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Data envelopment analysis (DEA) is a nonparametric approach formeasuring the relative efficiencies of peer decision-making units
(DMUs). For systems with two-stage structures, where all the outputs from the first stage are the only inputs to the second stage,
the centralized model, which is based on the concept of cooperative game theory, has been widely used to examine the efficiencies
of such systems. We define the cross efficiencies of systems with two-stage structures. Since the centralized model may lead to
multiple and unacceptable cross efficiencies and rankings of DMUs due to its high flexibility in choosing optimal weights on input
and output factors, we develop a gamemodel to obtain a unique cross efficiencymeasure, which is constructed from the perspective
of noncooperative game. An iterative algorithm is then proposed to obtain the game cross efficiencies for the overall systems and
subsystems. We use the proposed game model to evaluate the performance of top 30 US commercial banks. The results show that
the game model can lead to a unique reasonable cross efficiency for each DMU.

1. Introduction

Data envelopment analysis (DEA) is a nonparametric
approach for identifying the best practice of decision-making
units (DMUs). Since it was firstly introduced by [1], there have
been numerous studies in many areas, including profit and
nonprofit organizations [2–6].

Conventional DEA models do not consider the internal
structures and treat the whole production system as a black
box. However, in many cases, DMUs may consist of two-
stage structures with intermediate measures, where all the
outputs from the first stage are the only inputs to the
second stage [7]. Great efforts have been devoted to evaluate
the efficiencies of two-stage systems and their subsystems.
Cook et al. [8] classified the existing models into four cate-
gories: standard DEA approach [9], efficiency decomposition
approach [10, 11], network DEA approach [12], and game-
theoretic approach [13, 14]. Among them, the game-theoretic
approach is quite meaningful and practical for two-stage
systems, which can help decision makers to identify the
inefficient individual subprocess and adjustment directions
for each of the DMUs. The centralized model proposed

by [13] is constructed from the perspective of cooperative
game theory, where the two subsystems are viewed as one
unity to maximize the efficiency of the whole system. This
would be the case when the manufacturer and retailer jointly
determine prices to achieve the maximum total profit. Under
this framework, the efficiency of the whole system can be
decomposed into the product of the efficiencies of the two
subprocesses. When the optimal weights are not unique,
there may exist some flexibility in decomposing the overall
efficiency between the two subsystems. Liang et al. [13] and
Kao [15] both suggested obtaining the maximal achievable
efficiency of one stage firstly and computing the efficiency of
the other stage subsequently. Zhou et al. [16] applied theNash
bargaining game theory to determine a fair and alternative
decomposition when aforementioned flexibility exists. Du et
al. [14] developed aNash bargainingmodel under cooperative
game assumption to evaluate the performance of DMUs with
two-stage structures.

It is well known that one shortcoming of DEA is its
extremely high flexibility in choosing optimal weights on
input and output factors. A DMU can obtain a full effi-
ciency by choosing very high weights on some factors and
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extremely low weights on other factors. This drawback may
lead to unreasonable rankings of DMUs. This shortcoming
also exists in the aforementioned game-theoretic models for
DMUs with two-stage structures. Up to now, no literatures
address this issue.

Cross efficiency evaluation, on the other hand, uses
a peer-evaluation mode which is different from the self-
evaluation mode of conventional DEA models. Under cross
efficiency evaluation, mavericks have a lower chance of
attaining high appraisal. The use of cross efficiency eval-
uation has been prevalent in many DEA application areas
due to this merit [3, 4, 17–19]. Although cross efficiency
has proven to be powerful in ranking DMUs, there still
exist some drawbacks. The most important one is the
nonuniqueness of virtual weights and cross efficiencies. Sev-
eral approaches have been developed to alleviate this problem
[20–25].

In order to solve the problems exist in the aforementioned
game-theoretic centralized model for two-stage systems, that
is, DMUs can choose very high weights on some factors
and extremely low weights on other factors in order to
obtain full efficiencies, we use peer evaluation instead of self-
appraisal for the centralizedmodel and define cross efficiency
indicators for the whole system and two stages. We use
peer-evaluation instead of self-appraisal for the centralized
model and define cross efficiency indicators for the whole
system and two stages. In order to solve the nonuniqueness
of these indicators, a game model is constructed where
DMUs with two-stage structures are regarded as players in
a noncooperative game and the efficiency scores are viewed
as payoffs. Each DMU chooses to take a game stance to the
extent that it will attempt to maximize its payoff, which will
lead to a unique cross efficiency.

The remainder of this paper is organized as follows. In
the next section, the centralized model for two-stage systems
is reviewed briefly. The definition of cross efficiency of the
overall system and two subsystems is proposed. And then
the DEA game cross efficiency model is developed together
with the algorithm. In Section 3, the proposed model and
algorithm are used to evaluate the performance of top 30
US commercial banks. Conclusions are provided in the last
section.

2. Game Cross Efficiency for Systems with
Two-Stage Structures

2.1. The Centralized Model Based on the Cooperative Game
Concept. Consider a two-stage system shown in Figure 1.
Suppose there are 𝑛 DMUs. For the jth DMU, 𝑋𝑗 =

(𝑋1𝑗, . . . , 𝑋𝑚𝑗)
𝑇 represents the input vector to the first stage,

and 𝑍𝑗 = (𝑍1𝑗, . . . , 𝑍𝑡𝑗)
𝑇 represents the output vector from

the first stage and also the only input vector to the second
stage and is referred to as the intermediate vector. The
output vector from the second stage is denoted by 𝑌𝑗 =

(𝑌1𝑗, . . . , 𝑌𝑠𝑗)
𝑇.

If we ignore intermediate measures and treat the whole
system as a black box, by using the constant return to scale

Stage 1 Stage 2

DMUj, j = 1, . . . , n

Xj = (X1j, . . . , Xmj)
T

Zj = (Z1j, . . . , Ztj)
T

Yj = (Y1j, . . . , Ysj)
T

Figure 1: A system with two-stage structure.

(CRS) assumption, the efficiency score of the whole system
for the 𝑗𝑜th DMU, called DMU𝑜 in short, can be calculated
by the following CCR model:

𝑒𝑜 = max
∑
𝑠
𝑟=1 𝑢𝑟𝑜𝑌𝑟𝑜

∑
𝑚
𝑖=1 V𝑖𝑜𝑋𝑖𝑜

s.t.

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

∑
𝑠
𝑟=1𝑢𝑟𝑜𝑌𝑟𝑗

∑
𝑚
𝑖=1V𝑖𝑜𝑋𝑖𝑗

≤ 1, 𝑗 = 1, . . . , 𝑛

V𝑖𝑜 ≥ 0, 𝑖 = 1, . . . , 𝑚;

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1, . . . , 𝑠,

(1)

where V𝑖 is the weight for the 𝑖th input, 𝑢𝑟 is the weight for the
𝑟th output, 𝑖 = 1, . . . , 𝑚, and 𝑟 = 1, . . . , s.

Note that the above model only considers the initial
inputs and final outputs and ignores intermediate measures;
it may not properly characterize the performance of two-
stage systems, as discussed in [8]. For example, suppose
that a DMU consists of a manufacturer and a retailer. In a
cooperative environment, the manufacturer and retailer may
wish to work together in determining price, order quantity,
and other factors to achieve maximum savings and/or profit
for the manufacturer-retailer supply chain. From this coop-
erative game concept, [13] proposed the following centralized
model for evaluating the efficiencies of the whole system and
subsystems simultaneously:

𝑒𝑜 = max
∑
𝑠
𝑟=1 𝑢𝑟𝑜𝑦𝑟𝑜

∑
𝑚
𝑖=1 V𝑖𝑜𝑥𝑖𝑜

s.t.

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
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{

{

∑
𝐷
𝑑=1𝑤𝑑𝑜𝑧𝑑𝑗

∑
𝑚
𝑖=1V𝑖𝑜𝑥𝑖𝑗

≤ 1, 𝑗 = 1, . . . , 𝑛

∑
𝑠
𝑟=1𝑢𝑟𝑜𝑦𝑟𝑗

∑
𝐷
𝑑=1𝑤𝑑𝑜𝑧𝑑𝑗

≤ 1, 𝑗 = 1, . . . , 𝑛

V𝑖𝑜 ≥ 0, 𝑖 = 1, . . . , 𝑚;

𝑤𝑑𝑜 ≥ 0, 𝑑 = 1, . . . , 𝐷;

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1, . . . , 𝑠.

(2)
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By using the “Charnes-Cooper” transformations in frac-
tional programming [26], the above model can be converted
to the following linear programming:

𝑒𝑜 = max
𝑠

∑

𝑟=1

𝑢𝑟𝑜𝑦𝑟𝑜

s.t.

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑚

∑

𝑖=1

V𝑖𝑜𝑥𝑖𝑜 = 1

𝐷

∑

𝑑=1

𝑤𝑑𝑜𝑧𝑑𝑗 ≤

𝑚

∑

𝑖=1

V𝑖𝑜𝑥𝑖𝑗, 𝑗 = 1, . . . , 𝑛

𝑠

∑

𝑟=1

𝑢𝑟𝑜𝑦𝑟𝑗 ≤

𝐷

∑

𝑑=1

𝑤𝑑𝑜𝑧𝑑𝑗, 𝑗 = 1, . . . , 𝑛

V𝑖𝑜 ≥ 0, 𝑖 = 1, . . . , 𝑚;

𝑤𝑑𝑜 ≥ 0, 𝑑 = 1, . . . , 𝐷;

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1, . . . , 𝑠.

(3)

2.2. Definitions of Cross Efficiencies for Systems with Two-Stage
Structures. Suppose that the optimal solution of Model (3)
is 𝑉∗𝑜 = (V∗1𝑜, . . . , V

∗
𝑚𝑜), 𝑊

∗
𝑜 = (𝑤

∗
1𝑜, . . . , 𝑤

∗
𝐷𝑜), and 𝑈

∗
𝑜 =

(𝑢
∗
1𝑜, . . . , 𝑢

∗
𝑠𝑜) and the efficiencies of the overall system and

two subsystems can be expressed as

𝑒𝑜 =
∑
𝑠
𝑟=1 𝑢
∗
𝑟𝑜𝑦𝑟𝑜

∑
𝑚
𝑖=1 V
∗
𝑖𝑜𝑥𝑖𝑜

, 𝑒
1
𝑜 =

∑
𝐷
𝑑=1 𝑤
∗
𝑑𝑜𝑧𝑑𝑜

∑
𝑚
𝑖=1 V
∗
𝑖𝑜𝑥𝑖𝑜

,

𝑒
2
𝑜 =

∑
𝑠
𝑟=1 𝑢
∗
𝑟𝑜𝑦𝑟𝑜

∑
𝐷
𝑑=1 𝑤
∗
𝑑𝑜
𝑧𝑑𝑜

.

(4)

For each DMU𝑜 under evaluation, a set of optimal
weights𝑉∗𝑜 ,𝑊

∗
𝑜 , and𝑈

∗
𝑜 are obtained. According to the cross

efficiency definition in traditional DEA model, we give the
following definition.

Definition 1. Let 𝑉∗𝑜 = (V∗1𝑜, . . . , V
∗
𝑚𝑜), 𝑊

∗
𝑜 = (𝑤

∗
1𝑜, . . . , 𝑤

∗
𝐷𝑜),

and 𝑈∗𝑜 = (𝑢
∗
1𝑜, . . . , 𝑢

∗
𝑠𝑜) be an optimal solution to model (3).

For each DMU𝑗,

𝑒𝑜𝑗 =

∑
𝑠
𝑟=1 𝑢
∗
𝑟𝑜𝑦𝑟𝑗

∑
𝑚
𝑖=1 V
∗
𝑖𝑜𝑥𝑖𝑗

, 𝑒
1
𝑜𝑗 =

∑
𝐷
𝑑=1 𝑤
∗
𝑑𝑜𝑧𝑑𝑗

∑
𝑚
𝑖=1 V
∗
𝑖𝑜𝑥𝑖𝑗

,

𝑒
2
𝑜𝑗 =

∑
𝑠
𝑟=1 𝑢
∗
𝑟𝑜𝑦𝑟𝑗

∑
𝐷
𝑑=1 𝑤
∗
𝑑𝑜
𝑧𝑑𝑗

,

𝑜, 𝑗 = 1, . . . , 𝑛

(5)

are called the o-cross efficiency of the overall system and two
subsystems, respectively.

Definition 2. For each DMU𝑗, the average of all 𝑜-cross
efficiencies

𝐸𝑗 =
1

𝑛

𝑛

∑

𝑜=1

𝑒𝑜𝑗, 𝐸
1
𝑗 =

1

𝑛

𝑛

∑

𝑜=1

𝑒
1
𝑜𝑗,

𝐸
2
𝑗 =

1

𝑛

𝑛

∑

𝑜=1

𝑒
2
𝑜𝑗,

𝑗 = 1, . . . , 𝑛

(6)

are called the cross efficiency of the overall system and two
subsystems, respectively.

It is evident that the overall o-cross efficiency can be
decomposed into the product of the o-cross efficiencies of
the two subsystems, and the overall cross efficiency can be
decomposed into the average sum product of the o-cross
efficiencies of the two subsystems. Note that Model (3) may
havemultiple optimal solutions; thus the cross efficiencymay
not be unique. Of course, we can make alternations to the
aggressive and benevolent formulations developed by [21]
for traditional DEA in order to alleviate this problem. One
version of their approach is to find a weight bundle that
maximizes or minimizes the average of the efficiencies of the
other 𝑛 − 1 DMUs while keeping the efficiency of DMU𝑜
unchanged. But this alleviation is limited, since multiple
solutions may exist in the new aggressive (benevolent) model
and cross efficiencies may still be not unique. In the following
subsection, we will propose a model from the perspective
of noncooperative game theory, which will lead to a unique
cross efficiency.

2.3. Game Cross Efficiency Model for Systems with Two-
Stage Structures. As mentioned above, we can regard all
DMUs as competitors in noncooperative game. In fact,
each DMU may argue that its weight bundle should be
chosen with a view to how that bundle impacts the implied
performance of other DMUs. Conventional DEA achieves
this by restricting the choice of bundles to those that
keep the efficiencies of all DMUs no greater than unity.
Cross efficiency carries out a new measure of efficiency
in terms of not only the best multiplier bundle for the
DMU itself, but also the best bundles for all the other
DMUs.

Conventional cross efficiency models are constructed
from the viewpoint of DMU𝑜. Both of the aggressive and
the benevolent formulations try to find a weight bundle that
optimizes the average efficiencies of the other 𝑛 − 1 DMUs
while remaining the efficiency ofDMU𝑜 at its ideal level. Here
we deal with the problem from the viewpoint of competitors.
For each competitor DMU𝑗, a weight bundle is determined
thatmaximizes the performance for itself, with the additional
constraints that the resulting efficiency for DMU𝑜 should be
no less than its estimated best performance. Of course, we do
not know the best performance of any DMU in advance. In
the following subsection, we develop an iterative algorithm to
obtain the best performance of all DMU simultaneously, in a
cross efficiency sense.
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Assume that in a noncooperative game sense, one player
DMU𝑜 is given an efficiency score 𝛼𝑜, and then another player
DMU𝑗 tries to maximize its own efficiency, subject to the
condition that the efficiency of player DMU𝑜 would not be
decreased.

Definition 3. Thegame o-cross efficiency of overall system and
two subsystems for DMU𝑗 relative to DMU𝑜 is defined as

𝛼𝑜𝑗 =

∑
𝑠
𝑟=1 𝑢
𝑜∗
𝑟𝑗 𝑦𝑟𝑗

∑
𝑚
𝑖=1 V
𝑜∗
𝑖𝑗 𝑥𝑖𝑗

, 𝛼
1
𝑜𝑗 =

∑
𝐷
𝑑=1 𝑤
𝑜∗
𝑑𝑗 𝑧𝑑𝑗

∑
𝑚
𝑖=1 V
𝑜∗
𝑖𝑗 𝑥𝑖𝑗

,

𝛼
2
𝑜𝑗 =

∑
𝑠
𝑟=1 𝑢
𝑜∗
𝑟𝑗 𝑦𝑟𝑗

∑
𝐷
𝑑=1 𝑤
𝑜∗
𝑑𝑗
𝑧𝑑𝑗

,

𝑜 = 1, . . . , 𝑛,

(7)

where𝑉𝑜∗𝑗 = (V𝑜∗1𝑗 , . . . , V
𝑜∗
𝑚𝑜),𝑊

𝑜∗
𝑗 = (𝑤

𝑜∗
1𝑗 , . . . , 𝑤

𝑜∗
𝐷𝑗), and𝑈

𝑜∗
𝑗 =

(𝑢
𝑜∗
1𝑗 , . . . , 𝑢

𝑜∗
𝑠𝑗 ) are the optimal solutions of the following game

cross efficiency model:
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𝑠
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𝑢
𝑜
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{
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{

𝑚

∑

𝑖=1

V𝑜𝑖𝑗𝑥𝑖𝑗 = 1

𝐷

∑

𝑑=1

𝑤
𝑜
𝑑𝑗𝑧𝑑𝑙 ≤

𝑚

∑

𝑖=1

V𝑜𝑖𝑗𝑥𝑖𝑙, 𝑙 = 1, . . . , 𝑛

𝑠

∑

𝑟=1

𝑢
𝑜
𝑟𝑗𝑦𝑟𝑙 ≤

𝐷

∑

𝑑=1

𝑤
𝑜
𝑑𝑗𝑧𝑑𝑙, 𝑙 = 1, . . . , 𝑛

𝑠

∑

𝑟=1

𝑢
𝑜
𝑟𝑗𝑦𝑟𝑙 ≤

𝑚

∑

𝑖=1

V𝑜𝑖𝑗𝑥𝑖𝑙, 𝑙 = 1, . . . , 𝑛

𝑠

∑

𝑟=1

𝑢
𝑜
𝑟𝑗𝑦𝑟𝑜 ≤ 𝛼𝑜 ×

𝑚

∑

𝑖=1

V𝑜𝑖𝑗𝑥𝑖𝑜,

V𝑜𝑖𝑗 ≥ 0, 𝑖 = 1, . . . , 𝑚;

𝑤
𝑜
𝑑𝑗 ≥ 0, 𝑑 = 1, . . . , 𝐷;

𝑢
𝑜
𝑟𝑗 ≥ 0, 𝑟 = 1, . . . , 𝑠.

(8)

In model (8), 𝛼𝑜 is a parameter. In the following algo-
rithm, we solve model (3) and obtain a set of initial cross
efficiency scores 𝛼𝑜 defined in (6). When the algorithm
terminates, this 𝛼𝑜 becomes the best game cross efficiency
of DMU𝑜. We refer to model (8) as the game model, in a
noncooperative game and cross efficiency sense.

Definition 4. Let 𝑉𝑜∗𝑗 = (V𝑜∗1𝑗 , . . . , V
𝑜∗
𝑚𝑜), 𝑊

𝑜∗
𝑗 = (𝑤

𝑜∗
1𝑗 , . . . ,

𝑤
𝑜∗
𝐷𝑗), and𝑈

𝑜∗
𝑗 = (𝑢

𝑜∗
1𝑗 , . . . , 𝑢

𝑜∗
𝑠𝑗 ) be an optimal solution to

model (8). For each DMU𝑗,

𝛼𝑗 =
1

𝑛

𝑛

∑

𝑜=1

𝑠

∑

𝑟=1

𝑢
𝑜∗
𝑟𝑗 𝑦𝑟𝑗, 𝛼

1
𝑗 =

1

𝑛

𝑛

∑

𝑜=1

𝐷

∑

𝑑=1

𝑤
𝑜∗
𝑑𝑗 𝑧𝑑𝑗,

𝛼
2
𝑗 =

1

𝑛

𝑛

∑

𝑜=1

∑
𝑠
𝑟=1 𝑢
𝑜∗
𝑟𝑗 𝑦𝑟𝑗

∑
𝐷
𝑑=1 𝑤
𝑜∗
𝑑𝑗
𝑧𝑑𝑗

(9)

are called the game cross efficiency of the overall system and
two subsystems, respectively.

2.4. Iterative Algorithm for the Game Model. In this subsec-
tion, we propose an iterative algorithm for deriving the game
cross efficiency scores. The basic idea of the algorithm is to
start with the cross efficiency as defined in (6). For each
DMU𝑜, use the optimal objective function value of model (8)
as the initial 𝛼𝑜.This process is repeated for every DMU𝑜, and
the average of the optimal objective function values of model
(8) becomes the new 𝛼𝑜. When 𝛼𝑜 falls in a specified small
positive value 𝜀 of one another, the algorithm terminates.The
iterative algorithm is specified as follows.

Step 1. Solve model (3) and obtain a set of initial cross
efficiency scores defined in (6). Let 𝑡 = 1 and 𝛼𝑜,1 = 𝐸𝑜.

Step 2. Solve model (8) with 𝛼𝑜 = 𝛼𝑜,1 and obtain the
optimal solution𝑉𝑜∗𝑗 = (V𝑜∗1𝑗 , . . . , V

𝑜∗
𝑚𝑜), 𝑊

𝑜∗
𝑗 = (𝑤

𝑜∗
1𝑗 , . . . , 𝑤

𝑜∗
𝐷𝑗),

and𝑈𝑜∗𝑗 = (𝑢
𝑜∗
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(10)

Step 3. If |𝛼𝑗,𝑡+1 −𝛼𝑗,𝑡| ≥ 𝜀 for some 𝑗, where 𝜀 is a given small
positive value, then let 𝛼𝑜 = 𝛼𝑜,𝑡+1 and go back to Step 2. If
|𝛼𝑗,𝑡+1 − 𝛼𝑗,𝑡| < 𝜀 for all 𝑗, then terminate. 𝛼𝑗,𝑡+1, 𝛼

1
𝑗,𝑡+1, and

𝛼
2
𝑗,𝑡+1 are, respectively, the game cross efficiency of the system

and two subsystems for DMU𝑗, 𝑗 = 1, . . . , 𝑛.

Note that 𝛼𝑜 initially takes the value defined in (6) in
our algorithm. In fact, 𝛼𝑜 can take other initial values, such
as the aggressive or benevolent cross efficiencies defined in
[21]. When the algorithm terminates, the same unique cross
efficiency will be obtained.

3. Application to Top 30 US
Commercial Banks

In this section, we will apply the game model to evaluate the
performance of top 30 US commercial bank, which was used
in Seiford and Zhu [9] first and then in Liang et al. [13, 22]
and Du et al. [14]. The inputs of the first stage are number
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Table 1: Overall efficiencies from different models.

DMU Centralized Arbitrary Benevolent Aggressive Game
1 0.4487 (19) 0.3386 (25) 0.3615 (23) 0.3305 (25) 0.4258 (20)
2 0.3634 (29) 0.2735 (29) 0.2899 (29) 0.267 (29) 0.3428 (29)
3 0.4216 (23) 0.3226 (26) 0.344 (26) 0.3161 (26) 0.4017 (25)
4 0.4274 (22) 0.3389 (24) 0.3609 (24) 0.3334 (24) 0.4112 (22)
5 0.6061 (11) 0.4016 (16) 0.4259 (16) 0.3957 (16) 0.529 (12)
6 0.418 (24) 0.3544 (19) 0.3733 (19) 0.3501 (18) 0.4069 (23)
7 0.394 (28) 0.3113 (28) 0.3316 (28) 0.3058 (28) 0.3782 (28)
8 0.4747 (17) 0.3553 (18) 0.3796 (18) 0.3474 (19) 0.4499 (17)
9 0.4486 (20) 0.3448 (22) 0.3638 (22) 0.3372 (21) 0.4232 (21)
10 0.3393 (30) 0.2456 (30) 0.2639 (30) 0.2424 (30) 0.3178 (30)
11 0.4158 (26) 0.3141 (27) 0.335 (27) 0.3072 (27) 0.3924 (26)
12 0.4541 (18) 0.3449 (21) 0.3646 (21) 0.3368 (22) 0.4316 (18)
13 0.4464 (21) 0.366 (17) 0.3872 (17) 0.3607 (17) 0.4287 (19)
14 0.4173 (25) 0.3512 (20) 0.3696 (20) 0.3462 (20) 0.406 (24)
15 0.6421 (9) 0.4357 (14) 0.4498 (14) 0.4372 (13) 0.5053 (14)
16 1 (1) 0.8478 (2) 0.8782 (2) 0.8377 (2) 0.9974 (1)
17 0.7144 (7) 0.5787 (5) 0.6035 (5) 0.5726 (5) 0.6864 (5)
18 0.7974 (5) 0.6709 (4) 0.6988 (4) 0.6662 (4) 0.7677 (4)
19 0.5841 (13) 0.4648 (12) 0.479 (12) 0.4652 (12) 0.523 (13)
20 0.5916 (12) 0.4983 (7) 0.5231 (7) 0.4918 (8) 0.5741 (9)
21 0.5673 (14) 0.4712 (11) 0.4919 (11) 0.4653 (11) 0.5471 (10)
22 0.5196 (16) 0.4382 (13) 0.4544 (13) 0.4365 (14) 0.4882 (15)
23 0.3975 (27) 0.3398 (23) 0.3544 (25) 0.336 (23) 0.3882 (27)
24 0.8257 (3) 0.7152 (3) 0.7504 (3) 0.7064 (3) 0.8085 (3)
25 0.7403 (6) 0.4971 (8) 0.5146 (8) 0.4985 (7) 0.5823 (8)
26 0.5306 (15) 0.431 (15) 0.4462 (15) 0.4305 (15) 0.4767 (16)
27 0.6549 (8) 0.4791 (10) 0.497 (9) 0.4799 (9) 0.5419 (11)
28 0.6198 (10) 0.5654 (6) 0.5898 (6) 0.5615 (6) 0.6173 (7)
29 0.8093 (4) 0.4793 (9) 0.4935 (10) 0.4768 (10) 0.6267 (6)
30 1 (1) 0.915 (1) 0.9473 (1) 0.9106 (1) 0.9971 (2)

of employees, assets, and equity. The intermediate measures
connecting the two subsystems are revenue and profit. The
outputs from the second stage are market value and earning
per share. See Seiford and Zhu [9] for detailed discussion on
the above measures.

The efficiencies of the whole system from the centralized
model and the cross efficiencies from the proposed game
model (𝜀 = 0.0005) are listed in Table 1. Also, we apply the
arbitrary, aggressive, and benevolent strategies developed by
[21] for CCR model to the centralized model. The calculated
cross efficiencies from different strategies are also reported in
Table 1. All the corresponding ranks are listed in parentheses.

From Table 1, we can see that DMU16 and DMU30
perform efficiently for the centralized model. However, from
the cross efficiency sense, none of DMUs are efficient. The
largest difference between the second column and the last
column lies in DMU15. It ranks 9 for the centralized model
and 14 for the game model. If we look at the rankings
from the game model and those under three strategies:
arbitrary, aggressive, and benevolent, we will find that the
difference is quite small. The reason lies on the fact that we

use peer-appraisal instead of self-appraisal for the last four
columns. Note that we construct our game model from the
perspective of noncooperative game and eachDMU is viewed
as competitor. Thus, each competitor has an improved cross
efficiency over that it received under the arbitrary, aggressive,
and benevolent strategies, as shown in Table 1.

Table 2 reports the game cross efficiencies by using
three different cross efficiencies under arbitrary, aggressive,
and benevolent strategies as initial 𝛼𝑜. From the overall
efficiencies in Table 2, we can see that, although the iterations
start from different 𝛼𝑜, the calculated game cross efficiencies
are almost the same. Similar phenomena occur in the game
cross efficiencies of stage 1 and stage 2. This indicates that
our algorithm converges not only for overall game cross
efficiency, but also for subsystems’ cross efficiencies. More-
over, different from traditional cross efficiency definition, the
proposed game cross efficiency is unique for thewhole system
and two subsystems.

Logically, the rank of the overall efficiency should lie
between or in the neighborhood of the ranks of the efficiency
scores of the two subsystems. For the 30 DMUs, 22 ranks lie
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Table 2: Game cross efficiencies begin with different initial 𝛼𝑜.

DMU
Game cross efficiency

Arbitrary strategy Benevolent strategy Aggressive strategy
Overall Stage 1 Stage 2 Overall Stage 1 Stage 2 Overall Stage 1 Stage 2

1 0.4258 0.9852 0.4326 0.4257 0.9851 0.4325 0.4258 0.9852 0.4326
2 0.3428 0.6670 0.5140 0.3427 0.6669 0.5139 0.3428 0.6670 0.5140
3 0.4017 0.7812 0.5145 0.4016 0.7812 0.5145 0.4017 0.7813 0.5145
4 0.4112 0.8496 0.4842 0.4111 0.8496 0.4842 0.4112 0.8496 0.4843
5 0.5290 0.9916 0.5332 0.5286 0.9915 0.5329 0.5290 0.9916 0.5332
6 0.4069 0.8035 0.5069 0.4068 0.8034 0.5069 0.4069 0.8035 0.5069
7 0.3782 0.7674 0.4934 0.3781 0.7672 0.4933 0.3782 0.7674 0.4934
8 0.4499 0.7339 0.6132 0.4498 0.7338 0.6131 0.4500 0.7339 0.6132
9 0.4232 0.6877 0.6154 0.4231 0.6876 0.6153 0.4232 0.6877 0.6154
10 0.3178 0.7212 0.4686 0.3177 0.7217 0.4680 0.3178 0.7212 0.4686
11 0.3924 0.6455 0.6098 0.3922 0.6453 0.6097 0.3924 0.6455 0.6098
12 0.4316 0.6770 0.6377 0.4314 0.6769 0.6376 0.4316 0.6770 0.6377
13 0.4287 0.5685 0.7566 0.4286 0.5684 0.7566 0.4287 0.5685 0.7566
14 0.4060 0.7047 0.5763 0.4060 0.7046 0.5762 0.4060 0.7047 0.5763
15 0.5053 0.8166 0.6221 0.5051 0.8166 0.6218 0.5053 0.8166 0.6221
16 0.9974 1.0000 0.9974 0.9973 1.0000 0.9973 0.9974 1.0000 0.9974
17 0.6864 0.9845 0.6973 0.6862 0.9843 0.6972 0.6864 0.9845 0.6973
18 0.7677 0.7677 1.0000 0.7676 0.7676 1.0000 0.7677 0.7677 1.0000
19 0.5230 0.7347 0.7117 0.5228 0.7346 0.7116 0.5230 0.7347 0.7117
20 0.5741 0.7472 0.7683 0.5740 0.7472 0.7682 0.5741 0.7472 0.7683
21 0.5471 0.6413 0.8535 0.5470 0.6412 0.8535 0.5471 0.6413 0.8535
22 0.4882 0.6595 0.7407 0.4881 0.6595 0.7405 0.4882 0.6595 0.7407
23 0.3882 0.6249 0.6214 0.3881 0.6248 0.6213 0.3882 0.6249 0.6214
24 0.8085 0.8681 0.9313 0.8084 0.8680 0.9312 0.8085 0.8681 0.9313
25 0.5823 0.7241 0.8046 0.5821 0.7241 0.8043 0.5824 0.7241 0.8047
26 0.4767 0.6256 0.7621 0.4766 0.6255 0.7620 0.4767 0.6256 0.7621
27 0.5419 0.6389 0.8490 0.5417 0.6389 0.8488 0.5419 0.6389 0.8490
28 0.6173 0.7715 0.8002 0.6173 0.7715 0.8002 0.6173 0.7715 0.8002
29 0.6267 0.7774 0.8063 0.6262 0.7774 0.8058 0.6267 0.7774 0.8063
30 0.9971 0.9971 1.0000 0.9970 0.9970 1.0000 0.9971 0.9971 1.0000

between the ranks of the two subsystems and 6 ranks lie in
the 2 rank neighborhoods, which conform to our intuition.

Figures 2, 3, and 4 show the iteration process of obtaining
the best game cross efficiencies of the whole system and two
subsystems for DMU10, respectively. Three cross efficiencies
under arbitrary, aggressive, and benevolent strategies are used
as initial𝛼𝑜 in our algorithm.Aswe can see, after 10 iterations,
we find the best game cross efficiency for the whole system
and two subsystems.

4. Conclusion

For systems with two-stage structure, the centralized model
is the most popular approach used for measuring the per-
formance, which is based on the concept of cooperative
game for two subsystems. However, there exists too much
flexibility in choosing optimal weights on input and output
factors in the centralized model. A DMU can obtain a full
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Journal of Applied Mathematics 7

1 2 3 4 5 6 7 8 9 1110

t

G
am

e c
ro

ss
 effi

ci
en

cy

Aggressive strategy
Benevolent strategy
Arbitrary strategy

0.53

0.58

0.63

0.68

0.73

Figure 3: Iteration process for the first stage of DMU10.

G
am

e c
ro

ss
 effi

ci
en

cy

1 2 3 4 5 6 7 8 9 1110

t

Aggressive strategy
Benevolent strategy
Arbitrary strategy

0.4

0.45

0.5

0.55

0.6

0.65

Figure 4: Iteration process for the second stage of DMU10.

efficiency by choosing very high weights on some factors
and extremely low weights on other factors, which makes the
ranking unacceptable. In order to solve the problem, we view
DMUs as players in a game, and the efficiencies are viewed
as payoffs. Each DMU chooses to take a game stance to the
extent that it will attempt to maximize its payoff. From this
viewpoint, we construct a gamemodel. An iterative algorithm
is developed to obtain the game cross efficiencies of the whole
system and two subsystems. We use the proposed model
and algorithm to evaluate the performance of top 30 US
commercial banks. The results show that our model is more
reasonable and the algorithm converges to a unique cross
efficiency.

In practice, there aremany systems comprisingmore than
two subsystems, where all outputs of one subprocess must
be the only inputs of the next subprocess. The formulation
of our model shows that it can be extended to systems of
multiple subsystems connected in series. Also, the algorithm

can be modified accordingly in order to obtain the unique
game cross efficiency.
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