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This paper studies an inventory model for Weibull-distributed deterioration items with trapezoidal type demand rate, in which
shortages are allowed and partially backlogging depends on the waiting time for the next replenishment. The inventory models
starting with no shortage is are to be discussed, and an optimal inventory replenishment policy of the model is proposed. Finally,
numerical examples are provided to illustrate the theoretical results, and a sensitivity analysis of the major parameters with respect
to the optimal solution is also carried out.

1. Introduction

The effect of deteriorating for items cannot be disregarded in
many inventory systems and it is a general phenomenon in
real life. Deterioration is defined as any process that decreases
the usefulness or the value of the original item, such as
decay or physical depletion. For example, fruits, vegetables,
or foodstuffs are subject to spoilage directly while being
kept in store, and electronic products, radioactive substances,
and photographic film deteriorate through a gradual loss of
potential or utility with the passage of time.

Due to the variability in economic circumstances, the
basic assumptions of the EOQ model should be constantly
modified according to the studied inventory model. In recent
years, many researchers have studied kinds of EOQ models
for deteriorating items. Ghare and Schrader [1] established
the classical no-shortage inventorymodelwith a constant rate
of decay. Wu et al. [2] studied an inventory model with a
Weibull-distributed deteriorating rate for items and assumed
the demand rate with a continuous function of time. Wee
[3] developed an inventory model with quantity discount,
pricing, and partial backordering when the product in stock
deteriorates with time. Related literature also includes Skouri
and Papachristos [4], Wee [5], and Dye et al. [6].

practically, the demand rate of deterioration items is
impossible to increase continuously all the time. Hill [7]

proposed an inventory model with ramp type demand rate.
Mandal and Pal [8] extended the inventory model with
ramp type demand for deterioration items and allowed
shortage.Wu [9] considered an inventorymodelwithWeibull
distribution deterioration and ramp type demand rate in
which shortages are allowed and the backlogging rate is
dependent on waiting time. Giri et al. [10] extended the
ramp type demand inventory model with a more generalized
Weibull deterioration distribution. Manna and Chaudhuri
[11] developed an inventory model for time-dependent dete-
riorating items with ramp type demand rate. Skouri et al.
[12] considered an inventory model with general ramp type
demand rate, partial backlogging, and Weibull deterioration
rate. Hung [13] extended their inventory model from ramp
type demand rate and Weibull deterioration rate to arbitrary
demand rate and arbitrary deterioration rate. Kumar et al.
[14] studied fuzzy EOQ models with ramp type demand
rate, partial backlogging, and time-dependent deterioration
rat. Cheng et al. [15] considered an inventory model for
time-dependent deteriorating items with trapezoidal type
demand rate and partial backlogging. Uthayakumar and
Rameswari [16] studied an inventory model for defective
items with trapezoidal type demand rate to determine the
optimal product reliability. Tan and Weng [17] considered a
discrete-in-time inventorymodel for deteriorating itemswith
partially backlogged.Ahmed et al. [18] proposed amethod for
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finding the economic order quantity for an inventory model
with ramp type demand rate, partial backlogging, and general
deterioration rate. Lin [19] explored the inventorymodel with
a general demand rate in which both the Weibull-distributed
deterioration and partial backlogging are considered.

In the above mentioned research, one of assumptions
was considered: the ramp type demand rate, partial back-
logging, andWeibull-distributed deterioration rate.However,
for fashionable commodities, high-tech products, and other
short life cycle products, the demand rate should increase
with the time up to certain point at first stage then reach
a stabilized period and finally the demand rate decrease
to zero and the products retreat from market in their
product life cycle, that is, the demand rate with continuous
trapezoidal function of time. On the other hand, inmany real
situations, customers encountering shortages will respond
differently. Some customers are willing to wait until the
next replenishment, while others may be impatient and go
elsewhere as waiting time increases; that is, the willingness
for a customer to wait for backlogging is diminishing with
the length of the waiting time. In this paper, we consider
an inventory model with Weibull-distributed deterioration
items, trapezoidal type demand rate, and time-dependent
partial backlogging. By analyzing the inventory model, a
useful inventory replenishment policy is proposed. Finally,
numerical examples are provided to illustrate the theoretical
results, and a sensitivity analysis of the optimal solution with
respect to major parameters is also carried out.

The rest of the paper is organized as follows. Section 2
describes the notation and assumptions used throughout this
paper. Section 3 analyzes the inventory model, and some
numerical examples to illustrate the solution procedure are
provided. Sensitivity analysis of the major parameters is also
carried out in Section 4, and the final Section concludes this
paper.

2. Notations and Assumptions

The fundamental notations and assumptions used in inven-
tory model and considered in this paper are given as below.

(i) 𝐼(𝑡) the level of inventory at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇.
(ii) 𝑇 the fixed length of each ordering cycle.
(iii) 𝑡
1
the time when the inventory level reaches zero for

the inventory model.
(iv) 𝑡∗
1
the optimal point.

(v) 𝑆 the maximum inventory level for each ordering
cycle.

(vi) 𝑄∗ the optimal ordering quantity.
(vii) 𝐴

0
the fixed cost per order.

(viii) 𝑐
1
the cost of each deteriorated item.

(ix) 𝑐
2
the inventory holding cost per unit per unit of time.

(x) 𝑐
3
the shortage cost per unit per unit of time.

(xi) 𝑐
4
the lost sales cost per unit.

(xii) 𝐶
𝑖
(𝑡
1
) 𝑖 = 1, 2, 3, the average total cost per unit time

under different conditions, respectively.

(xiii) 𝑇𝐶(𝑡
1
) the average total cost per unit time.

(xiv) The demand rate, 𝐷(𝑡), which is positive and consec-
utive, is assumed to be a trapezoidal type function of
time; that is,

𝐷 (𝑡) =

{{

{{

{

𝑓 (𝑡) , 𝑡 ≤ 𝜇
1
;

𝐷
0
, 𝜇

1
< 𝑡 < 𝜇

2
;

𝑔 (𝑡) , 𝜇
2
≤ 𝑡 < 𝑇,

(1)

where 𝜇
1
is time point changing from the increasing

demand function𝑓(𝑡) to constant demand𝐷
0
, and 𝜇

2

is time point changing from the constant demand𝐷
0

to the decreasing demand function 𝑔(𝑡).
(xv) The replenishment rate is infinite; that is, replenish-

ment is instantaneous.
(xvi) The deterioration rate of the item is defined as

Weibull (𝛼, 𝛽); that is the deterioration rate is 𝜃(𝑡) =
𝛼𝛽𝑡
𝛽−1

(𝛼 > 0, 𝛽 > 0, 𝑡 > 0).
(xvii) Shortages are allowed and they adopt the notation

used in Abad [20], where the unsatisfied demand
is backlogged and the fraction of shortages backo-
rdered is 𝑒−𝛿𝑡, where 𝑡 is the waiting time up to the
next replenishment. We also assume that 𝑡𝑒−𝛿𝑡 is an
increasing function, which had appeared in Skouri et
al. [12].

(xviii) The time horizon of the inventory model is finite.

3. Model Formulation

In this section, we consider an inventory model starting
with no shortage. The behavior of the model during a given
cycle is depicted in Figure 1. Replenishment occurs at time
𝑡 = 0 and the inventory level attains its maximum. From
𝑡 = 0 to 𝑡

1
, the inventory level reduces due to demand

and deterioration. At 𝑡
1
, the inventory level achieves zero,

then shortage is allowed to occur during the time interval
(𝑡
1
, 𝑇), and all of the demand during the shortage period

(𝑡
1
, 𝑇) is partially backlogged. According to the notations and

assumptions mentioned above, the behavior of the model
at any time can be described by the following differential
equations:

𝑑𝐼 (𝑡)

𝑑𝑡
= {

−𝜃 (𝑡) 𝐼 (𝑡) − 𝐷 (𝑡) , 0 < 𝑡 < 𝑡
1
;

−𝑒
−𝛿(𝑇−𝑡)

𝐷 (𝑡) , 𝑡
1
< 𝑡 < 𝑇,

(2)

with boundary conditions 𝐼(0) = 𝑆, 𝐼(𝑡
1
) = 0.

In the following, we consider three possible cases based
on the values of 𝑡

1
, 𝜇
1
, and 𝜇

2
. These three cases are shown.

Case 1 (0 < 𝑡
1
≤ 𝜇
1
). Due to the deteriorating and trapezoidal

type demand rate, the inventory level gradually diminishes
during the time interval [0, 𝑡

1
] and ultimately falls to zero at

time 𝑡
1
. Thus, from (2), we have

𝑑𝐼 (𝑡)

𝑑𝑡
=

{{{{

{{{{

{

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝑓 (𝑡) , 0 < 𝑡 < 𝑡
1
;

−𝑒
−𝛿(𝑇−𝑡)

𝑓 (𝑡) , 𝑡
1
< 𝑡 < 𝜇

1
;

−𝑒
−𝛿(𝑇−𝑡)

𝐷
0
, 𝜇

1
< 𝑡 < 𝜇

2
;

−𝑒
−𝛿(𝑇−𝑡)

𝑔 (𝑡) , 𝜇
2
< 𝑡 < 𝑇.

(3)
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Figure 1: Graphical representation of inventory level over the cycle.

By using the boundary condition 𝐼(𝑡
1
) = 0, the solutions of

(3) are given by

𝐼 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{

{

∫

𝑡
1

𝑡

𝑓 (𝑥) 𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥, 0 < 𝑡 < 𝑡

1
;

−∫

𝑡

𝑡
1

𝑒
𝛿(𝑥−𝑇)

𝑓 (𝑥) 𝑑𝑥, 𝑡
1
< 𝑡 < 𝜇

1
;

𝐷
0

𝛿
(𝑒
𝛿(𝜇
1
−𝑇)

− 𝑒
𝛿(𝑡−𝑇)

)

−∫

𝜇
1

𝑡
1

𝑒
𝛿(𝑥−𝑇)

𝑓 (𝑥) 𝑑𝑥, 𝜇
1
< 𝑡 < 𝜇

2
;

−∫

𝑡

𝜇
2

𝑔 (𝑥) 𝑒
𝛿(𝑥−𝑇)

𝑑𝑥

+
𝐷
0

𝛿
(𝑒
𝛿(𝜇
1
−𝑇)

− 𝑒
𝛿(𝜇
2
−𝑇)

)

−∫

𝜇
1

𝑡
1

𝑒
𝛿(𝑥−𝑇)

𝑓 (𝑥) 𝑑𝑥, 𝜇
2
< 𝑡 < 𝑇.

(4)

The maximum inventory level per cycle is

𝑆 = 𝐼 (0) = ∫

𝑡
1

0

𝑓 (𝑥) 𝑒
𝛼𝑥
𝛽

𝑑𝑥. (5)

Then, the total number of deteriorated items 𝐷
𝑇
in the

interval [0, 𝑡
1
] is

𝐷
𝑇
= 𝑆 − ∫

𝑡
1

0

𝐷 (𝑡) 𝑑𝑡 = ∫

𝑡
1

0

𝑓 (𝑥) (𝑒
𝛼𝑥
𝛽

− 1) 𝑑𝑥. (6)

The total number of inventory𝐻
𝑇
carried during the interval

[0, 𝑡
1
] is

𝐻
𝑇
= ∫

𝑡
1

0

𝐼 (𝑡) 𝑑𝑡 = ∫

𝑡
1

0

∫

𝑡
1

𝑡

𝑓 (𝑥) 𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡. (7)

The total shortage quantity 𝐵
𝑇
during the interval [𝑡

1
, 𝑇] is

𝐵
𝑇
= −∫

𝑇

𝑡
1

𝐼 (𝑡) 𝑑𝑡

= ∫

𝜇
1

𝑡
1

[∫

𝑡

𝑡
1

𝑒
𝛿(𝑥−𝑇)

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑡

− ∫

𝜇
2

𝜇
1

[
𝐷
0

𝛿
(𝑒
𝛿(𝜇
1
−𝑇)

− 𝑒
𝛿(𝑡−𝑇)

)

−∫

𝜇
1

𝑡
1

𝑒
𝛿(𝑥−𝑇)

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑡

+ ∫

𝑇

𝜇
2

[∫

𝑡

𝜇
2

𝑒
𝛿(𝑥−𝑇)

𝑔 (𝑥) 𝑑𝑥

−
𝐷
0

𝛿
(𝑒
𝛿(𝜇
1
−𝑇)

− 𝑒
𝛿(𝜇
2
−𝑇)

)

+∫

𝜇
1

𝑡
1

𝑒
𝛿(𝑥−𝑇)

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑡

= ∫

𝜇
1

𝑡
1

(𝑇 − 𝑡) 𝑒
𝛿(𝑡−𝑇)

𝑓 (𝑡) 𝑑𝑡

+ ∫

𝑇

𝜇
2

(𝑇 − 𝑡) 𝑒
𝛿(𝑡−𝑇)

𝑔 (𝑡) 𝑑𝑡

+
𝐷
0

𝛿2
(𝑒
𝛿(𝜇
2
−𝑇)

− 𝑒
𝛿(𝜇
1
−𝑇)

)

+
𝐷
0

𝛿
[(𝑇 − 𝜇

2
) 𝑒
𝛿(𝜇
2
−𝑇)

− (𝑇 − 𝜇
1
) 𝑒
𝛿(𝜇
1
−𝑇)

] .

(8)

The total of lost sales 𝐿
𝑇
during the interval [𝑡

1
, 𝑇] is

𝐿
𝑇
= ∫

𝜇
1

𝑡
1

(1 − 𝑒
𝛿(𝑡−𝑇)

) 𝑓 (𝑡) 𝑑𝑡 + ∫

𝜇
2

𝜇
1

(1 − 𝑒
𝛿(𝑡−𝑇)

)𝐷
0
𝑑𝑡

+ ∫

𝑇

𝜇
2

(1 − 𝑒
𝛿(𝑡−𝑇)

) 𝑔 (𝑡) 𝑑𝑡.

(9)
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Therefore, the average total cost per unit time under the
condition 𝑡

1
≤ 𝜇
1
can be given by

𝐶
1
(𝑡
1
) =

1

𝑇
[𝐴
0
+ 𝑐
1
𝐷
𝑇
+ 𝑐
2
𝐻
𝑇
+ 𝑐
3
𝐵
𝑇
+ 𝑐
4
𝐿
𝑇
]

=
1

𝑇
{𝐴
0
+ 𝑐
1
∫

𝑡
1

0

𝑓 (𝑥) (𝑒
𝛼𝑥
𝛽

− 1) 𝑑𝑥

+ 𝑐
2
∫

𝑡
1

0

∫

𝑡
1

𝑡

𝑓 (𝑥) 𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡

+ 𝑐
4
[∫

𝜇
1

𝑡
1

(1 − 𝑒
𝛿(𝑡−𝑇)

) 𝑓 (𝑡) 𝑑𝑡

+ ∫

𝜇
2

𝜇
1

(1 − 𝑒
𝛿(𝑡−𝑇)

)𝐷
0
𝑑𝑡

+∫

𝑇

𝜇
2

(1 − 𝑒
𝛿(𝑡−𝑇)

) 𝑔 (𝑡) 𝑑𝑡]

+ 𝑐
3
[∫

𝜇
1

𝑡
1

𝑒
𝛿(𝑡−𝑇)

(𝑇 − 𝑡) 𝑓 (𝑡) 𝑑𝑡

+ ∫

𝑇

𝜇
2

𝑒
𝛿(𝑡−𝑇)

(𝑇 − 𝑡) 𝑔 (𝑡) 𝑑𝑡

+
𝐷
0

𝛿2
(𝑒
𝛿(𝜇
2
−𝑇)

− 𝑒
𝛿(𝜇
1
−𝑇)

)

+
𝐷
0

𝛿
((𝑇 − 𝜇

2
) 𝑒
𝛿(𝜇
2
−𝑇)

− (𝑇 − 𝜇
1
) 𝑒
𝛿(𝜇
1
−𝑇)

) ] } .

(10)

Case 2 (𝜇
1
≤ 𝑡
1
≤ 𝜇
2
). The differential equations governing

the inventory model can be expressed as follows:

𝑑𝐼 (𝑡)

𝑑𝑡
=

{{{{

{{{{

{

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝑓 (𝑡) , 0 < 𝑡 < 𝜇
1
;

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝐷
0
, 𝜇

1
< 𝑡 < 𝑡

1
;

−𝑒
−𝛿(𝑇−𝑡)

𝐷
0
, 𝑡

1
< 𝑡 < 𝜇

2
;

−𝑒
−𝛿(𝑇−𝑡)

𝑔 (𝑡) , 𝜇
2
< 𝑡 < 𝑇.

(11)

Solving the differential equation (11) with 𝐼(𝑡
1
) = 0, we have

𝐼 (𝑡) =

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

∫

𝜇
1

𝑡

𝑓 (𝑥) 𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥

+𝐷
0
∫

𝑡
1

𝜇
1

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥, 0 < 𝑡 < 𝜇

1
;

𝐷
0
∫

𝑡
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥, 𝜇

1
< 𝑡 < 𝑡

1
;

𝐷
0

𝛿
(𝑒
𝛿(𝑡
1
−𝑇)

− 𝑒
𝛿(𝑡−𝑇)

) , 𝑡
1
< 𝑡 < 𝜇

2
;

−∫

𝑡

𝜇
2

𝑒
𝛿(𝑥−𝑇)

𝑔 (𝑥) 𝑑𝑥

+
𝐷
0

𝛿
(𝑒
𝛿(𝑡
1
−𝑇)

− 𝑒
𝛿(𝜇
2
−𝑇)

) , 𝜇
2
< 𝑡 < 𝑇.

(12)

The beginning inventory level can be computed as

𝑆 = 𝐼 (0) = ∫

𝜇
1

0

𝑓 (𝑥) 𝑒
𝛼𝑥
𝛽

𝑑𝑥 + 𝐷
0
∫

𝑡
1

𝜇
1

𝑒
𝛼𝑥
𝛽

𝑑𝑥. (13)

The total number of items which perish in the interval [0, 𝑡
1
]

is

𝐷
𝑇
= ∫

𝜇
1

0

𝑓 (𝑥) (𝑒
𝛼𝑥
𝛽

− 1) 𝑑𝑥 + 𝐷
0
∫

𝑡
1

𝜇
1

(𝑒
𝛼𝑥
𝛽

− 1) 𝑑𝑥. (14)

The total number of inventory carried during the interval
[0, 𝑡
1
] is

𝐻
𝑇
= ∫

𝜇
1

0

∫

𝜇
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑓 (𝑥) 𝑑𝑥 𝑑𝑡 + 𝐷

0
∫

𝑡
1

𝜇
1

∫

𝑡
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡.

(15)

The total shortage quantity during the interval [𝑡
1
, 𝑇] is

𝐵
𝑇
= ∫

𝑇

𝜇
2

(𝑇 − 𝑡) 𝑒
𝛿(𝑡−𝑇)

𝑔 (𝑡) 𝑑𝑡

+
𝐷
0

𝛿
[𝑒
𝛿(𝑡
1
−𝑇)

(𝑇 − 𝑡
1
+
1

𝛿
)

−𝑒
−𝛿(𝜇
2
−𝑇)

(𝑇 − 𝜇
2
+
1

𝛿
)] .

(16)

The total of lost sales during the interval [𝑡
1
, 𝑇] is

𝐿
𝑇
= 𝐷
0
∫

𝜇
2

𝑡
1

(1 − 𝑒
𝛿(𝑡−𝑇)

) 𝑑𝑡 + ∫

𝑇

𝜇
2

(1 − 𝑒
𝛿(𝑡−𝑇)

) 𝑔 (𝑡) 𝑑𝑡.

(17)

Therefore, the average total cost per unit time under the
condition 𝜇

1
≤ 𝑡
1
≤ 𝜇
2
can be given by

𝐶
2
(𝑡
1
) =

1

𝑇
[𝐴
0
+ 𝑐
1
𝐷
𝑇
+ 𝑐
2
𝐻
𝑇
+ 𝑐
3
𝐵
𝑇
+ 𝑐
4
𝐿
𝑇
]

=
1

𝑇
{𝐴
0
+ 𝑐
1
[∫

𝜇
1

0

𝑓 (𝑥) (𝑒
𝛼𝑥
𝛽

− 1) 𝑑𝑥

+𝐷
0
∫

𝑡
1

𝜇
1

(𝑒
𝛼𝑥
𝛽

− 1) 𝑑𝑥]

+ 𝑐
2
[∫

𝜇
1

0

∫

𝜇
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑓 (𝑥) 𝑑𝑥 𝑑𝑡

+𝐷
0
∫

𝑡
1

0

∫

𝑡
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡]
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3
[∫

𝑇

𝜇
2

(𝑇 − 𝑡) 𝑒
𝛿(𝑡−𝑇)

𝑔 (𝑡) 𝑑𝑡

+
𝐷
0

𝛿
(𝑒
𝛿(𝑡
1
−𝑇)

(𝑇 − 𝑡
1
+
1

𝛿
)

−𝑒
𝛿(𝜇
2
−𝑇)

(𝑇 − 𝜇
2
+
1

𝛿
)) ]

+ 𝑐
4
[𝐷
0
∫

𝜇
2

𝑡
1

(1 − 𝑒
𝛿(𝑡−𝑇)

) 𝑑𝑡

+∫

𝑇

𝜇
2

(1 − 𝑒
𝛿(𝑡−𝑇)

) 𝑔 (𝑡) 𝑑𝑡]} .

(18)

Case 3 (𝜇
2
≤ 𝑡
1
< 𝑇). The differential equations governing

the inventory model can be expressed as follows:

𝑑𝐼 (𝑡)

𝑑𝑡
=

{{{{

{{{{

{

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝑓 (𝑡) , 0 < 𝑡 < 𝜇
1
;

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝐷
0
, 𝜇

1
< 𝑡 < 𝜇

2
;

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝑔 (𝑡) , 𝜇
2
< 𝑡 < 𝑡

1
;

−𝑒
−𝛿(𝑇−𝑡)

𝑔 (𝑡) , 𝑡
1
< 𝑡 < 𝑇.

(19)

Solving the differential equation (19) with 𝐼(𝑡
1
) = 0, we have

𝐼 (𝑡) =

{{{{{{{{{{{

{{{{{{{{{{{

{

∫

𝜇
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑓 (𝑥) 𝑑𝑥 + 𝐷

0
∫

𝜇
2

𝜇
1

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 + ∫

𝑡
1

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥, 0 < 𝑡 < 𝜇

1
;

𝐷
0
∫

𝜇
2

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 + ∫

𝑡
1

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥, 𝜇

1
< 𝑡 < 𝜇

2
;

∫

𝑡
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥, 𝜇

2
< 𝑡 < 𝑡

1
;

−∫

𝑡

𝑡
1

𝑒
𝛿(𝑥−𝑇)

𝑔 (𝑥) 𝑑𝑥, 𝑡
1
< 𝑡 < 𝑇.

(20)

The beginning inventory level can be computed as

𝑆 = 𝐼 (0)

= ∫

𝜇
1

0

𝑒
𝛼𝑥
𝛽

𝑓 (𝑥) 𝑑𝑥

+ 𝐷
0
∫

𝜇
2

𝜇
1

𝑒
𝛼𝑥
𝛽

𝑑𝑥 + ∫

𝑡
1

𝜇
2

𝑒
𝛼𝑥
𝛽

𝑔 (𝑥) 𝑑𝑥.

(21)

The total number of items which perish in the interval [0, 𝑡
1
]

is

𝐷
𝑇
= ∫

𝜇
1

0

(𝑒
𝛼𝑥
𝛽

− 1)𝑓 (𝑥) 𝑑𝑥 + 𝐷
0
∫

𝜇
2

𝜇
1

(𝑒
𝛼𝑥
𝛽

− 1) 𝑑𝑥

+ ∫

𝑡
1

𝜇
2

(𝑒
𝛼𝑥
𝛽

− 1) 𝑔 (𝑥) 𝑑𝑥.

(22)

The total number of inventory carried during the interval
[0, 𝑡
1
] is

𝐻
𝑇
= ∫

𝜇
1

0

∫

𝜇
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑓 (𝑥) 𝑑𝑥 𝑑𝑡

+ 𝐷
0
∫

𝜇
1

0

∫

𝜇
2

𝜇
1

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡

+ 𝐷
0
∫

𝜇
2

𝜇
1

∫

𝜇
2

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡

+ ∫

𝜇
2

0

∫

𝑡
1

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

+ ∫

𝑡
1

𝜇
2

∫

𝑡
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡.

(23)

The total shortage quantity during the interval [𝑡
1
, 𝑇] is

𝐵
𝑇
= ∫

𝑇

𝑡
1

(𝑇 − 𝑡) 𝑒
−𝛿(𝑇−𝑡)

𝑔 (𝑡) 𝑑𝑡. (24)

The total of lost sales during the interval [𝑡
1
, 𝑇] is

𝐿
𝑇
= ∫

𝑇

𝑡
1

(1 − 𝑒
−𝛿(𝑇−𝑡)

) 𝑔 (𝑡) 𝑑𝑡. (25)

Therefore, the average total cost per unit time under the
condition 𝜇

2
≤ 𝑡
1
≤ 𝑇 can be given by

𝐶
3
(𝑡
1
) =

1

𝑇
[𝐴
0
+ 𝑐
1
𝐷
𝑇
+ 𝑐
2
𝐻
𝑇
+ 𝑐
3
𝐵
𝑇
+ 𝑐
4
𝐿
𝑇
]

=
1

𝑇
{𝐴
0
+ 𝑐
1
[∫

𝜇
1

0

(𝑒
𝛼𝑥
𝛽

− 1)𝑓 (𝑥) 𝑑𝑥

+ 𝐷
0
∫

𝜇
2

𝜇
1

(𝑒
𝛼𝑥
𝛽

− 1) 𝑑𝑥

+∫

𝑡
1

𝜇
2

(𝑒
𝛼𝑥
𝛽

− 1) 𝑔 (𝑥) 𝑑𝑥]
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+ 𝑐
2
[∫

𝜇
1

0

∫

𝜇
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑓 (𝑥) 𝑑𝑥 𝑑𝑡

+ 𝐷
0
∫

𝜇
1

0

∫

𝜇
2

𝜇
1

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡

+ 𝐷
0
∫

𝜇
2

𝜇
1

∫

𝜇
2

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡

+ ∫

𝜇
2

0

∫

𝑡
1

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

+∫

𝑡
1

𝜇
2

∫

𝑡
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡]

+ 𝑐
3
[∫

𝑇

𝑡
1

(𝑇 − 𝑡) 𝑒
𝛿(𝑡−𝑇)

𝑔 (𝑡) 𝑑𝑡]

+ 𝑐
4
[∫

𝑇

𝑡
1

(1 − 𝑒
𝛿(𝑡−𝑇)

) 𝑔 (𝑡) 𝑑𝑡]} .

(26)

From the above analysis, we obtain that the total average cost
of the model over the time interval [0, 𝑇] is

𝑇𝐶 (𝑡
1
) =

{{

{{

{

𝐶
1
(𝑡
1
) , 0 < 𝑡

1
≤ 𝜇
1
;

𝐶
2
(𝑡
1
) , 𝜇

1
< 𝑡
1
≤ 𝜇
2
;

𝐶
3
(𝑡
1
) , 𝜇

2
< 𝑡
1
< 𝑇,

(27)

where 𝐶
1
(𝑡
1
), 𝐶
2
(𝑡
1
), and 𝐶

3
(𝑡
1
) are obtained from (10), (18),

and (26), respectively.
In the following, we will provide the results which ensure

the existence of a unique 𝑡
1
, say 𝑡∗
1
, so as to minimize the total

average cost for the model system starting with no shortages.
If 0 < 𝑡

1
≤ 𝜇
1
, taking the first-order derivative of 𝐶

1
(𝑡
1
)

with respect to 𝑡
1
, we obtain

𝑑𝐶
1
(𝑡
1
)

𝑑𝑡
1

=
𝑓 (𝑡
1
)

𝑇
ℎ (𝑡
1
) , (28)

where

ℎ (𝑡
1
) = 𝑐
1
(𝑒
𝛼𝑡
𝛽

1 − 1)

+ 𝑐
2
∫

𝑡
1

0

𝑒
𝛼(𝑡
𝛽

1
−𝑡
𝛽
)
𝑑𝑡 + 𝑐

3
(𝑡
1
− 𝑇) 𝑒

𝛿(𝑡
1
−𝑇)

+ 𝑐
4
(𝑒
𝛿(𝑡
1
−𝑇)

− 1) ,

(29)

then we can obtain ℎ(0) < 0 and ℎ(𝑇) > 0. By using the
assumption (𝑡𝑒−𝛿𝑡 is an increasing function, where 𝑡 is the
waiting time up to the next replenishment), we have

𝑑ℎ (𝑡
1
)

𝑑𝑡
1

= 𝛼𝛽𝑡
𝛽−1

1
(𝑐
1
𝑒
𝛼𝑡
𝛽

1 + 𝑐
2
∫

𝑡
1

0

𝑒
𝛼(𝑡
𝛽

1
−𝑡
𝛽
)
𝑑𝑡)

+ [𝑐
3
(𝛿 (𝑡
1
− 𝑇) + 1) + 𝑐

4
𝛿] 𝑒
𝛿(𝑡
1
−𝑇)

+ 𝑐
2
> 0,

(30)

which implies that ℎ(𝑡
1
) is a strictly monotone increasing

function. Therefore, the equation

ℎ (𝑡
1
) = 𝑐
1
(𝑒
𝛼𝑡
𝛽

1 − 1) + 𝑐
2
∫

𝑡
1

0

𝑒
𝛼(𝑡
𝛽

1
−𝑡
𝛽
)
𝑑𝑡

+ 𝑐
3
(𝑡
1
− 𝑇) 𝑒

𝛿(𝑡
1
−𝑇)

+ 𝑐
4
(𝑒
𝛿(𝑡
1
−𝑇)

− 1)

= 0

(31)

has a unique root 𝑡∗
1
∈ (0, 𝑇) obtained by using Mathematica

9.0. Further, 𝑡∗
1
is the only zero-point of 𝑑𝐶

1
(𝑡
1
)/𝑑𝑡
1
= 0 since

𝑓(𝑡
1
) > 0.
If 0 < 𝑡

∗

1
≤ 𝜇
1
, for this 𝑡∗

1
, we have

𝑑
2
𝐶
1
(𝑡
1
)

𝑑𝑡
2

1

𝑡
1
=𝑡
∗

1

= 𝑓 (𝑡
∗

1
)
𝑑ℎ (𝑡
∗

1
)

𝑇𝑑𝑡
∗

1

> 0, (32)

which means that the total average cost 𝐶
1
(𝑡
1
) can obtain its

minimum value at 𝑡∗
1
.

The optimal value of the order level, 𝑆 = 𝐼(0), is

𝑆
∗
= ∫

𝑡
∗

1

0

𝑓 (𝑥) 𝑒
𝛼𝑥
𝛽

𝑑𝑥, (33)

and the optimal order quantity 𝑄∗ is

𝑄
∗
= 𝑆
∗
+ ∫

𝜇
1

𝑡
∗

1

𝑒
𝛿(𝑡−𝑇)

𝑓 (𝑡) 𝑑𝑡

+ 𝐷
0
∫

𝜇
2

𝜇
1

𝑒
𝛿(𝑡−𝑇)

𝑑𝑡 + ∫

𝑇

𝜇
2

𝑒
𝛿(𝑡−𝑇)

𝑔 (𝑡) 𝑑𝑡.

(34)

If 𝑡∗
1

≥ 𝜇
1
, then the optimal value of 𝐶

1
(𝑡
1
) is obtained at

𝑡
1
= 𝜇
1
.

If 𝜇
1
< 𝑡
1
≤ 𝜇
2
, taking the first-order and second-order

derivative of 𝐶
2
(𝑡
1
) with respect to 𝑡

1
, respectively, we obtain

𝑑𝐶
2
(𝑡
1
)

𝑑𝑡
1

=
𝐷
0

𝑇
ℎ (𝑡
1
) . (35)

If 𝜇
1
< 𝑡
∗

1
≤ 𝜇
2
, for this 𝑡∗

1
, we have

𝑑
2
𝐶
2
(𝑡
1
)

𝑑𝑡
2

1

𝑡
1
=𝑡
∗

1

= 𝐷
0

𝑑ℎ (𝑡
∗

1
)

𝑇𝑑𝑡
∗

1

> 0, (36)

where the function ℎ(𝑡
1
) is given by (31), and (36) implies

that 𝐶
2
(𝑡
1
) is a strictly convex function in 𝑡

1
and obtained its

minimum value at 𝑡∗
1
. Therefore, the equation ℎ(𝑡

1
) = 0 has a

unique root 𝑡∗
1
in (0, 𝑇).

The optimal value of the order level, 𝑆 = 𝐼(0), is

𝑆
∗
= ∫

𝜇
1

0

𝑓 (𝑥) 𝑒
𝛼𝑥
𝛽

𝑑𝑥 + 𝐷
0
∫

𝑡
∗

1

𝜇
1

𝑒
𝛼𝑥
𝛽

𝑑𝑥, (37)

and the optimal order quantity 𝑄∗ is

𝑄
∗
= 𝑆
∗
+ ∫

𝜇
2

𝑡
∗

1

𝑒
𝛿(𝑡−𝑇)

𝐷
0
𝑑𝑡 + ∫

𝑇

𝜇
2

𝑒
𝛿(𝑡−𝑇)

𝑔 (𝑡) 𝑑𝑡. (38)



Journal of Applied Mathematics 7

If 𝑡∗
1
≤ 𝜇
1
, then the optimal value of 𝐶

2
(𝑡
1
) is obtained at

𝑡
∗

1
= 𝜇
1
, and if 𝑡∗

1
≥ 𝜇
2
, then the optimal value of 𝐶

2
(𝑡
1
) is

obtained at 𝑡∗
1
= 𝜇
2
.

If 𝜇
2
< 𝑡
1
≤ 𝑇, taking the first-order and second-order

derivative of 𝐶
3
(𝑡
1
) with respect to 𝑡

1
, respectively, we obtain

𝑑𝐶
3
(𝑡
1
)

𝑑𝑡
1

=
𝑔 (𝑡
1
)

𝑇
ℎ (𝑡
1
) . (39)

If 𝜇
2
< 𝑡
∗

1
≤ 𝑇, for this 𝑡∗

1
, we have

𝑑
2
𝐶
3
(𝑡
1
)

𝑑𝑡
2

1

𝑡
1
=𝑡
∗

1

= 𝑔 (𝑡
∗

1
)
𝑑ℎ (𝑡
∗

1
)

𝑇𝑑𝑡
∗

1

> 0. (40)

The function ℎ(𝑡
1
) is given by (31), and (40) implies that

𝐶
3
(𝑡
1
) can obtain its minimum value at 𝑡∗

1
.

The optimal value of the order level, 𝑆 = 𝐼(0), is

𝑆
∗
= ∫

𝜇
1

0

𝑒
𝛼𝑥
𝛽

𝑓 (𝑥) 𝑑𝑥 + 𝐷
0
∫

𝜇
2

𝜇
1

𝑒
𝛼𝑥
𝛽

𝑑𝑥 + ∫

𝑡
∗

1

𝜇
2

𝑒
𝛼𝑥
𝛽

𝑔 (𝑥) 𝑑𝑥,

(41)

and the optimal order quantity 𝑄∗ is

𝑄
∗
= 𝑆
∗
+ ∫

𝑇

𝑡
∗

1

𝑒
𝛿(𝑡−𝑇)

𝑔 (𝑡) 𝑑𝑡. (42)

If 𝑡∗
1

≤ 𝜇
2
, then the optimal value of 𝐶

3
(𝑡
1
) is obtained at

𝑡
∗

1
= 𝜇
2
.

The above analysis shows that the three average cost func-
tions 𝐶

1
(𝑡
1
), 𝐶
2
(𝑡
2
), and 𝐶

3
(𝑡
1
) can obtain their minimum

value at 𝑡∗
1
∈ (0, 𝑇) which is determined by (31). Therefore,

based on the results analyzed above, this paper derives a
procedure to locate the optimal replenishment policy starting
with no shortage for the three cases. The procedure is as
follows.
Step 1. Solve 𝑡∗

1
from (31).

Step 2. Compare 𝑡∗
1
to 𝜇
1
and 𝜇

2
, respectively.

Step 2.1. If 𝑡∗
1
∈ (0, 𝜇

1
], then the optimal total average cost and

the optimal order quantity can be obtained by (10) and (34),
respectively.
Step 2.2. If 𝑡∗

1
∈ (𝜇
1
, 𝜇
2
], then the optimal total average cost

and the optimal order quantity can be obtained by (18) and
(38), respectively.

Step 2.3. If 𝑡∗
1
∈ (𝜇
2
, 𝑇], then the optimal total average cost

and the optimal order quantity can be obtained by (26) and
(42), respectively.

Remark 1. In such considered inventory model starting with
no shortage, if 𝑡

1
satisfies 𝜇

1
< 𝑡
1
≤ 𝑇 < 𝜇

2
, the considered

inventory model reduces to that of Skouri et al. [12].

4. Numerical Example

In order to demonstrate the above procedure which can be
applied to obtain the optimal solution of the model, this

paper presents several examples for the model, respectively.
Examples are based on piecewise demand rate, such as𝑓(𝑡) =
𝑎
1
+ 𝑏
1
𝑡 and 𝑔(𝑡) = 𝑎

2
𝑒
−𝑏
2
𝑡.

Example 1. The parameter values are given as follows: 𝑇 = 12

weeks,𝜇
1
= 4weeks,𝜇

2
= 8weeks,𝛼 = 0.005,𝛽 = 2,𝛿 = 0.04,

𝑎
1
= 30 unit, 𝑏

1
= 5 unit, 𝑎

2
= 100 unit, 𝐴

0
= $500, 𝑐

1
= $2,

𝑐
2
= $3, 𝑐

3
= $12, and 𝑐

4
= $8.

The model starting with no shortage; by solving the
equation ℎ(𝑡

1
) = 0, we have 𝑡

∗

1
= 8.7622. From (42) and

(26), we obtain 𝑄
∗

= 582.5217 and 𝑇𝐶(𝑡
∗

1
) = 793.9986,

respectively.

Example 2. Theparameter values are given as follows:𝑇 = 12

weeks,𝜇
1
= 4weeks,𝜇

2
= 8weeks,𝛼 = 0.005,𝛽 = 2,𝛿 = 0.02,

𝑎
1
= 30 unit, 𝑏

1
= 5 unit, 𝑎

2
= 100 unit, 𝐴

0
= $500, 𝑐

1
= $5,

𝑐
2
= $10, 𝑐

3
= $12, and 𝑐

4
= $8.

The model starting with no shortage, by solving the
equation ℎ(𝑡

1
) = 0, we have 𝑡

∗

1
= 5.8330. From (38) and

(18), we obtain 𝑄
∗

= 528.4725 and 𝑇𝐶(𝑡
∗

1
) = 1601.4013,

respectively.

Example 3. Theparameter values are given as follows:𝑇 = 12

weeks, 𝜇
1
= 4 weeks, 𝜇

2
= 6 weeks, 𝛼 = 0.005, 𝛽 = 1.6,

𝛿 = 0.2, 𝑎
1
= 30 unit, 𝑏

1
= 5 unit, 𝑎

2
= 100 unit, 𝐴

0
= $500,

𝑐
1
= $5, 𝑐

2
= $10, 𝑐

3
= $12, and 𝑐

4
= $8.

Themodel starting with no shortage, solving the equation
ℎ(𝑡
1
) = 0, the optimal value of 𝑡

1
is 𝑡∗
1
= 2.3235. The optimal

ordering quantity is 𝑄∗ = 272.6678, and the minimum cost
𝑇𝐶(𝑡
∗

1
) = 1258.82.

In order to clearly indicate the effects of parameters such
as 𝛿, 𝛼, 𝛽, 𝑐

1
, 𝑐
2
, 𝑐
3
, and 𝑐

4
on the optimal on-hand inventory

𝑆
∗, the optimal ordering quantity 𝑄

∗, and the optimal total
cost 𝑇𝐶(𝑡∗

1
), respectively, the paper will study the sensitivity

of the optimal solution to changes in the value of different
parameter associated with the studied inventory model. The
sensitivity analysis is performed on the base of Example 1, and
the results are shown in Table 1–7.

By studying the results of Table 1, it is found that the
shortage time 𝑡

∗

1
, inventory level 𝑆

∗, order quantity 𝑄
∗,

and the total average cost 𝑇𝐶(𝑡∗
1
) gradually decrease as the

shortage parameter 𝛿 increases for the model, respectively.
We also find that the percentage increase of 𝛿 from 14.3%
to 100% causes 𝑇𝐶(𝑡

∗

1
) to decrease from 0.45% to 0.34%,

𝑄
∗ decrease from 0.75% to 0.52%, 𝑡∗

1
decrease from 0.78%

to 0.53%, and 𝑆
∗ decrease from 1.02% to 0.69%. It is also

observed that the value of 𝑡∗
1
, 𝑆∗,𝑄∗, and 𝑇𝐶(𝑡∗

1
) all are lowly

sensitive to the changes of 𝛿 for the considered inventory
model.

By studying the results of Table 2, it is found that 𝑆∗, 𝑄∗,
and 𝑇𝐶(𝑡∗

1
) coordinates to the deterioration parameter 𝛼; the

shortage time 𝑡∗
1
decreases as 𝛼 increases for the model. It is

also found that the percentage increase of 𝛼 from 16.7% to
100% causes 𝑇𝐶(𝑡∗

1
) to decrease by 2.066%–2.595%, 𝑄∗ to

increase by 1.597%–2.44%, the shortage time 𝑡∗
1
to decrease

by 1.513%–1.455%, and 𝑆
∗ to increase by 0.917%–1.651%. It

also observes that the value of 𝑡∗
1
, 𝑆∗, 𝑄∗, and 𝑇𝐶(𝑡

∗

1
) all are

moderately sensitive to the changes of 𝛼 for the considered
inventory model.
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Table 1: The sensitivity of 𝛿 for the models in Example 1.

𝛿 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
𝑡
∗

1
8.9664 8.9187 8.8689 8.8167 8.7622 8.7049 8.6449 8.5817 8.5152

𝑆
∗ 472.9889 469.7083 466.2823 462.7001 458.9498 455.0167 450.8910 446.5519 441.9829
𝑄
∗ 595.6569 592.5872 589.3822 586.0308 582.5217 578.8412 574.9771 570.9112 566.6265

TC(𝑡∗
1
) 805.6323 802.8699 800.0139 797.0588 793.9986 790.8268 787.5365 784.1200 780.5690

Table 2: The sensitivity of 𝛼 for the models in Example 1.

𝛼 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
𝑡
∗

1
9.4545 9.3115 9.1702 9.0312 8.8950 8.7622 8.6328 8.5072

𝑆
∗ 428.3286 435.4002 442.0048 448.1317 453.7785 458.9498 463.6555 467.9088
𝑄
∗ 523.8866 536.6685 548.9558 560.7091 571.9025 582.5217 592.5618 602.0259

TC(𝑡∗
1
) 704.6045 722.8867 741.0107 758.9297 776.6035 793.9986 811.0872 827.8474

Table 3: The sensitivity of 𝛽 for the models in Example 1.

𝛽 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
𝑡
∗

1
9.2876 9.1810 9.0142 8.7622 8.4047 7.9422 7.4073 6.8496

𝑆
∗ 442.9058 447.5894 453.1802 458.9076 462.8345 461.6422 453.4686 438.8904
𝑄
∗ 545.1340 554.1055 566.4485 582.4772 601.2274 774.6099 766.4364 751.8582

TC(𝑡∗
1
) 745.7703 764.3043 791.7624 790.7114 829.3653 588.7417 473.1282 391.1266

Table 4: The sensitivity of 𝑐
1
for the models in Example 1.

𝑐
1

0 0.4 1 1.6 2 2.4 2.6 3 3.6
𝑡
∗

1
8.8225 8.8103 8.7921 8.7741 8.7622 8.7503 8.7443 8.7326 8.7150

𝑆
∗ 463.0980 462.2595 461.0101 459.7707 458.9498 458.1333 457.7266 456.9164 455.7090
𝑄
∗ 584.1909 583.8529 583.3499 582.8514 582.5217 582.1940 582.5217 581.7061 581.2226

TC(𝑡∗
1
) 783.5429 785.6518 788.7984 791.9251 793.9986 796.0633 797.0925 799.1443 802.2061

Table 5: The sensitivity of 𝑐
2
for the model in Example 1.

𝑐
2

0 0.4 0.8 1.2 1.8 2.4 3 3.4 3.8
𝑡
∗

1
11.8343 11.267 10.7698 10.326 9.7377 9.2216 8.7622 8.4819 8.2196

𝑆
∗ 673.7217 633.0852 597.9589 566.9228 526.1187 490.5382 458.9498 439.6922 421.6606
𝑄
∗ 679.6039 659.4483 642.7261 628.4787 610.4744 595.4175 582.5217 574.8648 567.8284

TC(𝑡∗
1
) 67.2679 193.9216 308.8975 413.9636 555.8150 681.6692 793.9986 862.3253 925.9516

Table 6: The sensitivity of 𝑐
3
for the models in Example 1.

𝑐
3

10.4 10.6 10.8 11 11.2 11.6 12 12.4 12.8
𝑡
∗

1
8.4424 8.4859 8.5284 8.5698 8.6102 8.6879 8.7622 8.8329 8.9005

𝑆
∗ 436.9771 439.9713 442.889 445.7332 448.5071 453.854 458.9498 463.8114 468.4587
𝑄
∗ 573.7973 574.9747 576.1255 577.2506 578.3509 580.4809 582.5217 584.4787 586.3587

TC(𝑡∗
1
) 763.8057 767.9203 771.9299 775.8387 779.6505 786.9976 793.9986 800.6779 807.0579

Table 7: The sensitivity of 𝑐
4
for the models in Example 1.

𝑐
4

0 2 4 6 8 10 12 14 16
𝑡
∗

1
8.6989 8.7150 8.7309 8.7466 8.7622 8.7775 8.7928 8.8078 8.82272

𝑆
∗ 454.6069 455.7103 456.8017 457.8815 458.9498 460.0048 461.0527 462.0877 463.1120
𝑄
∗ 580.7818 581.2231 581.6601 582.0929 582.5217 582.9455 583.367 583.7837 584.1966

TC(𝑡∗
1
) 788.1626 789.6445 791.1109 792.5621 793.9986 795.4203 796.8276 798.2207 799.5999
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By studying the results of Table 3, it is found that 𝑆∗,
𝑄
∗, and 𝑇𝐶(𝑡

∗

1
) coordinate to the deterioration parameter 𝛽,

while the shortage time 𝑡
∗

1
decreases as 𝛽 increases for the

model. It is also found that the increase of 𝛽 from 1.4 to 2.2
causes 𝑆

∗ to increase, while the increase of 𝛽 from 2.4 to
2.8 causes 𝑆∗ to decrease, 𝑄∗ to increase by 2.44%–1.597%,
𝑇𝐶(𝑡
∗

1
) to increase by 2.595%–2.066%, and the shortage time

𝑡
∗

1
to decrease by 1.513%–1.455%. It is also observed that the

value of 𝑡∗
1
, 𝑆∗,𝑄∗, and 𝑇𝐶(𝑡∗

1
) all are moderately sensitive to

the changes of 𝛽 for the considered inventory model.
By studying the results of Table 4, it is found that 𝑇𝐶(𝑡∗

1
)

coordinate to 𝑐
1
, while the shortage time 𝑡

∗

1
, 𝑆∗, and 𝑄

∗

decrease as 𝑐
1
increases for the model. It is also found that 𝑐

1

increases from 8.3% to 150%, 𝑇𝐶(𝑡∗
1
) decreases by 0.269%–

0.383%, 𝑄∗ decreases by 0.083%–0.058%, 𝑡∗
1
decreases by

0.264%–0.181%, and 𝑆∗ decreases by 0.203%–0.138%, respec-
tively. It is also observed that the values of 𝑡∗

1
, 𝑆∗, 𝑄∗, and

𝑇𝐶(𝑡
∗

1
) all are lowly sensitive to the changes of 𝑐

1
for the

considered inventory model.
By studying the results of Table 5, it is found that

𝑇𝐶(𝑡
∗

1
) coordinates to 𝑐

2
, while 𝑆

∗, 𝑄∗,and 𝑡
∗

1
decrease as

𝑐
1
increases for the model. It is also found that 𝑐

2
increases

by 100%, 𝑇𝐶(𝑡∗
1
) decreases by 0.269%–0.383%, 𝑄∗ decreases

by 0.083%–0.058%, 𝑡∗
1
decreases by 0.264%–0.181%, and 𝑆

∗

decreases by 0.203%–0.138%.
By studying the results of Table 6, it is found that 𝑡∗

1
, 𝑆∗,

𝑄
∗, and 𝑇𝐶(𝑡

∗

1
) coordinate to 𝑐

3
. It is also observed that the

value of 𝑡∗
1
, 𝑆∗, 𝑄∗, and 𝑇𝐶(𝑡

∗

1
) all are lowly sensitive to the

changes of 𝑐
3
for the inventory models; that is, 𝑐

3
increases

from 1.9% to 3.2%, the change of all the parameters is nomore
than 1%.

By studying the results of Table 7, it is found that 𝑡∗
1
, 𝑆∗,

𝑄
∗, and 𝑇𝐶(𝑡

∗

1
) coordinate to 𝑐

4
. It is also observed that the

value of 𝑡∗
1
, 𝑆∗, 𝑄∗, and 𝑇𝐶(𝑡

∗

1
) all are lowly sensitive to the

changes of 𝑐
4
for the inventory models; that is, 𝑐

4
increases

from 14.3% to 100%, the change of all the parameters is no
more than 1%.

5. Conclusion

An inventory model starting without shortage for Weibull-
distributed deterioration with trapezoidal type demand rate
and partial backlogging is considered in this paper. The
optimal replenishment policy for the inventory model is
proposed, and numerical examples are provided to illustrate
the theoretical results. A sensitivity analysis of the optimal
solution with respect to major parameters is also carried out.
From Table 1–7, it can be found that the shortage time point
𝑡
∗

1
, order quantity 𝑄∗, and the total average cost 𝑇𝐶(𝑡∗

1
) are

moderately sensitive to the changes of 𝛼 and 𝛽 and lowly
sensitive to the changes of 𝛿, 𝑐

𝑖
(𝑖 = 1, 2, 3, 4), respectively.

The paper provides an interesting topic for further study,
such that the joint influence from some of these parameters
may be investigated to show the effects; the model starting
with shortage will be studied and other types of models for
deteriorating items in supply chain situation are also to be
studied in the future.
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