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We present two simple numerical methods to find the free boundary in one-phase Stefan problem. The work is motivated by the
necessity for better understanding of the solution surface (temperatures) near the free boundary. We formulate a log-transform
function with the unfixed and fixed free boundary that has Lipschitz character near free boundary.We solve the quadratic equation
in order to locate the free boundary in a time-recursive way.We also present several numerical results which illustrate a comparison
to other methods.

1. Introduction

The free boundary in a Stefan problem can give prediction
of the boundary between two opposing materials. For a
famous example, the boundary of an ice in water can be
found according to time. In this case, water above zero
degrees Celsius and ice at zero degrees Celsius are the two
materials. Stefan [1] first gave conditions necessary to find
the free boundary. Stefan problems can be used for the
computation of diffusion [2], preservation of human blood
[3], solidification of metals [4], and estimation of the thermal
state in the mantle [5]. Many researchers have studied to
figure out the effective method in order to approximate the
free boundary.

Methods can be largely separated into three groups:
analytic methods, mixed methods of numerical and analytic
methods, and another method which is numerical methods.
Analytic methods are developed by researchers, such as exact
solution by using a fractional differential equation of Liu and
Xu [6] and an analytical solution with variable latent heat of
Voller et al. [7]. Mixedmethods are developed by researchers,
such as the approximate analytical and a numerical solution
method by using a linear perturbationmethod ofYigit [8] and
the analytical and numerical solution method with moving
boundary of Lorenzo-Trueba and Voller [9]. Numerical
methods are developed by researchers, such as the numerical
methodwith automatic differentiation ofAsaithambi [10] and

the finite element approximation method of Nedoma [11],
Słota [12], and Hinze and Ziegenbalg [5].

Among many methods, a boundary immobilization
method (BIM), suggested by Landau [13], fixes the free
boundary by using a transform method. The benefit of this
function is its simple domain. Whatever the shape of the free
boundary is, this method changes the original domain to a
rectangular domain. After the BIMmethod, Kutluay et al. [14]
suggested another method called variable space grid (VSG)
method.

Themain contribution of this paper is the development of
two simple numerical methods to find the free boundary in
a time-recursive way. Our result is motivated by the necessity
for better understanding of the solution surface near free
boundary. We adopt the boundary immobilization [13] to
change the unknown free boundary to a known and fixed
boundary. On the other hand, we adopt the constant number
of space intervals between two boundaries [14].

We exploit a log-transform function with the unfixed
and fixed free boundary that has Lipschitz character which
reduces the accumulating error of the solution surface near
the free boundary.

We apply extrapolation near the free boundary. Thus,
we can determine the free boundary by solving a quadratic
equation in a time-recursive way. Our method also provides
fast and accurate results for calculating the free boundary and
determining solutions.
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The structure of the paper is as follows. Section 2 presents
the model formulation. The log-transform function with
the unfixed and fixed free boundary to calculate the free
boundary is presented in Section 3. Numerical results and
comparative studies are presented in Section 4. Section 5
summarizes the paper.

2. Problem Formulation

In this section, we present a mathematical formula for deter-
mining solution of one-phase Stefan problem.

The temperature of liquid is denoted by 𝑢(𝑥, 𝑡), where 𝑥
is the liquid/solid space for 𝑥 ∈ [0,∞) and 𝑡 is the time to
expiration for 𝑡 ∈ [0, 𝑇].

As seen in the previous article by Stefan [1], the tempera-
ture of liquid is considered the solution to a free boundary
problem with a parabolic PDE. We suppose that the free
boundary 𝑆(𝑡) is continuously increasing with 𝑆(0) = 1. The
region where it is free boundary to hold, generally called the
liquid region, is defined as Ω

𝐿
= [0, 𝑆(𝑡)] × [0, 𝑇], and the

region where it is free boundary, generally called the solid
region, is defined as Ω

𝑆
= (𝑆(𝑡),∞) × [0, 𝑇]. Then, 𝑢(⋅, ⋅) and

𝑆(⋅) uniquely solve

𝜕𝑢

𝜕𝑡

=

𝜕
2
𝑢

𝜕𝑥
2

in Ω
𝐿
, (1)

being subject to the boundary conditions

−𝑢
𝑥 (
0, 𝑡) = 𝑓 (𝑡) , (2)

𝑢 (𝑆 (𝑡) , 𝑡) = 0. (3)

The location of the liquid/solid interface is given by the heat
balance equation known as Stefan condition

−𝑢
𝑥 (
𝑆 (𝑡) , 𝑡) =

𝑑𝑆 (𝑡)

𝑑𝑡

, (4)

𝑢 (𝑥, 𝑡) = 0, in Ω
𝑆
. (5)

Initially there is liquid region which implies the condition

𝑆 (0) = 1,

𝑢 (𝑥, 0) = 0.

(6)

Referring to [14], this problem has the following exact
solution for the liquid temperature distribution 𝑢(𝑥, 𝑡) and
the interface location 𝑆(𝑡), respectively:

𝑢 (𝑥, 𝑡) = exp (𝑡 − 𝑥 + 1) − 1, in Ω
𝐿
, (7)

𝑆 (𝑡) = 𝑡 + 1, (8)

where 𝑇 = 1 and plug 𝑓(𝑡) = exp(𝑡 + 1) into (2). The exact
solution (7) can be used to compare the numerical solutions
and can also be used to initialize the numerical schemes.

A VSG method, proposed in Kutluay et al. [14], which
uses a fixed node number between a fixed boundary (𝑥 = 0)
and a moving boundary (𝑥 = 𝑠(𝑡)), was kept constant and

equal to 𝑁 so that the moving boundary always lays on the
𝑁th grid. They derive the equation and the boundary condi-
tions with respect to 𝑢(𝑥, 𝑡) as follows. First, the process finds
the difference between the 𝑆(𝑡

𝑚
) and 𝑆(𝑡

𝑚+1
) and divides it by

𝑁, the number of nodes. In the case below, they assign𝑁+ 1

as the number of 𝑥 and𝑀+ 1 as the number of 𝑡. Therefore,
Δ𝑡 = 𝑇/𝑀 so that 𝑡

𝑚
= 𝑚Δ𝑡 where 𝑇 = 1 is the max-

imum of 𝑡. Similarly, Δ𝑥 = 𝑆(𝑡)/𝑁 so that 𝑥
𝑛
= 𝑛Δ𝑥. We

also define 𝑢𝑚
𝑛

= 𝑢(𝑥
𝑛
, 𝑡
𝑚
), 𝑆
𝑚

= 𝑆(𝑡
𝑚
), 𝑆󸀠 = 𝑑𝑆/𝑑𝑡, and

𝑥
𝑚

𝑛
= 𝑥
𝑛
(𝑡
𝑚
). Consider

𝑑𝑆 = 𝑆
𝑚+1

− 𝑆
𝑚
, 𝑑𝑥

𝑛
= 𝑥
𝑚+1

𝑛
− 𝑥
𝑚

𝑛

𝑛 = 0, 1, 2, . . . , 𝑁, 𝑚 = 0, 1, 2, . . . ,𝑀 − 1.

(9)

The ratio 𝑑𝑆 : 𝑑𝑥
𝑛
equals the ratio 𝑆

𝑚
: 𝑥
𝑚

𝑛
. Thus,

𝑑𝑥
𝑛

𝑑𝑡

=

𝑥
𝑚

𝑛

𝑆
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𝑥

𝑥
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𝑆

𝑑𝑆

𝑑𝑡

+ 𝑢
𝑥𝑥
.

(10)

Since −𝑢
𝑥
(0, 𝑡) = 𝑓(𝑡),

𝑢
𝑚

−1
= 𝑢
𝑚

1
+ 2Δ𝑥

𝑚
𝑓 (𝑡) . (11)

When 𝑓(𝑡) = exp(𝑡 + 1),

𝑢
𝑚

−1
= 𝑢
𝑚

1
+ 2Δ𝑥

𝑚 exp (𝑡
𝑚
+ 1) . (12)

By discretizing (10), they get

𝑢
𝑚+1

𝑛
= 𝑢
𝑚

𝑛
+

𝑥
𝑚

𝑛
𝑆
󸀠
Δ𝑡
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𝑚
Δ𝑥
𝑚
(𝑢
𝑚

𝑛+1
− 𝑢
𝑚

𝑛−1
)

+
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(Δ𝑥
𝑚
)
2
(𝑢
𝑚

𝑛+1
− 2𝑢
𝑚

𝑛
+ 𝑢
𝑚

𝑛−1
) .

(13)

Plugging (12) into (13), they obtain the following:

𝑢
𝑚+1

0
= (1 −

2Δ𝑡

(Δ𝑥
𝑚
)
2
)𝑢
𝑚

0
+

2Δ𝑡

(Δ𝑥
𝑚
)
2
𝑢
𝑚

1

+(

2Δ𝑡

Δ𝑥
𝑚
−

𝑥
𝑚

𝑖
𝑆
󸀠
Δ𝑡

𝑆
𝑚

) exp (𝑡
𝑚
+ 1) .

(14)

In order to get 𝑆(𝑡), they use

𝑆
𝑚+1

= 𝑆
𝑚
−

Δ𝑡

2Δ𝑥
𝑚
(3𝑢
𝑚

𝑁
− 4𝑢
𝑚

𝑁−1
+ 𝑢
𝑚

𝑁−2
)

where 𝑚 = 0, 1, 2, . . . .

(15)

A boundary immobilization (BIM) method, proposed
in Landau [13], uses a change in variables to transform
the free boundary problem into a nonlinear problem on a
fixed domain. The following transformation of state variable
serves for such a purpose. The main point of BIM method is
transformation. The transform function 𝜉 = 𝑥/𝑆(𝑡) changes
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Figure 1: Log-transformation from 𝑢(𝑥, 𝑡) to 𝑤(𝑥, 𝑡).

any shape of domain to a rectangular domain. 𝜉 = 0 when
𝑥 = 0, and 𝜉 = 1 when 𝑥 = 𝑆(𝑡). This fixes the free boundary
to 𝜉 = 1. In the case below, he assigns 𝑁 + 1 as the number
of 𝜉 (0 ≤ 𝜉 ≤ 1) and 𝑀 + 1 as the number of 𝑡. Therefore,
Δ𝑡 = 𝑇/𝑀 so that 𝑡

𝑚
= 𝑚Δ𝑡 where 𝑇 is the maximum of

𝑡. Similarly, Δ𝜉 = 1/𝑁 so that 𝜉
𝑛
= 𝑛Δ𝜉. He also define

𝑢
𝑚

𝑛
= 𝑢(𝜉
𝑛
, 𝑡
𝑚
), 𝑆
𝑚
= 𝑆(𝑡
𝑚
), and 𝑆󸀠 = 𝑑𝑆/𝑑𝑡

𝑢
𝑡

󵄨
󵄨
󵄨
󵄨𝑥
= 𝑢
𝜉
𝜉
𝑡
+ 𝑢
𝑡

󵄨
󵄨
󵄨
󵄨𝜉
= −

𝑥

𝑆
2
𝑆
󸀠
(𝑡) + 𝑢

𝑡

󵄨
󵄨
󵄨
󵄨𝜉
. (16)

Thus,

𝑢
𝑡
=

𝜉

𝑆

𝑆
󸀠
𝑢
𝜉
+

1

𝑆
2
𝑢
𝜉𝜉
, 0 < 𝜉 < 1, 𝑡 > 0. (17)

When 𝜉 = 0,
𝑢
𝜉
= −𝑆 exp (𝑡 + 1) . (18)

By using central scheme, he gets

𝑢
𝑚

−1
= 𝑢
𝑚

1
+ 2Δ𝜉𝑆

𝑚
exp (𝑡

𝑚
+ 1) . (19)

Discretizing, he obtains

𝑢
𝑚+1

𝑛
= 𝑢
𝑚

𝑛
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𝜉
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𝑛
+ 𝑢
𝑚
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) .

(20)

Plugging (19) into (20) when 𝑛 = 0, he gets

𝑢
𝑚+1

0
= (1 −

2Δ𝑡

𝑆
2

𝑚
Δ𝜉
2
)𝑢
𝑚

0
+

2Δ𝑡

𝑆
2

𝑚
Δ𝜉
2
𝑢
𝑚

1

+ (

2Δ𝑡

𝑆
𝑚
Δ𝜉

− 𝑆
󸀠
𝜉
0
Δ𝑡) exp (𝑡

𝑚
+ 1) .

(21)

He uses the following equation in order to trace 𝑆
𝑚
:

𝑆
𝑚+1

= 𝑆
𝑚
−

Δ𝑡

2Δ𝜉

(3𝑢
𝑚

𝑁
− 4𝑢
𝑚

𝑁−1
+ 𝑢
𝑚

𝑁−2
)

where 𝑚 = 0, 1, 2, . . . ,𝑀 − 1.

(22)

3. Log-Transform Function

In this section, we present a log-transform function with
the unfixed free boundary and fixed free boundary that can
determine the free boundary by solving a quadratic equation
in a time-recursive way. Under the assumption of the Stefan
problem, the time for free boundary can be shown to be
the first hitting time of a boundary, the free boundary, in
the plane consisting of pairs of the space and the time to
expiration. Namely, the temperature curve of Stefan problem
touches the line representing the intrinsic value tangentially.
With a careful examination of the solution surface near the
free boundary, we find a Lipschitz surface which reduces
the accumulating error of the solution surface near free
boundary. To find the free boundary, we present a log-
transform function with the unfixed and fixed free boundary
that has Lipschitz character near the free boundary as follows:

𝑤 (𝑥, 𝑡) := ln (𝑢 (𝑥, 𝑡) + 1) . (23)

The transformed function 𝑤(𝑥, 𝑡) provides that the solution
surface in Ω

𝑆
is a horizontal plane, and it is an inclined

plain inΩ
𝐿
. Namely, this function forms a gradual slope with

the hyperplane corresponding to the solid region, thereby
making the interpolation error more easily reducible when
finding the free boundary (see Figure 1). 𝑤(𝑥, 𝑡) also has
a Lipschitz character with nonsingularity in (0, 𝑆(𝑡)). More
precisely, we have |𝑆

󸀠
(𝑡)|/(𝑓(𝑡) + 1) < |𝑤

𝑥
(𝑆(𝑡), 𝑡)| =

|𝑤
𝑥
(𝑆(𝑡), 𝑡)/(𝑤(𝑆(𝑡), 𝑡) + 1)| = | − 𝑆

󸀠
(𝑡)/(𝑤(𝑆(𝑡), 𝑡) + 1)| ≤

|𝑆
󸀠
(𝑡)| < ∞. Then, 𝑤(𝑥, 𝑡) is Lipschitz continuous and a

natural candidate function for computation in [0, 𝑆(𝑡)]. We
also calculate the partial derivative with respect to 𝑥 in (10),
(17).

Figure 1(a) shows that 𝑢(𝑥, 𝑡) is transformed to 𝑤(𝑥, 𝑡)

and Figure 1(b) shows reduced interpolation error near the
free boundary.

We find the log-transform function with the unfixed and
fixed free boundary to decide the free boundary by the Taylor
series.
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Table 1: Values in the solution.

Safety parameter 𝜌 RMSE 𝑆(𝑡 = 0.5) 𝑢(0.5, 𝑇) 𝑢(1.0, 𝑇) 𝑢(1.5, 𝑇)

0.0060 0.000407836 1.4998795 3.4807649 1.7177973 0.6484301
0.0062 0.000407824 1.4998786 3.4807643 1.7177965 0.6484289
0.0064 0.000407814 1.4998777 3.4807638 1.7177957 0.6484277
0.0066 0.000407806 1.4998767 3.4807632 1.7177949 0.6484264
0.0068 0.000407802 1.4998758 3.4807627 1.7177941 0.6484252
0.0070 0.000407799 1.4998748 3.4807621 1.7177933 0.6484240
0.0072 0.000407800 1.4998739 3.4807616 1.7177925 0.6484227
0.0074 0.000407803 1.4998729 3.4807610 1.7177917 0.6484215
0.0076 0.000407809 1.4998720 3.4807604 1.7177909 0.6484203
0.0078 0.000407817 1.4998711 3.4807599 1.7177901 0.6484190
0.0080 0.000407828 1.4998702 3.4807594 1.7177893 0.6484178
Maximum difference 0.000000037 0.0000093 0.0000055 0.0000080 0.0000123

0.006 0.0065 0.007 0.0075 0.008
0.00040779

0.000407795

0.0004078

0.000407805

0.00040781

0.000407815

0.00040782

0.000407825

0.00040783

0.000407835

RM
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𝜌

Figure 2: RMSE of the safety parameter 𝜌 in the solution.

3.1. Log-Transform Function with Unfixed Free Boundary
(LTUF). From (1), (3), and (4), we obtain the following
relations near free boundary:

𝑢 (𝑆 (𝑡) , 𝑡) = 0

𝑢
𝑥 (
𝑆 (𝑡) , 𝑡) = − 𝑆

󸀠
(𝑡)

𝑢
𝑥𝑥 (

𝑆 (𝑡) , 𝑡) = (1 +

𝑥
𝑁

𝑆

) 𝑆
󸀠
(𝑡)
2
.

(24)

From 𝑢(𝑥, 𝑡) = 𝑒
𝑤(𝑥,𝑡)

− 1, we obtain the following relations
near free boundary (𝑤(𝑆(𝑡), 𝑡) = 0):

𝑢
𝑡
= 𝑤
𝑡
,

𝑢
𝑥
= 𝑤
𝑥
,

𝑢
𝑥𝑥

= 𝑤
2

𝑥
+ 𝑤
𝑥𝑥
.

(25)
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Figure 3: Comparison of RMSE and runtime in the solution.

Plugging (25) into (10), we obtain

𝑤
𝑡
=

𝑥
𝑖

𝑆 (𝑡)

𝑆
󸀠
(𝑡) 𝑤𝑥

+ 𝑤
2

𝑥
+ 𝑤
𝑥𝑥
. (26)

Using 𝑢(𝑥, 𝑡) = 𝑒
𝑤(𝑥,𝑡)

− 1, (24), and (25), we obtain the
following:

𝑤 (𝑆 (𝑡) , 𝑡) = 0

𝑤
𝑥 (
𝑆 (𝑡) , 𝑡) = − 𝑆

󸀠
(𝑡)

𝑤
𝑥𝑥 (

𝑆 (𝑡) , 𝑡) =

𝑥
𝑁

𝑆

𝑆
󸀠
(𝑡)
2
.

(27)
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Figure 5: Comparison of RMSE and L2 norm with LTUF method
in the solution.

We lower the error by using the optimized safety parameter 𝜌
for a Taylor series with moving node, a method suggested by
Kim et al. [15], in order to control the error:
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Figure 6: Comparison of RMSE and L2 normwith LTFFmethod in
the solution.
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𝑤(𝑆 (𝑡) , 𝑡) = 𝑤 (𝑆 (𝑡) , 𝑡) +

𝑤
𝑥 (
𝑆 (𝑡) , 𝑡)

1!

(𝑆 (𝑡) − 𝑆 (𝑡))

+

𝑤
𝑥𝑥 (

𝑆 (𝑡) , 𝑡)

2!

(𝑆 (𝑡) − 𝑆 (𝑡))

2

.

(29)

Using 𝑆(𝑡) = 𝑆(𝑡) − 𝜌Δ𝑥, (27), and (29), we get

𝑥
𝑁

2𝑆

(−𝜌Δ𝑥)
2
𝑆
󸀠
(𝑡)
2
+ 𝜌Δ𝑥𝑆

󸀠
(𝑡) − 𝑤 = 0,

𝑤 = 𝑤 (𝑆 (𝑡) , 𝑡) .

(30)
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Figure 9: Increasing size of differential error of BIM and LTFF
according to final time 𝑇 in the solution.

Combining (30) with 𝑢
𝑥
(𝑆(𝑡), 𝑡) < 0, 𝑆󸀠(𝑡) > 0, we have

𝑆
󸀠
(𝑡) =

−𝑏 + √𝑏
2
− 4𝑎𝑐

2𝑎

, (31)

where

𝑎 =

𝑥
𝑁

2𝑆

(−𝜌Δ𝑥)
2
,

𝑏 = 𝜌Δ𝑥,

𝑐 = −𝑤.

(32)

For discretization (Δ𝑥, Δ𝑡), we introduce a two-dimensional
mesh in the first quadrant of the 𝑥 − 𝑡 plane. From (31) we
have

𝑆
𝑚+1

= 𝑆
𝑚
+

−
̃
𝑏 +

√̃
𝑏
2
− 4𝑎 𝑐

2𝑎

Δ𝑡,
(33)

where

𝑎 =

𝑥
𝑚

𝑁

2𝑆
𝑚

(−𝜌Δ𝑥
𝑚
)
2
,

̃
𝑏 = 𝜌Δ𝑥

𝑚
,

𝑐 = −𝑤 (𝑁Δ𝑥 − 𝜌Δ𝑥,𝑚Δ𝑡) ,

𝑚 = 0, 1, 2, . . . ,𝑀 − 1.

(34)

When the initial values are given by𝑤(𝑁Δ𝑥−𝜌Δ𝑥, 𝑡
0
) (trans-

formed value of the temperature) and 𝑆
0
(free boundary) at

𝑡 = 0, we can determine 𝑆
1
(free boundary) at Δ𝑡 using (33)

and find𝑤 from (26). More importantly, for updating the free
boundary ourmethod does not include any iteration until the
numerical solution is obtained. So, we repeat the previously
mentioned process until 𝑀Δ𝑡 and obtain the free boundary
in a time-recursive way.

3.2. Log-Transform Function with Fixed Free Boundary
(LTFF). In the case below, we assign 𝑁 + 1 as the number
of 𝑦 (0 ≤ 𝑦 ≤ 1) and 𝑀 + 1 as the number of 𝑡. Therefore,
Δ𝑡 = 𝑇/𝑀 so that 𝑡

𝑚
= 𝑚Δ𝑡, where 𝑇 is the maximum of

𝑡. Similarly, Δ𝑦 = 1/𝑁 so that 𝑦
𝑛
= 𝑛Δ𝑦. We also define

𝑢̂
𝑚

𝑛
= 𝑢̂(𝑦

𝑛
, 𝑡
𝑚
), 𝑆
𝑚
= 𝑆(𝑡
𝑚
), and 𝑆

󸀠
= 𝑑𝑆/𝑑𝑡. The method

starts with

𝑦 =

𝑥

𝑆 (𝑡)

,

𝑢̂ (𝑦, 𝑡) = 𝑢 (𝑥, 𝑡) .

(35)

We obtain from (17) and (35)

𝑢̂ (1, 𝑡) = 0,

𝑢̂
𝑦 (
1, 𝑡) = − 𝑆 (𝑡) 𝑆

󸀠
(𝑡) ,

𝑢̂
𝑦𝑦 (

1, 𝑡) = 2𝑆(𝑡)
2
𝑆
󸀠
(𝑡)
2
.

(36)

From 𝑢̂(𝑦, 𝑡) = exp(𝑤(𝑦, 𝑡)) − 1, we obtain the following
relations near free boundary (𝑤(1, 𝑡) = 0):

𝑢̂
𝑡
= 𝑤
𝑡
,

𝑢̂
𝑦
= 𝑤
𝑦
,

𝑢̂
𝑦𝑦
= 𝑤
2

𝑦
+ 𝑤
𝑦𝑦
.

(37)

Plugging (35) and (37) into (17), we obtain

𝑤
𝑡
=

𝜉

𝑆

𝑆
󸀠
𝑤
𝜉
+

1

𝑆
2
𝑤
2

𝜉
+

1

𝑆
2
𝑤
𝜉𝜉
. (38)
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Table 2: Comparison of RMSE and runtime in the solution.

Mesh size
(𝑁 ×𝑀)

(Runtime, RMSE)
VSG BIM LTUF LTFF

1250 × 5 (0.045, 0.02346430) (0.086, 0.02214381) (0.030, 0.02340634) (0.057, 0.02206451)
2500 × 10 (0.082, 0.00589595) (0.091, 0.00552885) (0.083, 0.00588832) (0.098, 0.00551475)
5000 × 20 (0.203, 0.00152029) (0.296, 0.00142859) (0.227, 0.00151975) (0.289, 0.00142755)
10000 × 40 (0.820, 0.00042633) (1.005, 0.00040835) (0.867, 0.00042561) (1.037, 0.00040779)
20000 × 80 (3.640, 0.00010951) (4.122, 0.00010726) (3.700, 0.00010865) (3.969, 0.00009299)

Table 3: Comparison of L2 norm and runtime in the solution.

Mesh size
(𝑁 ×𝑀)

(Runtime, L2 norm)
VSG BIM LTUF LTFF

1250 × 5 (0.045, 0.33100481) (0.086, 0.31159113) (0.030, 0.33101571) (0.057, 0.31125825)
2500 × 10 (0.082, 0.08358954) (0.091, 0.07818977) (0.083, 0.08348142) (0.098, 0.07799352)
5000 × 20 (0.203, 0.02155389) (0.296, 0.02020339) (0.227, 0.02154625) (0.289, 0.02018861)
10000 × 40 (0.820, 0.00604438) (1.005, 0.00577497) (0.867, 0.00603415) (1.037, 0.00576715)
20000 × 80 (3.640, 0.00155269) (4.122, 0.00151694) (3.700, 0.00154049) (3.969, 0.00131512)

Table 4: Comparison of RMSE and L2 norm with LTUF method in
the solution.

Mesh size
(𝑁 ×𝑀)

LTUF
(Runtime, RMSE) (Runtime, L2 norm)

1250 × 5 (0.030, 0.02340634) (0.030, 0.33101571)
2500 × 10 (0.083, 0.00588832) (0.083, 0.08348142)
5000 × 20 (0.227, 0.00151975) (0.227, 0.02154625)
10000 × 40 (0.867, 0.00042561) (0.867, 0.00603415)
20000 × 80 (3.700, 0.00010865) (3.700, 0.00154049)

Table 5: Comparison of RMSE and L2 norm with LTFF method in
the solution.

Mesh size
(𝑁 ×𝑀)

LTFF
(Runtime, RMSE) (Runtime, L2 norm)

1250 × 5 (0.057, 0.02206451) (0.057, 0.31125825)
2500 × 10 (0.098, 0.00551475) (0.098, 0.07799352)
5000 × 20 (0.289, 0.00142755) (0.289, 0.02018861)
10000 × 40 (1.037, 0.00040779) (1.037, 0.00576715)
20000 × 80 (3.969, 0.00009299) (3.969, 0.00131512)

Using 𝑢̂(𝑥, 𝑡) = exp(𝑤(𝑥, 𝑡)) − 1, (36), and (37), we obtain the
following:

𝑤 (1, 𝑡) = 0,

𝑤
𝑦 (
1, 𝑡) = − 𝑆 (𝑡) 𝑆

󸀠
(𝑡) ,

𝑤
𝑦𝑦 (

1, 𝑡) = 𝑆(𝑡)
2
𝑆
󸀠
(𝑡)
2
.

(39)

We lower the error by using the optimized safety parameter
𝜌 for a Taylor series with fixed free boundary, a method

suggested by Kim et al. [16], in order to control the error.
We use Taylor series so that we can manage the error by
employing the safety parameter 𝜌:

𝑤 (𝑦, 𝑡) = 𝑤 (1, 𝑡) +

𝑤
𝑦 (
1, 𝑡)

1!

(𝑦 − 1)

+

𝑤
𝑦𝑦 (

1, 𝑡)

2!

(𝑦 − 1)
2
+ 𝑂 ((𝑦 − 1)

3
) ,

𝑤 (𝑦, 𝑡) = 𝑤 (1, 𝑡) +

𝑤
𝑦 (
1, 𝑡)

1!

(𝑦 − 1) +

𝑤
𝑦𝑦 (

1, 𝑡)

2!

(𝑦 − 1)
2
.

(40)

Using 𝑦 = 1 − 𝜌Δ𝑦, (39), and (40), we get
1

2

𝑆(𝑡)
2
(−𝜌Δ𝑦)

2
𝑆
󸀠
(𝑡)
2
+ 𝑆 (𝑡) 𝜌Δ𝑦𝑆

󸀠
(𝑡) − 𝑤 = 0. (41)

Combining (41) with 𝑢
𝑥
(𝑆(𝑡), 𝑡) < 0, 𝑆󸀠(𝑡) > 0, we have

𝑆
󸀠
(𝑡) =

−𝑏 + √𝑏
2
− 4𝑎𝑐

2𝑎

, (42)

where

𝑎 =

1

2

𝑆(𝑡)
2
(−𝜌Δ𝑦)

2
,

𝑏 = 𝑆 (𝑡) 𝜌Δ𝑦,

𝑐 = −𝑤.

(43)

For discretization (Δ𝑦, Δ𝑡), we introduce a two-dimensional
mesh in the first quadrant of the 𝑦 − 𝑡 plane. From (42) we
have

𝑆
𝑚+1

= 𝑆
𝑚
+

−
̃
𝑏 +

√̃
𝑏
2
− 4𝑎 𝑐

2𝑎

Δ𝑡,
(44)
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Table 6: Comparison of VSG, BIM, LTUF, LTFF method, and exact solution when 𝑓(𝑡) = exp(𝑡 + 1).

Position 𝑥 Numerical solution Exact solution
VSG BIM LTUF LTFF

0.00 6.389056 6.389056 6.389056 6.389056 6.389056
0.10 5.685461 5.685448 5.685467 5.685440 5.685894
0.20 5.049275 5.049261 5.049281 5.049254 5.049647
0.30 4.473626 4.473613 4.473632 4.473605 4.473947
0.40 3.952754 3.952741 3.952761 3.952734 3.953032
0.50 3.481448 3.481434 3.481454 3.481428 3.481689
0.60 3.054989 3.054975 3.054997 3.054978 3.055199
0.70 2.669112 2.669098 2.669120 2.669094 2.669296
0.80 2.319954 2.319939 2.319962 2.319937 2.320117
0.90 2.004020 2.004006 2.004030 2.004006 2.004116
1.00 1.718151 1.718137 1.718162 1.718139 1.718281
1.10 1.459484 1.459470 1.459498 1.459474 1.459603
1.20 1.225432 1.225418 1.225446 1.225425 1.225540
1.30 1.013652 1.013638 1.013667 1.013648 1.013752
1.40 0.822024 0.822010 0.822042 0.822024 0.822119
1.50 0.648631 0.648618 0.648651 0.648635 0.648721
1.60 0.491738 0.491725 0.491760 0.491746 0.491824
1.70 0.349775 0.349762 0.349799 0.349787 0.349859
1.80 0.221320 0.221308 0.221347 0.221338 0.221403
1.90 0.105089 0.105077 0.105119 0.105112 0.105171
2.00 0.000000 0.000000 0.000000 0.000000 0.000000
RMSE 0.000109 0.000107 0.000108 0.000092
L2 norm 0.001552 0.001516 0.001540 0.001315
Runtime (secs) 3.640 4.122 3.700 3.969

where

𝑎 =

1

2

𝑆
2

𝑚
(−𝜌Δ𝑦)

2
,

̃
𝑏 = 𝑆
𝑚
𝜌Δ𝑦,

𝑐 = −𝑤 (1 − 𝜌Δ𝑦,𝑚Δ𝑡) ,

𝑚 = 0, 1, 2, . . . ,𝑀 − 1.

(45)

When the initial values are given by 𝑤(1 − 𝜌Δ𝑦, 𝑡
0
)

(transformed value of the temperature) and 𝑆
0
(free bound-

ary) at 𝑡 = 0, we can determine 𝑆
1
(free boundary) atΔ𝑡 using

(44) and find 𝑤 from (38). More importantly, for updating
the free boundary, our method does not include any iteration
until the numerical solution is obtained. So, we repeat the
previously mentioned process until𝑀Δ𝑡 and obtain the free
boundary in a time-recursive way.

4. Numerical Result

In this section, we provide two numerical examples to illus-
trate ourmethod.We also provide runtimes and computation
errors used to compare with the results obtained by other
numerical methods such as the VSG method developed by
Kutluay et al. [14] and the BIMmethod developed by Landau
[13]. In this section, we compare the four methods based

on runtime, L2 norm, and root mean square error (RMSE).
All calculations are carried out using a C++ implementation
with the a 2.66Ghz Intel 4 Core CPU with 4GBRAM. A
finite difference method with an explicit finite difference
approximation is proposed for our methods. The benchmark
results are obtained using the exact solution.

The parameter values used to calculate the free boundary
and the values of temperature are 𝑇 = 1.0, 𝑓(𝑡) = exp(𝑡 + 1),
𝑆(0) = 1, and a discrete mesh of 10000 × 40 nodes.

In Figure 2, we find a numerical optimization 𝜌 =

0.00706. Table 1 also shows the results of the free boundary
and the values of temperaturewith the safety parameters. One
can see from Table 1 that the free boundary monotonically
increases as the value of 𝜌 increases, but the values of
temperature monotonically decrease when 𝜌 increases. They
are so gradual that they are not very susceptible to change in
the value of 𝜌.

In Figure 3, Table 2, Figure 4, and Table 3, we take the
parameter values used in Figure 2 except for the discrete
mesh, plot runtimes, and computational errors compared
with the various methods.

Figure 5 and Table 4 show the RMSE and L2 norm error
of the LTUFmethod and compare it with sufficiently inclined
slope.

Figure 6 and Table 5 show the RMSE and L2 norm error
of the LTFF method and compare it with sufficiently inclined
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Table 7: Comparison of VSG, BIM, LTUF, LTFF method, and exact solution when 𝑓(𝑡) = 1.

position 𝑥 Numerical solution Exact solution
VSG BIM LTUF LTFF

0.00 1.128379 1.128379 1.128379 1.128379 1.128379
0.10 1.030558 1.030846 1.031035 1.031171 1.031198
0.20 0.939323 0.939562 0.939461 0.938557 0.939644
0.30 0.853239 0.853118 0.852186 0.853340 0.853672
0.40 0.772252 0.772710 0.773105 0.772877 0.773215
0.50 0.696855 0.697913 0.698005 0.697264 0.698177
0.60 0.627581 0.628210 0.627142 0.628511 0.628436
0.70 0.563013 0.562986 0.563804 0.562138 0.563851
0.80 0.503018 0.503362 0.504110 0.504430 0.504255
0.90 0.447454 0.449016 0.448385 0.448748 0.448465
1.00 0.397071 0.398605 0.394381 0.399291 0.399282
1.10 0.351200 0.352020 0.353327 0.353470 0.353492
1.20 0.309050 0.310587 0.310942 0.311511 0.311870
1.30 0.270431 0.272901 0.274082 0.274519 0.274184
1.40 0.235147 0.238341 0.239877 0.239340 0.240196
1.50 0.203922 0.206799 0.208701 0.210078 0.209664
1.60 0.175475 0.179454 0.181921 0.182140 0.182347
1.70 0.149508 0.154482 0.157249 0.158290 0.158005
1.80 0.125812 0.131752 0.135028 0.136610 0.136403
1.90 0.104323 0.111398 0.116116 0.117326 0.117311
2.00 0.085031 0.093533 0.098785 0.100843 0.100509
RMSE 0.0055537 0.0024662 0.0007687 0.0006550
L2 norm 0.0789335 0.0350518 0.0109265 0.0093102
Runtime (secs) 0.795 0.860 0.783 0.821

slope. Especially, Figures 5 and 6 and Tables 4 and 5 show the
numerical convergence of ourmethods.Note that the discrete
meshes of 1250 × 5, 2500 × 10, 5000 × 20, 10000 × 40, and
20000 × 80 nodes are plotted in Figures 3, 4, 5, 6, 7, 8, and 9,
and Tables 2, 3, 4, 5, 6, and 7.

For the sake of clarity, the pairs of (RMSE, L2 norm) of all
four methods are graphed in Figure 7. Figure 7 illustrates the
pairs in the solution.The figure shows that, in terms of errors
(RMSE, L2 norm), LTUF approximates more accurately than
VSG does, and LTFF approximates more accurately than
BIM does. In Figures 8 and 9, we investigate the functional
behaviors of the difference between RMSE (VSG) and RMSE
(LTUF), L2 norm (VSG) and L2 norm (LTUF), RMSE (BIM)
and RMSE (LTFF), and L2 norm (BIM) and L2 norm (LTFF)
with respect to final time change.

Table 6 reports the values of the temperatures for the
specific parameter set associated with the discrete mesh of
20000 × 80.

In Figure 10 and Table 7, we investigate the free boundary
behavior with respect to time change when 𝑇 = 1.0, 𝑓(𝑡) = 1,
and 𝑆(0) = 0. From (1)∼(5) this problem has the following
exact solution 𝑢(𝑥, 𝑡):

𝑢 (𝑥, 𝑡) = 2√
𝑡

𝜋

exp(−𝑥
2

4𝑡

) − 𝑥 erfc( 𝑥

2√𝑡

) . (46)

5. Final Remarks

We suggested LTUF and LTFF methods. There are approxi-
mated solutions that show reasonable agreement.

VSG method suggested by Kutluay et al. [14] shows that
accumulating error occurred during calculation by the three-
term backward difference near the free boundary, while
LTUF method adopts a log-transform function to reduce the
accumulating error in solution surface that causes gradual
slope. Our method employing a log-transform function with
the fixed free boundary solves a nonlinear problem on a fixed
domain derived from a free boundary problem. Since the
computation process depends on Lipschitz surface, we need
to focus on the motion of the solution surface which would
be simple to see the minute behavior of solution surface.

Kutluay et al. [14] use three-term backward difference
scheme during calculating the free boundary with BIM
method suggested by Landau [13]. However, we emphasize
that there is no three-term backward difference scheme in
LTFF method. Instead, we solve the quadratic equation and
directly find the free boundary. In an environment with the
rapidly changing free boundary, our straight forwardmethod
is a very powerful tool to understand Stefan problem.

Numerical study also shows that overall speed and accu-
racy comparisons have demonstrated some superiority of our
methods over other methods. Further investigations on the
extending of the various models could be interesting and
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Figure 10: Numerical solution and contours when 𝑓(𝑡) = 1.

useful. Also, more comparative and extensive studies on our
method should be helpful for completing the mission of the
present work. This remains as our future research work.
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