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We study the recent investigations on a class of functions which are logarithmically completely monotonic. Two open problems are
also presented.

1. Introduction

Recall [1] that a positive function 𝑓 is said to be logarithmi-
cally completely monotonic (LCM) on an open interval 𝐼 if
𝑓 has derivatives of all orders on 𝐼 and for all 𝑛 ∈ N :=
{1, 2, 3, . . .},

(−1)
𝑛[ln𝑓 (𝑥)](𝑛) ≥ 0. (1)

LCM functions are related to completely monotonic
(CM) functions [2], strongly logarithmically completely
monotonic (SLCM) functions [3], almost strongly completely
monotonic (ASCM) functions [3], almost completely mono-
tonic (ACM) functions [4], Laplace transforms, and Stieltjes
transforms and have wide applications. It is evident that the
set of SLCM functions is a nontrivial subset of the set of
LCM functions, which is a nontrivial subset of the set of CM
functions, and that the set of CM functions is a nontrivial
subset of the set of ACM functions. It was established [3] that
the set of SLCM functions is a nontrivial subset of the set of
ASCM functions and that the set of SLCM functions on the
interval (0,∞) is disjoint with the set of strongly completely
monotonic (SCM) functions (see [5] for its definition) on the
interval (0,∞).

It is well known that the classical Euler gamma function
is defined for 𝑥 > 0 by

Γ (𝑧) = ∫
∞

0

𝑡𝑥−1𝑒−𝑡d𝑡. (2)

The logarithmic derivative of Γ(𝑧), denoted by

𝜓 (𝑧) =
Γ (𝑧)

Γ (𝑧)
, (3)

is called psi function, and𝜓(𝑘) for 𝑘 ∈ N are called polygamma
functions.

For 𝛼, 𝛾 ∈ R and 𝛽 ≥ 0, define

𝑓
𝛼,𝛽,𝛾

(𝑥) := [
𝑒𝑥Γ (𝑥 + 𝛽)

𝑥𝑥+𝛽−𝛼
]

𝛾

, 𝑥 ∈ (0,∞) , (4)

which is encountered in probability and statistics.
Since 𝑓

𝛼,𝛽,𝛾
(𝑥) (𝛾 > 0) is logarithmically completely

monotonic if and only if 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically com-
pletely monotonic and 𝑓

𝛼,𝛽,𝛾
(𝑥) (𝛾 < 0) is logarithmically

completely monotonic if and only if 𝑓
𝛼,𝛽,−1

(𝑥) is logarith-
mically completely monotonic, we only need to study the
logarithmically complete monotonicity of the function

𝑓
𝛼,𝛽,±1

(𝑥) = [
𝑒𝑥Γ (𝑥 + 𝛽)

𝑥𝑥+𝛽−𝛼
]

±1

, 𝑥 ∈ (0,∞) . (5)

In [6, Theorem 3.2], it was proved that the function
𝑓
1/2,0,1

(𝑥) is decreasing and logarithmically convex from
(0,∞) onto (√2𝜋,∞) and that the function 𝑓

1,0,1
(𝑥) is

increasing and logarithmically concave from (0,∞) onto
(1,∞).
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In [7, Theorem 1], for showing

𝑏𝑏−1

𝑎𝑎−1
𝑒𝑎−𝑏 <

Γ (𝑏)

Γ (𝑎)
<
𝑏𝑏−1/2

𝑎𝑎−1/2
𝑒𝑎−𝑏 (6)

for

𝑏 > 𝑎 > 1, (7)

monotonic properties of the functions ln𝑓
𝛼,0,1

(𝑥) and
ln𝑓
𝛼,0,1

(𝑥) on the interval (1,∞) were obtained.
In [8, Theorem 2], it was presented that the function

𝑓
𝛼,0,1

(𝑥) is decreasing on the interval (𝑐,∞) for 𝑐 ≥ 0 if and
only if

𝛼 ≤
1

2
(8)

and increasing on the interval (𝑐,∞) if and only if

𝛼 ≥ {
𝑐 [ln 𝑐 − 𝜓 (𝑐)] if 𝑐 > 0,
1 if 𝑐 = 0.

(9)

In [9], after proving the logarithmically completely
monotonic property of the functions𝑓

1/2,0,1
(𝑥) and𝑓

1,0,−1
(𝑥),

in virtue of Jensen’s inequality for convex functions, the upper
and lower bounds for the Gurland’s ratio were established: for
positive numbers 𝑥 and 𝑦, the inequality

𝑥𝑥−1/2𝑦𝑦−1/2

[(𝑥 + 𝑦) /2]
𝑥+𝑦−1

≤
Γ (𝑥) Γ (𝑦)

[Γ((𝑥 + 𝑦)/2)]
2
≤

𝑥𝑥−1𝑦𝑦−1

[(𝑥 + 𝑦)/2]
𝑥+𝑦−2

(10)

holds true, where the middle term in (10) is called Gurland’s
ratio [10].

In [11] the authors proved the following result.

Theorem 1 (see [11]). If

2𝛼 ≤ 1 ≤ 𝛽, (11)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).

The necessary and sufficient conditions for the func-
tions 𝑓

𝛼,0,1
(𝑥) and 𝑓

𝛼,0,−1
(𝑥) to be logarithmically completely

monotonic on the interval (0,∞) were also given in [11].
Using monotonic properties of the functions 𝑓

1/2,0,1
(𝑥)

and 𝑓
1,0,−1

(𝑥), the inequality (6) was extended (see [11,
Remark 1]) from

𝑏 > 𝑎 > 1 (12)

to

𝑏 > 𝑎 > 0. (13)

In [12] the authors proved the following results.

Theorem 2 (see [12]). If 𝛽 > 0 and 𝛼 ≤ 0, then the
function 𝑓

𝛼,𝛽,1
(𝑥) is logarithmically completely monotonic on

the interval (0,∞).

Theorem 3 (see [12]). For 𝛽 > 0, a necessary condition for the
function 𝑓

𝛼,𝛽,1
(𝑥) to be logarithmically completely monotonic

on the interval (0,∞) is that

𝛼 ≤ min {𝛽, 1
2
} . (14)

Theorem 4 (see [12]). For 𝛽 ≥ 1, a necessary and sufficient
condition for the function 𝑓

𝛼,𝛽,1
(𝑥) to be logarithmically

completely monotonic on the interval (0,∞) is that

𝛼 ≤
1

2
. (15)

As direct consequences of the above results, the following
Kečkić-Vasić-type inequality is deduced.

Theorem 5 (see [12]). Let 𝑥 and 𝑦 be positive numbers with
𝑥 ̸= 𝑦.

(1) For 𝛽 ≥ 1, the following inequality

𝐼 (𝑥, 𝑦) > [(
𝑥

𝑦
)
𝛼−𝛽 Γ (𝑥 + 𝛽)

Γ (𝑦 + 𝛽)
]

1/(𝑥−𝑦)

(16)

holds true if and only if 𝛼 ≤ 1/2, where

𝐼 (𝑎, 𝑏) =
1

𝑒
(
𝑏𝑏

𝑎𝑎
)

1/(𝑏−𝑎)

(𝑎 > 0, 𝑏 > 0, 𝑎 ̸= 𝑏) (17)

is the identric or exponential mean.
(2) For 𝛽 > 0, the inequality (16) holds true also if 𝛼 ≤ 0.

In [13], the following result was established.

Theorem 6 (see [13]). (1) For 𝛽 ∈ [0, 1/2), if

𝛼 ≤ 𝛽 − 𝑒−4(1 − 𝛽)
2 exp( 2

1 − 𝛽
) , (18)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).

(2) For 𝛽 ∈ [1/2, 1], if

𝛼 ≤ min {3𝛽2 − 3𝛽 + 1, 1
2
} , (19)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).

FromTheorem6we can directly obtain the following new
result.

Corollary 7. (1) For 𝛽 ∈ [1/4, 1/2], if

𝛼 ≤ 𝛽 −
1

4
, (20)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).
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(2) For 𝛽 ∈ (1/2, 3/4], if

𝛼 ≤ 𝛽 −
1

3
, (21)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).

(3) For 𝛽 ∈ (3/4, 1], if

𝛼 ≤ 𝛽 −
1

2
, (22)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).

A necessary and sufficient condition is obtained in [13] as
follows.

Theorem 8 (see [13]). For

𝛽 ∈ {0} ∪ [
1

2
+
√3

6
,∞) , (23)

a necessary and sufficient condition for the function𝑓
𝛼,𝛽,1

(𝑥) to
be logarithmically completely monotonic on the interval (0,∞)
is that

𝛼 ≤
1

2
. (24)

Regarding the logarithmically complete monotonicity for
the function 𝑓

𝛼,𝛽,−1
(𝑥) and their applications. In [14], the

authors proved the following results.

Theorem 9 (see [14]). If the function 𝑓
𝛼,𝛽,−1

(𝑥) is logarithmi-
cally completely monotonic on the interval (0,∞), then either

𝛽 > 0, 𝛼 ≥ max {𝛽, 1
2
} (25)

or

𝛽 = 0, 𝛼 ≥ 1. (26)

Theorem 10 (see [14]). For

𝛽 ≥
1

2
, (27)

the necessary and sufficient condition for the function𝑓
𝛼,𝛽,−1

(𝑥)
to be logarithmically completely monotonic on the interval
(0,∞) is that

𝛼 ≥ 𝛽. (28)

As first application, the following inequalities are derived
by using logarithmically completely monotonic properties of
the function 𝑓

𝛼,𝛽,±1
(𝑥) on the interval (0,∞).

Theorem 11 (see [14]). (1) For 𝑘 ∈ N, double inequalities

ln𝑥 − 1

𝑥
≤ 𝜓 (𝑥) ≤ ln𝑥 − 1

2𝑥
,

(𝑘 − 1)!

𝑥𝑘
+

𝑘!

2𝑥𝑘+1
≤ (−1)

𝑘+1𝜓(𝑘) (𝑥) ≤
(𝑘 − 1)!

𝑥𝑘
+

𝑘!

𝑥𝑘+1

(29)

hold true on the interval (0,∞).

(2)When 𝛽 > 0, inequalities

𝜓 (𝑥 + 𝛽) ≤ ln𝑥 +
𝛽

𝑥
,

(−1)
𝑘𝜓(𝑘−1) (𝑥 + 𝛽) ≥

(𝑘 − 2)!

𝑥𝑘−1
−
𝛽 (𝑘 − 1)!

𝑥𝑘

(30)

hold true on the interval (0,∞) for 𝑘 ≥ 2.
(3)When 𝛽 ≥ 1/2, inequalities

𝜓 (𝑥 + 𝛽) ≥ ln𝑥,

(−1)
𝑘𝜓(𝑘−1) (𝑥 + 𝛽) ≤

(𝑘 − 2)!

𝑥𝑘−1

(31)

hold true on the interval (0,∞) for 𝑘 ≥ 2.
(4)When 𝛽 ≥ 1, inequalities

𝜓 (𝑥 + 𝛽) ≤ ln𝑥 +
𝛽 − 1/2

𝑥
,

(−1)
𝑘𝜓(𝑘−1) (𝑥 + 𝛽) ≥

(𝑘 − 2)!

𝑥𝑘−1
−
(𝛽 − 1/2) (𝑘 − 1)!

𝑥𝑘

(32)

hold true on the interval (0,∞) for 𝑘 ≥ 2.

As second application, the following inequalities are
derived by using logarithmically convex properties of the
function 𝑓

𝛼,𝛽,±1
(𝑥) on (0,∞).

Theorem 12 (see [14]). Let 𝑛 ∈ N and

𝑥
𝑘
> 0 (1 ≤ 𝑘 ≤ 𝑛) . (33)

Suppose also that
𝑛

∑
𝑘=1

𝑝
𝑘
= 1 (𝑝

𝑘
≥ 0) . (34)

If either

𝛽 > 0, 𝛼 ≤ 0 (35)

or

𝛽 ≥ 1, 𝛼 ≤
1

2
, (36)

then

∏
𝑛

𝑘=1
[Γ(𝑥
𝑘
+ 𝛽)]
𝑝𝑘

Γ (∑
𝑛

𝑘=1
𝑝
𝑘
𝑥
𝑘
+ 𝛽)

≥
∏
𝑛

𝑘=1
𝑥
𝑝𝑘(𝑥𝑘+𝛽−𝛼)

𝑘

(∑
𝑛

𝑘=1
𝑝
𝑘
𝑥
𝑘
)
∑
𝑛

𝑘=1
𝑝𝑘𝑥𝑘+𝛽−𝛼

. (37)

If

𝛼 ≥ 𝛽 ≥
1

2
, (38)

then the inequality (37) reverses.

As final application, the following inequality can be
derived by using the decreasingly monotonic property of the
function 𝑓

𝛼,𝛽,−1
(𝑥) on (0,∞).
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Theorem 13 (see [14]). If

𝛼 ≥ 𝛽 ≥
1

2
, (39)

then

𝐼 (𝑥, 𝑦) < [(
𝑥

𝑦
)
𝛼−𝛽 Γ (𝑥 + 𝛽)

Γ (𝑦 + 𝛽)
]

1/(𝑥−𝑦)

(40)

holds true for 𝑥, 𝑦 ∈ (0,∞) with 𝑥 ̸= 𝑦, where 𝐼(𝑥, 𝑦), defined
by (17), is the identric or exponential mean.

The following results were shown in [15].

Theorem 14 (see [15]). For

𝛽 ≥ 0, (41)

a sufficient condition for the function 𝑓
𝛼,𝛽,−1

(𝑥) to be logarith-
mically completely monotonic on the interval (0,∞) is that

𝛼 ≥ max {1
2
, 𝛽, 3𝛽2 − 3𝛽 + 1} . (42)

Remark 15. FromTheorems 9 and 14we see that the necessary
and sufficient condition for the function 𝑓

𝛼,0,−1
(𝑥) to be

logarithmically completely monotonic on the interval (0,∞)
is that

𝛼 ≥ 1. (43)

This result is Theorem 2 in [11]. Here we recovered it.

Theorem 16 (see [15]). Let

𝛽 ∈ [
1

2
−
√3

6
,
1

2
] . (44)

Then the necessary and sufficient condition for the function
𝑓
𝛼,𝛽,−1

(𝑥) to be logarithmically completely monotonic on the
interval (0,∞) is that

𝛼 ≥
1

2
. (45)

The following results are applications of the above theo-
rems.

Theorem 17 (see [15]). When

1

2
−
√3

6
≤ 𝛽 ≤

1

2
, (46)

the following inequalities

𝜓 (𝑥 + 𝛽) ≥ ln𝑥 −
1/2 − 𝛽

𝑥
,

(−1)
𝑘𝜓(𝑘−1) (𝑥 + 𝛽) ≤

(𝑘 − 2)!

𝑥𝑘−1
+
(1/2 − 𝛽) (𝑘 − 1)!

𝑥𝑘

(𝑘 ≥ 2)

(47)

hold true on the interval (0,∞).

Theorem 18 (see [15]). Let 𝑛 ∈ N and

𝑥
𝑘
> 0 (1 ≤ 𝑘 ≤ 𝑛) . (48)

Suppose also that

𝑛

∑
𝑘=1

𝑝
𝑘
= 1 (𝑝

𝑘
≥ 0) . (49)

If

0 ≤ 𝛽 ≤
1

2
,

𝛼 ≥ max {1
2
, 3𝛽2 − 3𝛽 + 1} ,

(50)

then

∏
𝑛

𝑘=1
[Γ(𝑥
𝑘
+ 𝛽)]
𝑝𝑘

Γ (∑
𝑛

𝑘=1
𝑝
𝑘
𝑥
𝑘
+ 𝛽)

≤
∏
𝑛

𝑘=1
𝑥
𝑝𝑘(𝑥𝑘+𝛽−𝛼)

𝑘

(∑
𝑛

𝑘=1
𝑝
𝑘
𝑥
𝑘
)
∑
𝑛

𝑘=1
𝑝𝑘𝑥𝑘+𝛽−𝛼

. (51)

Theorem 19 (see [15]). If

0 ≤ 𝛽 ≤
1

2
,

𝛼 ≥ max {1
2
, 3𝛽2 − 3𝛽 + 1} ,

(52)

then

𝐼 (𝑥, 𝑦) < [(
𝑥

𝑦
)
𝛼−𝛽 Γ (𝑥 + 𝛽)

Γ (𝑦 + 𝛽)
]

1/(𝑥−𝑦)

(𝑥 > 0; 𝑦 > 0; 𝑥 ̸= 𝑦) ,

(53)

where in (53) 𝐼(𝑥, 𝑦), defined by (17), is the identric or
exponential mean.

2. Open Problems

2.1. Open Problem 1. From Theorem 8 we have already
known, for

𝛽 ∈ {0} ∪ [
1

2
+
√3

6
,∞) , (54)

a necessary and sufficient condition for the function 𝑓
𝛼,𝛽,1

(𝑥)
to be logarithmically completely monotonic on the interval
(0,∞).

For

𝛽 ∈ (0,
1

2
+
√3

6
) , (55)

what is a necessary and sufficient condition for the function
𝑓
𝛼,𝛽,1

(𝑥) to be logarithmically completely monotonic on the
interval (0,∞)?

Already Known. Theorem 3 gave a necessary condition;
Theorem 6 provided a sufficient condition.
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2.2. Open Problem 2. From Remark 15, Theorems 10 and 16
we have already known, for

𝛽 ∈ {0} ∪ [
1

2
−
√3

6
,∞) , (56)

a necessary and sufficient condition for the function𝑓
𝛼,𝛽,−1

(𝑥)
to be logarithmically completely monotonic on the interval
(0,∞).

For

𝛽 ∈ (0,
1

2
−
√3

6
) , (57)

what is a necessary and sufficient condition for the function
𝑓
𝛼,𝛽,−1

(𝑥) to be logarithmically completely monotonic on the
interval (0,∞)?

Already Known. Theorem 9 gave a necessary condition;
Theorem 14 provided a sufficient condition.
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