solved by simple and efficient
optimization scheme based on the alternating direction
method of multipliers (ADMM) model [20, 21].

The paper is organized as follows. In the next section,
we introduce the proposed LTVNN model and we describe
the optimization schemes. In Section 3, we establish the
convergence results for the iterations given in Section 2.
Experimental results on a set of images are provided in
Section 4. Finally, we draw some conclusions in Section 5.

2. Proposed Method

2.1. Some Preliminaries. The total variation along the vertical
and horizontal directions can be described as

𝐷
V
𝑗,𝑘
(X) = {X𝑗,𝑘 − X

𝑗+1,𝑘
, 1 ≤ 𝑗 < 𝑚

0, 𝑗 = 𝑚,

(4)

𝐷
ℎ

𝑗,𝑘
(X) = {X𝑗,𝑘 − X

𝑗,𝑘+1
, 1 ≤ 𝑘 < 𝑛

0, 𝑘 = 𝑛.

(5)

So the total variation of X is the summation for themagnitude
of the gradient of each pixel [22]:

‖X‖TV = ∑
𝑗,𝑘

√(𝐷
V
𝑗,𝑘
X)
2

+ (𝐷
ℎ

𝑗,𝑘
X)
2

. (6)

And the equvalent total variation formula as follows:

‖X‖TV = ∑
𝑗,𝑘

(






𝐷

V
𝑗,𝑘
X

+






𝐷
ℎ

𝑗,𝑘
X

) . (7)

Here, we use the linear total variation approximate of (7) to
approximate the second kind of total variation; that is,

‖X‖LTVA = ∑
𝑗,𝑘

((𝐷
V
𝑗,𝑘
X)
2

+ (𝐷
ℎ

𝑗,𝑘
X)
2

) . (8)

2.2. Proposed Model. As mentioned above, the key point of
the proposed approach is the combination of the nuclear
norm and the linear total variation approximate norm;
therefore, the optimization problem is described as

min
X
(1 − 𝛾) ‖X‖

∗
+ 𝛾‖X‖LTVA s.t. X

Ω
= M
Ω
, (9)

where 0 ≤ 𝛾 ≤ 1 is a penalty parameter, ‖X‖
∗
is the nuclear

norm defined in (3), and ‖X‖LTVA is linear total variation

norm approximate defined in (8), which can be reformulated
as

‖X‖LTVA = Tr [(X − X𝜙
1
) (X − X𝜙

1
)
𝑇

]

+ Tr [(X − 𝜙
2
X) (X − 𝜙

2
X)𝑇]

=




(X − X𝜙

1
)





2

𝐹
+




(X − 𝜙

2
X)


2

𝐹
,

(10)

where “Tr” means the trace of the matrix, ‖ ⋅ ‖
𝐹
denotes the

Frobenius norm of thematrix, and 𝜙
1
and 𝜙
2
are, respectively,

the column and row transform matrix given by

𝜙
1
=

[
[
[
[
[
[
[
[

[

0 0 0 ⋅ ⋅ ⋅ 0

1 0 ⋅ ⋅ ⋅ 0

0 1 0 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 1
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑛−1)×(𝑛−1)

0

0

...
1

]
]
]
]
]
]
]
]

]𝑛×𝑛

,

𝜙
2
=

[
[
[
[
[
[
[
[
[
[

[

(𝑚 − 1) × (𝑚 − 1)

0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1 0 ⋅ ⋅ ⋅ 0

0 0 1 0 0

0
...
... d

...
... 0 0 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 1

]
]
]
]
]
]
]
]
]
]

]𝑚×𝑚

.

(11)

So, the problem in (9) can be rewritten as

min
X
(1 − 𝛾) ‖X‖

∗
+ 𝛾




(X − X𝜙

1
)





2

𝐹

+ 𝛾




(X − 𝜙

2
X)


2

𝐹

s.t. X
Ω
= M
Ω
.

(12)

2.3. The Optimization Scheme. The alternating direction
method of multipliers-ADMM [20, 21] is an efficient and
scalable optimization model which exploits the structure of
the optimization problem. In this section, we use ADMM to
deal with the problem in (12), which can be reformulated as

min
X,W

(1 − 𝛾) ‖X‖
∗
+ 𝛾




(W −W𝜙

1
)





2

𝐹

+ 𝛾




(W − 𝜙

2
W)


2

𝐹

s.t. X =W, W
Ω
= M
Ω
,

(13)

where ‖(W −W𝜙
1
)‖
2

𝐹
and ‖(W − 𝜙

2
W)‖2
𝐹
are the indicator

functions. The augmented Lagrange function of (13) is

L (X,Y,W, 𝜆) = (1 − 𝛾) ‖X‖
∗
+ 𝛾




(W −W𝜙

1
)





2

𝐹

+ 𝛾




(W − 𝜙

2
W)


2

𝐹
+

𝜆

2

‖W − X‖2
𝐹

+ Tr (Y𝑇 (W − X)) ,

(14)

where 𝜆 > 0 is the penalty parameter and Y is the multiplier.
The solution can be obtained by incorporating the solutions
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of each regularization problem separately which are defined
as follows.

Row TV is as follows:
L
𝑅
(XR,YR,WR, 𝜆)

= (1 − 𝛾) ‖XR‖
∗
+ 𝛾




(WR − 𝜙

2
WR)



2

𝐹

+

𝜆

2

‖WR − XR‖2
𝐹
+ Tr (YR𝑇 (WR − XR)) ,

(15)

where XR denotes the optimization result along the
vertical direction of the total variation defined in (4).

Column TV is as follows:
L
𝐶
(XC,YC,WC, 𝜆)

= (1 − 𝛾) ‖XC‖
∗
+ 𝛾




(WC −WC𝜙

1
)





2

𝐹

+

𝜆

2

‖WC − XC‖2
𝐹
+ Tr (YC𝑇 (WC − XC)) ,

(16)

where XC denotes the optimization result along the
horizontal direction of the total variation defined in
(5).

We deal with column linear TV optimization problem in
(16) by the following steps in each iteration.

Step 1 (initial setting). XC
1
= M
Ω
,WC
1
= XC
1
, YC
1
= XC
1
,

with the tolerance 𝜀.

Step 2 (computing XC
𝑘+1

). FixWC
𝑘
and YC

𝑘
, and minimize

(16) for obtaining XC
𝑘+1

as

XC
𝑘+1

= arg min
X

(1 − 𝛾) ‖XC‖
∗
+ 𝛾




(WC
𝑘
−WC

𝑘
𝜙
1
)





2

𝐹

+

𝜆

2





WC − XC

𝑘






2

𝐹
+ Tr (YC𝑇

𝑘
(WC − XC

𝑘
)) .

(17)

Ignoring the constant terms, (17) can be rewritten as

XC
𝑘+1

= arg min
X

(1 − 𝛾) ‖XC‖
∗

+

𝜆

2









XC − (WC
𝑘
+

1

𝜆

YC
𝑘
)









2

𝐹

.

(18)

To solve (18), Cai et al. [17] introduce the soft-thresholding
operatorD

𝜏
which is defined as follows:

D
𝜏
(X) := UD

𝜏
(Σ)V𝑇,

D
𝜏
(Σ) = diag {max (𝜎

𝑖
− 𝜏)
+
} ,

(19)

where 𝑡
+
= max(0, 𝑡).

Using the operatorD
𝜏
in (19), the solution of (18) can be

obtained as

XC
𝑘+1

= D
(1−𝛾)/𝜆

(WC
𝑘
+

1

𝜆

YC
𝑘
) . (20)

Step 3 (computingWC
𝑘+1

). FixXC
𝑘+1

andYC
𝑘
and calculate

WC
𝑘+1

as follows:

WC
𝑘+1

= arg min
W

L (XC
𝑘+1
,YC
𝑘
,WC, 𝜆) (21)

which is a quadratic function ofWC and can be easily solved
by setting the derivation of L(XC

𝑘+1
,YC
𝑘
,WC, 𝜆) to zeros,

and then we get

WC
𝑘+1

= (𝜆XC
𝑘+1

− YC
𝑘
)

× [2𝛾 (I − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
𝑇

1
𝜙
1
) + 𝜆I

𝑛×𝑛
]

−1

.

(22)

Then we fix the values at the observed entries:

WC
𝑘+1

= (WC
𝑘+1
)
Ω
𝑚

+M
Ω
, (23)

whereΩ
𝑚
denotes the set of the missing entries.

Step 4 (computing YC
𝑘+1

). Fix XC
𝑘+1

andWC
𝑘+1

and calcu-
late YC

𝑘+1
as follows:

YC
𝑘+1

= YC
𝑘
+ 𝜆 (WC

𝑘+1
− XC
𝑘+1
) . (24)

Until the stop condition: ‖XC
𝑘+1

− XC
𝑘
‖
𝐹
≤ 𝜀.

RowTVproblemdefined by (15) can be solved in a similar
way to that of column TV problem.The only difference is the
WR
𝑘+1

in the second step, which is given by

WR
𝑘+1

= [2𝛾 (I − 𝜙
2
− 𝜙
𝑇

2
+ 𝜙
𝑇

2
𝜙
2
) + 𝜆I

𝑚×𝑚
]

−1

× (𝜆XR
𝑘+1

− YR
𝑘
) .

(25)

And the stop condition is ‖XR
𝑘+1

− XR
𝑘
‖
𝐹
≤ 𝜀.

Finally, we obtained X
𝑘+1

as the average of XC
𝑘+1

and
XR
𝑘+1

; that is,

X
𝑘+1

=

XC
𝑘+1

+ XR
𝑘+1

2

. (26)

3. Convergence Analysis

In this section, we give the proof of the convergence of
column total variation (16) and the convergence of row total
variation is similar to the column total variation. Here, the
objection function (16) about column variation is as follows:

min
X
𝑓
𝜏
(X)

s.t. X
Ω
= M
Ω

𝑓
𝜏
(X) = 𝜏‖X‖

∗
+

1

2

Tr [(X − X𝜙
1
) (X − X𝜙

1
)
𝑇

] ,

𝜏 =

1 − 𝛾

2𝛾

.

(27)

Lemma 1. Let Z ∈ 𝜕𝑓
𝜏
(X) and Z ∈ 𝜕𝑓

𝜏
(X). Then

⟨Z − Z,X − X⟩ ≥ 

X − X



2

𝐹

. (28)

The details of the proof can be found in [17].
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(a) Original image (256× 256) (b) Random masked image (c) 𝛾 = 0, PSNR: 8.934

(d) 𝛾 = 0.5, PSNR: 29.183 (e) 𝛾 = 1, PSNR: 8.593 (f) Word masked image

(g) 𝛾 = 0, PSNR: 14.706 (h) 𝛾 = 0.5, PSNR: 33.421 (i) 𝛾 = 1, PSNR: 14.759

Figure 1: The recovered results with 60% random mask and word mask for 𝛾 = 0, 0.5 and 1 by LTVNN.

Theorem 2. Assuming that the sequence of step size obeys
0 < inf 𝜆

𝑘
< sup 𝜆

𝑘
< (2𝛼/𝛽), 𝛼 = ⟨(X𝑘 − X∗)(I − 𝜙

1
−

𝜙
𝑇

1
+ 𝜙
1
𝜙
𝑇

1
),X𝑘 − X∗⟩ and 𝛽 = ‖X𝑘 − X∗‖2

𝐹
. Here, X∗ denotes

the optimization result and X𝑘 denotes the 𝑘th iteration object
variable; then by the iteration procedure defined in Section 2.3,
we can obtain the unique optimization result, that is, X∗. And
the details of the proof can be found in the Appendix.

4. Experiments

In this section, we test the proposed method on a set of
images. The algorithm was implemented with MATLAB
programming language on a PC machine, which sets up

MicrosoftWindows 7 operating system and has an Intel Core
I5 CPU with speed of 2.79GHz and 2GB RAM.

We deal with three channels (𝑟, 𝑔, 𝑏) of color images
separately and combine the results together to get the final
outcome. We use peak signal-to-noise ratio (PSNR) values to
evaluate the performance:

PSNR = 10 × log
10
(

255
2

MSE
) , (29)

where MSE denotes mean squared error,

MSE = 1

3𝑚𝑛

[error2 (𝑟) + error2 (𝑔) + error2 (𝑏)] . (30)
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Figure 2: The recovered PSNR for Pepper under different random
sample ratio and word mask sample with 𝛾 from 0 0 to 1 by LTVNN.
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Figure 3: Recovered PSNR for Pepper under 𝛾 = 0.5 with different
random sample ratio by LTVNN, TNNR, SVT, SVP, and OptSpace.

In the experiments, we consider two situations: random
mask sample and word mask sample. Figure 1 describes the
recovered results with 60% randommask and word mask for
𝛾 = 0, 0.5 and 1 by LTVNN. Figure 2 shows the recovered
PSNR for Pepper under different random sample ratios and
word mask sample for 𝛾 from 0 to 1 with step of 0.1 by
LTVNN. It can be observed from these two figures that the
best result is obtained for the value of 𝛾 near to 0.5, which
corresponds to the case where the two norms (nuclear and
LTV) are equivalently used in (9). For the two extreme cases:
𝛾 = 0 (only the nuclear norm is taken into consideration)
and 𝛾 = 1 (only the linear total variation approximate norm
is considered), the algorithm loses its efficiency.

We also compare our method (LTVNN) with other
matrix completion methods including TNNR [10, 11], SVT
[12], SVP [13], andOptSpace [14]. Figure 3 plots the recovered
PSNR for Pepper for 𝛾 = 0.5 with different random sample
ratios (from 40% to 90%) by LTVNN and other fourmethods
(TNNR, SVT, SVP, and OptSpace). It can be seen from
Figure 3 that the proposed LTVNN method achieves much
higher PSNR than the other methods. Figure 4 shows the
comparison of PSNR of recovered methods for Lena under
word mask with 𝛾 = 0.5 by LTVNN and the other methods.
Table 1 lists the PSNR results under word mask sample with
𝛾 = 0.5 for different images by LTVNN and the other
methods. From Figure 4 and Table 1, we can see that the
proposed method outperforms the other matrix completion
methods under word mask for different images.

5. Conclusion

In this paper, we have proposed a new model that combines
the nuclear norm and total variation norm for the matrix
completion problem, which was then solved by ADMM
model. Experimental results demonstrate the effectiveness of
the proposed algorithm compared to other methods.

Appendix

Before we give the proof of Theorem 2, we supplement one
proof about

⟨(X − X) (I − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
1
𝜙
𝑇

1
) ,X − X⟩ ≥ 0. (A.1)

Without loss of generality, we take an example matrix 𝜉 =
(X − X) ∈ R4×4 and the corresponding transform matrix

(I − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
1
𝜙
𝑇

1
) = [

2 −1 0 0

−1 2 −1 0

0 −1 2 0

0 0 0 0

]. Then,

Tr [(Ι − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
𝑇

1
𝜙
1
) 𝜉
𝑇

𝜉]

= 2 (𝜉
2

1,1
+ 𝜉
2

2,1
+ 𝜉
2

3,1
+ 𝜉
2

4,1
)

− (𝜉
1,1
𝜉
1,2
+ 𝜉
2,1
𝜉
2,2
+ 𝜉
3,1
𝜉
3,2
+ 𝜉
4,1
𝜉
4,2
)

+ 2 (𝜉
2

1,2
+ 𝜉
2

2,2
+ 𝜉
2

3,2
+ 𝜉
2

4,2
)

− (𝜉
1,1
𝜉
1,2
+ 𝜉
2,1
𝜉
2,2
+ 𝜉
3,1
𝜉
3,2
+ 𝜉
4,1
𝜉
4,2
)

− (𝜉
1,2
𝜉
1,3
+ 𝜉
2,2
𝜉
2,3
+ 𝜉
3,2
𝜉
3,3
+ 𝜉
4,2
𝜉
4,3
)

+ 2 (𝜉
2

1,3
+ 𝜉
2

2,3
+ 𝜉
2

3,3
+ 𝜉
2

4,3
)

− (𝜉
1,2
𝜉
1,3
+ 𝜉
2,2
𝜉
2,3
+ 𝜉
3,2
𝜉
3,3
+ 𝜉
4,2
𝜉
4,3
)

= (𝜉
2

1,1
+ 𝜉
2

2,1
+ 𝜉
2

3,1
+ 𝜉
2

4,1
) + (𝜉

1,1
− 𝜉
1,2
)
2

+ (𝜉
2,1
− 𝜉
2,2
)
2

+ (𝜉
3,1
− 𝜉
3,2
)
2

+ (𝜉
4,1
− 𝜉
4,2
)
2

+ (𝜉
1,2
− 𝜉
1,3
)
2

+ (𝜉
2,2
− 𝜉
2,3
)
2

+ (𝜉
3,2
− 𝜉
3,3
)
2

+ (𝜉
4,2
− 𝜉
4,3
)
2

+ (𝜉
2

1,3
+ 𝜉
2

2,3
+ 𝜉
2

3,3
+ 𝜉
2

4,3
)

≥ 0,

(A.2)
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(a) Original image (256× 256) (b) Word masked image (c) LTVNN (PSNR: 32.920)

(d) TNNR (PSNR: 30.189) (e) SVT (PSNR: 30.760) (f) SVP (PSNR: 22.159)

(g) OptSpace (PSNR: 26.492)

Figure 4: Comparison of PSNR of recovered methods for Lena under word mask with 𝛾 = 0.5 by LTVNN, TNNR, SVT, SVP, and OptSpace.

Table 1: PSNR results under word mask sample with 𝛾 = 0.5 for different images by LTVNN, TNNR, SVT, SVP, and OptSpace.

LTVNN TNNR [10, 11] SVT [12] SVP [13] OptSpace [14]
Mandrill (256 × 256) 29.495 27.845 27.736 18.881 26.264
Pepper (256 × 256) 33.421 31.019 30.188 23.648 27.141
Barbara (240 × 192) 31.170 29.261 29.352 22.901 23.427
Barbara (512 × 512) 32.680 30.682 28.855 22.113 26.872
Girl (256 × 256) 36.797 34.298 33.848 27.128 30.977
Couple (256 × 256) 36.916 35.176 35.241 29.649 32.815
Airplane (512 × 512) 31.883 30.083 25.506 19.573 26.222
House (256 × 256) 34.340 33.288 32.646 22.374 27.505
Sailboat (512 × 512) 30.858 29.103 27.079 26.778 20.891
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so the term ⟨(X − X)(I − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
1
𝜙
𝑇

1
),X − X⟩ ≥ 0. The

proof of Theorem 2 is as follows.

Proof. Let (X∗,Y∗) be primal-dual optimization for the
problem (27). The optimality conditions give

0 = Z𝑘 −P
Ω
(Y𝑘−1) ,

0 = Z∗ −P
Ω
(Y∗) ,

(A.3)

where Z𝑘 ∈ 𝜕𝑓
𝜏
(X𝑘) and Z∗ ∈ 𝜕𝑓

𝜏
(X∗). Then from (A.3), we

deduce that

(Z𝑘 − Z∗) −P
Ω
(Y𝑘−1 − Y∗) = 0 (A.4)

and combine (A.4) with Lemma 1 that

⟨X𝑘 − X∗,P
Ω
(Y𝑘−1 − Y∗)⟩

= ⟨Z𝑘 − Z∗,X𝑘 − X∗⟩

≥ ⟨(X𝑘 − X∗) (Ι − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
𝑇

1
𝜙
1
) ,X𝑘 − X∗⟩ .

(A.5)

We observe (23) thatP
Ω
X∗ = P

Ω
W,






P
Ω
(Y𝑘 − Y∗)

𝐹

=






P
Ω
(Y𝑘−1 − Y∗) + 𝜆

𝑘
P
Ω
(W − X𝑘)

𝐹

=






P
Ω
(Y𝑘−1 − Y∗) + 𝜆

𝑘
P
Ω
(X∗ − X𝑘)

𝐹
.

(A.6)

Here, we set 𝑟
𝑘
= ‖P
Ω
(Y𝑘 − Y∗)‖

𝐹
; then

𝑟
2

𝑘
= 𝑟
2

𝑘−1
− 2𝜆
𝑘
⟨P
Ω
(Y𝑘−1 − Y∗) ,X𝑘 − X∗⟩

+ 𝜆
2

𝑘






P
Ω
(X∗ − X𝑘)



2

𝐹

≤ 𝑟
2

𝑘−1
− 2𝜆
𝑘
⟨(X𝑘 − X∗) (Ι − 𝜙

1
− 𝜙
𝑇

1
+ 𝜙
𝑇

1
𝜙
1
) ,X𝑘 − X∗⟩

+ 𝜆
2

𝑘






X𝑘 − X∗



2

𝐹

= 𝑟
2

𝑘−1
− (2𝜆

𝑘
𝛼 − 𝜆
2

𝑘
𝛽) ,

(A.7)

where 𝛼 = ⟨(X𝑘 − X∗)(Ι − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
𝑇

1
𝜙
1
),X𝑘 − X∗⟩ ≥ 0,

𝛽 = ‖X𝑘 − X∗‖2
𝐹
≥ 0.

Based on (A.7), when (2𝜆
𝑘
𝛼 − 𝜆

2

𝑘
𝛽) > 0, that is, 𝜆

𝑘
∈

(0, 2𝛼/𝛽), the term ‖P
Ω
(Y𝑘 − Y∗)‖

𝐹
is nonincreasing and

converges to limit.The parameter𝜆
𝑘
is very easy for satisfying

this conditionwhen𝜆
𝑘
is smaller constant. Andwe can obtain

other properties as follows.
Let 𝜆
𝑘
= 𝛼/𝛽, and then 2𝜆

𝑘
𝛼 − 𝜆
2

𝑘
𝛽 = 𝛼

2

/𝛽. Due to the
fact that 𝛼2/𝛽 converges to zero, so 𝛼2 is infinite small about
𝛽 and converges to zero. Now we reconsider (A.2); evidently
the first column in 𝜉 converges to zero; that is, 𝜉

1,1
→ 0,

𝜉
2,1
→ 0, 𝜉

3,1
→ 0, 𝜉

4,1
→ 0. The second column converges

to the first column and then converges to zero; that is, 𝜉
1,2
→

𝜉
1,1

→ 0, 𝜉
2,2

→ 𝜉
2,1

→ 0, 𝜉
3,2

→ 𝜉
3,1

→ 0, 𝜉
4,2

→

𝜉
4,1
→ 0. The third column converges to the second column

and then converges to zero; that is, 𝜉
1,3
→ 𝜉
1,2
→ 0, 𝜉

2,3
→

𝜉
2,2

→ 0, 𝜉
4,3

→ 𝜉
4,2

→ 0, 𝜉
1,2

→ 𝜉
1,1

→ 0, so through
the iteration X𝑘 converges to X∗ except the last column due
to the definition in (4) and (5); the last column and the last
row are set to zero.

Fortunately, this problem does not have side effect for
global result. Theorem 2 is established.
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