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We define a mean nonexpansive mapping T on X in the sense that ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝑎‖𝑥 − 𝑦‖ + 𝑏‖𝑥 − 𝑇𝑦‖, 𝑎, 𝑏 ≥ 0, 𝑎 + 𝑏 ≤ 1. It is
proved that mean nonexpansive mapping has approximate fixed-point sequence, and, under some suitable conditions, we get some
existence and uniqueness theorems of fixed point.

1. Introduction

Let 𝑋 be a Banach space, 𝐶 a nonempty bounded closed
convex subset of𝑋, and𝑇 :𝐶 → 𝐶 a nonexpansivemapping;
that is,

𝑇𝑥 − 𝑇𝑦
 ≤

𝑥 − 𝑦
 ∀ 𝑥, 𝑦 ∈ 𝐶. (1)

We say that𝑋has the fixed-point property if every nonexpan-
sive mapping defined on a nonempty bounded closed convex
subset of 𝑋 has a fixed point. In 1965, Kirk [1] proved that if
𝑋 is a reflexive Banach space with normal structure, then 𝑋
has the fixed-point property.

Let𝐶 be a nonempty subset of real Banach space𝑋 and 𝑇
a mapping from 𝐶 to 𝐶. 𝑇 is called mean nonexpansive if for
each 𝑥, 𝑦 ∈ 𝐶,

𝑇𝑥 − 𝑇𝑦
 ≤ 𝑎

𝑥 − 𝑦
 + 𝑏

𝑥 − 𝑇𝑦
 ,

𝑎, 𝑏 ≥ 0, 𝑎 + 𝑏 ≤ 1.
(2)

In 1975, Zhang [2] introduced this definition and proved
that 𝑇 has a fixed point in 𝐶, where 𝐶 is a weakly compact
closed convex subset and has normal structure. For more
information about mean nonexpansive mapping, one can
refer to [3–5].

2. Main Results

Lemma 1. Let 𝑇 be a mean nonexpansive mapping of the
Banach space𝑋. If 𝑇 is continuous and 𝑎 + 𝑏 < 1, then T has a
unique fixed point.

Proof. The proof is similar to the proof of the Banach
contractive theorem.

If we let 𝑏 > 0 and 𝑎 + 𝑏 ≤ 1 − 𝑏 as in Lemma 1, then the
condition that 𝑇 is continuous may not be needed. Firstly, we
recall the following two lemmas.

Lemma 2. Let𝐶 be a nonempty subset of Banach space𝑋 and
𝑇 amean nonexpansive self-mapping on𝐶with 𝑎+2𝑏 ≤ 1 and
𝑏 > 0. Let 𝐾 be a nonempty subset of 𝐶; one defines 𝜙(𝑥) =
‖𝑥 − 𝑇𝑥‖ for any 𝑥 ∈ 𝐾; if the set 𝜙(𝐾) is bounded, then 𝐾 is
also bounded.

Proof. Let𝑀 = sup
𝑥∈𝐾
‖𝑥−𝑇𝑥‖ < ∞ and set 𝑥

0
∈ 𝐾 as fixed;

then for any 𝑥 ∈ 𝐾, we have
𝑥 − 𝑥0

 ≤ 𝜙 (𝑥) + 𝜙 (𝑥0) +
𝑇𝑥 − 𝑇𝑥0



≤ 𝑎
𝑥 − 𝑥0

 + 𝑏
𝑥 − 𝑇𝑥0



+ 𝜙 (𝑥) + 𝜙 (𝑥
0
)

≤ 𝑎
𝑥 − 𝑥0

 + 𝑏
𝑥 − 𝑥0
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+ (1 + 𝑏) 𝜙 (𝑥
0
) + 𝜙 (𝑥)

≤ (1 − 𝑏)
𝑥 − 𝑥0

 + (2 + 𝑏)𝑀.

(3)

This implies that

𝑥 − 𝑥0
 ≤

2 + 𝑏

𝑏
𝑀. (4)

Hence, 𝐾 is bounded. The proof is complete.

Lemma 3. Let 𝐶 be a nonempty subset of Banach space𝑋 and
𝑇 a mean nonexpansive self-mapping on 𝐶. If 𝑎 + 2𝑏 ≤ 1 and
𝑏 > 0, then for any 𝑥 ∈ 𝐶, one has the following inequality:


𝑇
𝑛

𝑥 − 𝑇
𝑛+1

𝑥

≤ 𝑑 + (

𝑎

1 − 𝑏
)
𝑘

× {

𝑇
𝑛−𝑘

𝑥 − 𝑇
𝑛+1

𝑥

− (1 + 𝑘) 𝑑} ,

(5)

where 𝑑 = ‖𝑥−𝑇𝑥‖ and 𝑛, 𝑘 are two positive integers such that
2𝑎/(1 − 𝑏 − 𝑎) ≤ 𝑘 ≤ 𝑛.

Proof. By the definition of mean nonexpansive mapping, we
have that

𝑇
𝑛

𝑥 − 𝑇
𝑛−1

𝑥

≤ 𝑎


𝑇
𝑛−1

𝑥 − 𝑇
𝑛−2

𝑥

≤

𝑇
𝑛−1

𝑥 − 𝑇
𝑛−2

𝑥

;

(6)

this implies that

𝑇
𝑟+1

𝑥 − 𝑇
𝑟

𝑥

≤ ‖𝑥 − 𝑇𝑥‖ = 𝑑, (7)

where 𝑟 is an integer.
When 𝑘 = 0, the result is obvious. Suppose that (5) is true

for 𝑘 = 𝑙 < 𝑛; that is,

𝑇
𝑛

𝑥 − 𝑇
𝑛+1

𝑥

≤ 𝑑 + (

𝑎

1 − 𝑏
)
𝑙

× {

𝑇
𝑛−𝑙

𝑥 − 𝑇
𝑛+1

𝑥

− (1 + 𝑙) 𝑑} .

(8)

By the inequality (2) and (7), we have

𝑇
𝑛+1

𝑥 − 𝑇
𝑛−𝑙

𝑥

≤ 𝑎


𝑇
𝑛

𝑥 − 𝑇
𝑛−𝑙−1

𝑥


+ 𝑏

𝑇
𝑛

𝑥 − 𝑇
𝑛−𝑙

𝑥


≤ 𝑎

𝑇
𝑛+1

𝑥 − 𝑇
𝑛−𝑙−1

𝑥


+ 𝑏

𝑇
𝑛+1

𝑥 − 𝑇
𝑛−𝑙

𝑥


+ (𝑎 + 𝑏) 𝑑.

(9)

This implies from 𝑎 + 2𝑏 ≤ 1 and 𝑏 > 0 that

𝑇
𝑛−𝑙

𝑥 − 𝑇
𝑛+1

𝑥

≤

𝑎

1 − 𝑏


𝑇
𝑛−𝑙−1

𝑥 − 𝑇
𝑛+1

𝑥

+ 𝑑, (10)

which follows that

𝑇
𝑛

𝑥 − 𝑇
𝑛+1

𝑥

≤ 𝑑 + (

𝑎

1 − 𝑏
)
𝑙+1

× {

𝑇
𝑛−𝑙−1

𝑥 − 𝑇
𝑛+1

𝑥

− (2 + 𝑙) 𝑑} .

(11)

By induction, this completes the proof.

Theorem4. Let𝐶 be a nonempty closed subset of Banach space
𝑋 and𝑇 amean nonexpansive self-mapping on𝐶. If 𝑎+2𝑏 ≤ 1
and 𝑏 > 0, then 𝑇 has a unique fixed point.

Proof. For any𝑥 ∈ 𝐶, set𝛼
𝑛
= ‖𝑇
𝑛

𝑥−𝑇
𝑛−1

𝑥‖; by the definition
of mean nonexpansive mapping, we have that

𝛼
𝑛
=

𝑇
𝑛

𝑥 − 𝑇
𝑛−1

𝑥

≤ 𝑎


𝑇
𝑛−1

𝑥 − 𝑇
𝑛−2

𝑥


≤

𝑇
𝑛−1

𝑥 − 𝑇
𝑛−2

𝑥

= 𝛼
𝑛−1
.

(12)

Thus, the sequence {𝛼
𝑛
} is nonincreasing and bounded below,

so lim
𝑛→∞

𝛼
𝑛
exists.

Suppose that lim
𝑛→∞

𝛼
𝑛
= 𝛼 > 0; then we have by

Lemma 2 that the set 𝐾 = {𝑇
𝑛

𝑥 : 𝑛 = 1, 2, . . .} is bounded,
so there exists a positive number 𝐴 such that

𝑇
𝑝

𝑥 − 𝑇
𝑞

𝑥
 ≤ 𝐴, (13)

where 𝑝 and 𝑞 are two integers. Since 𝛼 > 0 and 𝑏 > 0, for any
𝜖 > 0, there exists an integer𝑁

0
such that𝑁

0
≥ 2𝑎/(1−𝑏−𝑎):

and

𝜖 < (
𝑎

1 − 𝑏
)
𝑁0

[(𝑁
0
+ 1) 𝛼 − 𝐴] . (14)

Since lim
𝑛→∞

𝛼
𝑛
= 𝛼 > 0, there exists an integer N such

that for 𝑛 ≥ 𝑁
0
+ 𝑁; we have 0 ≤ 𝛼

𝑛
− 𝛼 < 𝜖. Setting 𝑛 =

𝑁
0
+ 𝑁 and 𝑦 = 𝑇

𝑁−1

𝑥, then 𝛼
𝑛
= ‖𝑇
𝑁0𝑦 − 𝑇

𝑁0+1𝑦‖ and
𝛼
𝑁
= ‖𝑦 − 𝑇𝑦‖. Thus, from (14) and Lemma 3, we have that

𝛼
𝑛
=

𝑇
𝑁0𝑦 − 𝑇

𝑁0+1𝑦


≤
𝑦 − 𝑇𝑦

 + (
𝑎

1 − 𝑏
)
𝑁0

× {

𝑦 − 𝑇

𝑁0+1𝑦

− (𝑁
0
+ 1)

𝑦 − 𝑇𝑦
}

≤ 𝛼
𝑁
+ (

𝑎

1 − 𝑏
)
𝑁0

{𝐴 − (𝑁
0
+ 1) 𝛼

𝑁
}

≤ 𝛼 + 𝜖 − (
𝑎

1 − 𝑏
)
𝑁0

{(𝑁
0
+ 1) 𝛼

𝑁
− 𝐴} < 𝛼;

(15)

on the other hand, by condition (12), we have that 𝛼
𝑛
≥ 𝛼,

which is a contradiction, so 𝛼 = 0. We next show that
lim
𝑛→∞

𝑇
𝑛

𝑥 exists. In fact, since lim
𝑛→∞

‖𝑇
𝑛

𝑥 − 𝑇
𝑛+1

𝑥‖ = 0,
we have

𝑇
𝑛

𝑥 − 𝑇
𝑚

𝑥
 ≤


𝑇
𝑛

𝑥 − 𝑇
𝑛+1

𝑥

+

𝑇
𝑚

𝑥 − 𝑇
𝑚+1

𝑥


+

𝑇
𝑚+1

𝑥 − 𝑇
𝑛+1

𝑥


≤

𝑇
𝑛

𝑥 − 𝑇
𝑛+1

𝑥

+

𝑇
𝑚

𝑥 − 𝑇
𝑚+1

𝑥


+ 𝑎
𝑇
𝑛

𝑥 − 𝑇
𝑚

𝑥


+ 𝑏

𝑇
𝑛+1

𝑥 − 𝑇
𝑛

𝑥


+ 𝑏
𝑇
𝑚

𝑥 − 𝑇
𝑛

𝑥
 .

(16)
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This implies that

𝑇
𝑛

𝑥 − 𝑇
𝑚

𝑥
 ≤

1 + 𝑏

1 − 𝑎 − 𝑏


𝑇
𝑛

𝑥 − 𝑇
𝑛+1

𝑥


+
1

1 − 𝑎 − 𝑏


𝑇
𝑚

𝑥 − 𝑇
𝑚+1

𝑥

→ 0.

(17)

That is, the sequence {𝑇𝑛𝑥} is a Cauchy sequence in 𝑋.
Since 𝑋 is complete, thus there exists 𝑥∗ ∈ 𝐶 such that
lim
𝑛→∞

𝑇
𝑛

𝑥 = 𝑥
∗.

Finally, we prove that 𝑥∗ = 𝑇𝑥
∗. We have from

lim
𝑛→∞

‖𝑇
𝑛

𝑥 − 𝑇
𝑛+1

𝑥‖ = 0 and (2) that
𝑇
𝑛

𝑥 − 𝑇𝑥
∗ ≤ 𝑎


𝑇
𝑛−1

𝑥 − 𝑥
∗


+ 𝑏

𝑇
𝑛−1

𝑥 − 𝑇𝑥
∗

;

(18)

it follows as 𝑛 → ∞ that ‖𝑥∗ − 𝑇𝑥∗‖ ≤ 𝑏‖𝑥∗ − 𝑇𝑥∗‖, which
implies by 0 < 𝑏 < 1 that 𝑥∗ = 𝑇𝑥∗ and the proof is complete.

We now consider the approximate fixed-point sequence.
A sequence {𝑥

𝑛
} is called an approximate fixed-point

sequence for 𝑇 if ‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ → 0 as 𝑛 → ∞. It is easy to

prove that if 𝐶 is a nonempty bounded closed convex subset
of Banach space𝑋, and 𝑇 is a nonexpansive mapping from 𝐶

to 𝐶, then 𝑇 has an approximate fixed point sequence in 𝐶.
For mean nonexpansive mapping, we have the same result.
Firstly, we give the following lemma.

Lemma 5 (see [6]). Let 𝑠 a real number and {𝑢
𝑖
} be a sequence

in Banach space𝑋. Then, for any positive integer𝑁,

(1 − 𝑠) 𝑠
𝑁−1

𝑁

∑
𝑖=1

𝑢
𝑖
= (1 − 𝑠

𝑁

) 𝑢
𝑁

− 𝑠
𝑁−1

𝑁−1

∑
𝑖=1

(𝑠
−𝑖

− 1) (𝑢
𝑖+1
− 𝑠𝑢
𝑖
) .

(19)

If𝑋 is the real line and 𝑢
𝑖
= 1 for all 𝑖, one has the special case

𝑁(1 − 𝑠) 𝑠
𝑁−1

= 1 − 𝑠
𝑁

− (1 − 𝑠) 𝑠
𝑁−1

×

𝑁−1

∑
𝑖=1

(𝑠
−𝑖

− 1) .

(20)

Theorem 6. Let 𝐶 be a nonempty bounded closed subset of
Banach space 𝑋 and 𝑇 a mean nonexpansive self-mapping on
𝐶. Let 𝑥

1
∈ 𝐶 be fixed and the sequence {𝑥

𝑛
} defined by

𝑥
𝑛+1

= (1 − 𝑡) 𝑥
𝑛
+ 𝑡𝑇𝑥

𝑛
. (21)

If 1/2 ≤ 𝑡 ≤ 1, then {𝑥
𝑛
− 𝑇𝑥
𝑛
} converges strongly to 0 as

𝑛 → ∞.

Proof. Since 𝑇 is a mean nonexpansive mapping, from (21)
and 𝑡 ≥ 1/2, we get that

𝑥𝑛+1 − 𝑇𝑥𝑛+1
 =

(1 − 𝑡) (𝑥𝑛 − 𝑇𝑥𝑛) + 𝑇𝑥𝑛 − 𝑇𝑥𝑛+1


≤ (1 − 𝑡)
𝑥𝑛 − 𝑇𝑥𝑛



+ 𝑎
𝑥𝑛 − 𝑥𝑛+1

 + 𝑏
𝑥𝑛+1 − 𝑇𝑥𝑛



= (1 − 𝑡)
𝑥𝑛 − 𝑇𝑥𝑛

 + 𝑎𝑡
𝑥𝑛 − 𝑇𝑥𝑛



+ 𝑏 (1 − 𝑡)
𝑥𝑛 − 𝑇𝑥𝑛



≤ (1 − 𝑡)
𝑥𝑛 − 𝑇𝑥𝑛



+ (𝑎 + 𝑏) 𝑡
𝑥𝑛 − 𝑇𝑥𝑛



≤
𝑥𝑛 − 𝑇𝑥𝑛

 .

(22)

Thus, the sequence {‖𝑥
𝑛
− 𝑇𝑥

𝑛
‖} is nonincreasing and

bounded below, so lim
𝑛→∞

‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ exists. Suppose that

lim
𝑛→∞

‖𝑥
𝑛
−𝑇𝑥
𝑛
‖ = 𝑟 > 0. That is, for any 𝜖 > 0, there exists

an integer𝑚 such that

𝑟 ≤
𝑥𝑚+𝑖 − 𝑇𝑥𝑚+𝑖

 ≤ (1 + 𝜖) 𝑟 ∀ 𝑖 ∈ 𝑅
+

. (23)

Since {𝑥
𝑛
} is bounded and 1/2 ≤ 𝑡 ≤ 1, there exists an integer

𝑁 such that

(𝑁 − 1) 𝑡𝑟 ≤ 𝛿 (𝑀) + 1 ≤ 𝑁𝑡𝑟, (24)

where 𝛿(𝑀) := sup{‖𝑥
𝑖
− 𝑥
𝑗
‖ : 0 < 𝑖, 𝑗 < ∞}.

Now setting 𝑠 = 1−𝑡 and 𝑢
𝑖
= 𝑥
𝑚+𝑖
−𝑇𝑥
𝑚+𝑖

for all positive
integers 𝑖, we get from (21) and (23) that

𝑢𝑖+1 − (1 − 𝑡) 𝑢𝑖
 =

𝑇𝑥𝑚+𝑖+1 − 𝑥𝑚+𝑖+1

− (1 − 𝑡) (𝑇𝑥
𝑚+𝑖

− 𝑥
𝑚+𝑖
)


=
𝑇 ((1 − 𝑡) 𝑥𝑚+𝑖 + 𝑡𝑥𝑚+𝑖) − 𝑇𝑥𝑚+𝑖



≤ 𝑎𝑡
𝑇𝑥𝑚+𝑖 − 𝑥𝑚+𝑖



+ 𝑏 (1 − 𝑡)
𝑇𝑥𝑚+𝑖 − 𝑥𝑚+𝑖



≤ 𝑡
𝑇𝑥𝑚+𝑖 − 𝑥𝑚+𝑖

 ≤ 𝑡 (1 + 𝜖) 𝑟,

𝑥
𝑚+𝑁+1

− 𝑥
𝑚+1

=

𝑁

∑
𝑖=1

(𝑥
𝑚+𝑖+1

− 𝑥
𝑚+𝑖
)

=

𝑁

∑
𝑖=1

𝑡 (𝑇𝑥
𝑚+𝑖

− 𝑥
𝑚+𝑖
) = 𝑡

𝑁

∑
𝑖=1

𝑢
𝑖
.

(25)

Hence, by Lemma 5, (19), (20), and (23), we get that

(1 − 𝑡)
𝑁−1 𝑥𝑚+𝑁+1 − 𝑥𝑚+1



=



𝑡(1 − 𝑡)
𝑁−1

𝑁

∑
𝑖=1

𝑢
𝑖



≥ (1 − (1 − 𝑡)
𝑁

)
𝑢𝑁

 − (1 − 𝑡)
𝑁−1
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×

𝑁−1

∑
𝑖=1

((1 − 𝑡)
−𝑖

− 1)
𝑢𝑖+1 − (1 − 𝑡) 𝑢𝑖



= (1 − (1 − 𝑡)
𝑁

) 𝑟 − 𝑡(1 − 𝑡)
𝑁−1

×

𝑁−1

∑
𝑖=1

((1 − 𝑡)
−𝑖

− 1) (1 + 𝜀) 𝑟

= (1 − (1 − 𝑡)
𝑁

− 𝑡(1 − 𝑡)
𝑁−1

×

𝑁−1

∑
𝑖=1

((1 − 𝑡)
−𝑖

− 1)) 𝑟

− 𝜀𝑟𝑡(1 − 𝑡)
𝑁−1

𝑁−1

∑
𝑖=1

((1 − 𝑡)
−𝑖

− 1)

= 𝑁𝑡(1 − 𝑡)
𝑁−1

𝑟

− 𝜀𝑟 (1 − (1 − 𝑡)
𝑁

− 𝑁𝑡(1 − 𝑡)
𝑁−1

)

≥ 𝑁𝑡(1 − 𝑡)
𝑁−1

𝑟 − 𝜀𝑟.

(26)

This implies from (24) that

𝑥𝑚+𝑁+1 − 𝑥𝑚+1
 ≥ 𝑁𝑡𝑟 − 𝜖𝑟(1 +

𝑡

1 − 𝑡
)
𝑁−1

≥ 𝛿 (𝑀) + 1 − 𝜖𝑟(1 +
𝑡

1 − 𝑡
)
𝑁−1

.

(27)

Since ln(1 + 𝑦) ≤ 𝑦 for 𝑦 ∈ (−1,∞), we have

(1 +
𝑡

1 − 𝑡
)
𝑁−1

= exp {(𝑁 − 1) ln(1+𝑡/(1−𝑡))}

≤ exp {(𝑁 − 1)
𝑡

1 − 𝑡
}

≤ exp {(1 − 𝑡)−1 (𝛿 (𝑀) + 1) 𝑦−1} .

(28)

Hence, we have

𝛿 (𝑀) + 1 − 𝜖𝑟 exp {(1 − 𝑡)−1 (𝛿 (𝑀) + 1) 𝑦−1}

≤
𝑥𝑚+𝑁+1 − 𝑥𝑚+1

 ≤ 𝛿 (𝑀) .

(29)

Since 𝜖 is an arbitrary positive number, it follows that 𝛿(𝑀)+
1 ≤ 𝛿(𝑀). This contradiction completes the proof.

Corollary 7. Let 𝐶 be a bounded closed convex subset of
Banach space 𝑋 and 𝑇 a mean nonexpansive self-mapping on
C. Then, 𝑇 has an approximate fixed-point sequence in 𝐶.

Proof. For any 𝑥 ∈ 𝐶, define 𝑇
1
(𝑥) = (1/2)𝑥 + (1/2)𝑇𝑥,

and let 𝑥
𝑛+1

= 𝑇
𝑛

1
(𝑥), where 𝑛 = 0, 1, . . .; then the sequence

{𝑥
𝑛
} may be written as 𝑥

𝑛+1
= (1/2)𝑥

𝑛
+ (1/2)𝑇𝑥

𝑛
, so the

conditions ofTheorem 6 are satisfied. Hence, we have that the
sequence {𝑥

𝑛
} is an approximate fixed-point sequence. The

proof is complete.

Next, we consider the Opial condition. Related to the
problem of existence of a fixed point for mapping and its
approximation, in 1967, Opial [7] introduced the following
inequality.

Definition 8. Let 𝑋 be a Banach space; 𝑋 satisfies Opial’s
condition if for each 𝑥 in 𝑋 and each sequence {𝑥

𝑛
} weakly

convergent to 𝑥

lim inf
𝑛→∞

𝑥𝑛 − 𝑥
 < lim inf
𝑛→∞

𝑥𝑛 − 𝑦
 (30)

holds for 𝑦 ̸= 𝑥.

This definition is motivated by the fact that this property
implies that asymptotic center of sequence coincides with its
weak limit, which of course fails in 𝐿𝑝 for 𝑝 ≥ 1 (and more
generally in Orlicz spaces 𝐿Φ; see [8, 9]).

Opial’s condition is connected to the following fixed-
point property.

Theorem 9. Let 𝑋 be a real reflexive Banach space which
satisfies Opial’s condition, 𝐶 a nonempty bounded closed
convex subset of 𝑋, and 𝑇 : 𝐶 → 𝐶 a mean nonexpansive.
Then 𝑇 has a fixed point.

Proof. Let 𝑇 be mean nonexpansive. By Corollary 7, we have
that 𝑇 has an approximate fixed-point sequence in 𝐶; that is,
there exists a sequence {𝑥

𝑛
} of 𝐶 such that

lim
𝑛→∞

𝑇𝑥𝑛 − 𝑥𝑛
 = 0. (31)

Since𝐶 is a weakly compact convex subset of𝑋, there exists a
subsequence {𝑥

𝑛𝑘
} ⊂ {𝑥

𝑛
} such that {𝑥

𝑛𝑘
} weakly convergent

to 𝑥
0
∈ 𝐶.

Now, we show that 𝑥
0
= 𝑇𝑥

0
. Suppose, by way of

contradiction, that 𝑥
0
̸= 𝑇𝑥
0
; then

lim inf
𝑛→∞

𝑥𝑛 − 𝑥0
 < lim inf
𝑛→∞

𝑥𝑛 − 𝑇𝑥0


= lim inf
𝑛→∞

𝑇𝑥𝑛 − 𝑇𝑥0
 .

(32)

Since 𝑇 is mean nonexpansive, we have from (2) that

lim inf
𝑛→∞

{
𝑥𝑛 − 𝑇𝑥0

} = lim inf
𝑛→∞

{
𝑇𝑥𝑛 − 𝑇𝑥0

}

≤ lim inf
𝑛→∞

{𝑎
𝑥𝑛 − 𝑥0



+𝑏
𝑥𝑛 − 𝑇𝑥0

}

≤ lim inf
𝑛→∞

{𝑎
𝑥𝑛 − 𝑥0



+ (1 − 𝑎)
𝑥𝑛 − 𝑇𝑥0

} .

(33)
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It follows that

lim inf
𝑛→∞

𝑥𝑛 − 𝑇𝑥0
 ≤ lim inf
𝑛→∞

𝑥𝑛 − 𝑥0
 . (34)

This is a contradiction.Therefore, 𝑥
0
ia a fixed point of 𝑇 and

the proof is complete.

In fact, spaces which satisfy Opial’s condition not only
have the fixed point property, but also satisfy the so-called
demiclosedness principle for the mean nonexpansive map-
ping.

Corollary 10. If 𝑋 is a reflexive Banach space which satisfies
Opial’s condition, let 𝐶 be a nonempty closed convex subset of
𝑋 and suppose that 𝑇 : 𝐶 → 𝑋 is mean nonexpansive. For
any sequence {𝑥

𝑛
} in 𝐶 with 𝑥

𝑛
⇀ 𝑥
0
and (𝑥

𝑛
− 𝑇𝑥
𝑛
) → 0,

then 𝑥
0
= 𝑇𝑥
0
.

Proof. Theproof of this corollary is the same as inTheorem 9.

In order to understand the connection between nonex-
pansivemapping andmean nonexpansivemapping better, we
have the following remark.

Remark 11. It is easy to see that the nonexpansive mappings
and contractivemappings both are uniformly continuous and
mean nonexpansive; the converse does not hold. Examples
will be given to support our point of view.

(1) Let 𝑇 be the unit interval defined by

𝑇 (𝑥) =

{{{

{{{

{

𝑥

5
if 𝑥 ∈ [0, 1

2
) ,

𝑥

6
if 𝑥 ∈ [1

2
, 1) ,

(35)

and the norm is the ordinary Euclidean distance on the line.
Here,𝑇 is discontinuous at𝑥 = 1/2; consequently,𝑇 is neither
nonexpansive mapping nor contractive mapping. Now, we
prove that 𝑇 is mean nonexpansive.

Case 1 (𝑥, 𝑦 ∈ [0, 1/2)). By the definition of 𝑇,

𝑇𝑥 − 𝑇𝑦
 =

1

4



4

5
𝑥 −

4

5
𝑦


=
1

4


𝑥 −

𝑦

5
+
𝑦

5
−
𝑥

5

−(𝑦 − 𝑥 + 𝑥 −
𝑦

5
)


≤
1

4

𝑥 − 𝑦
 +

1

2

𝑥 − 𝑇𝑦


+
1

4

𝑇𝑥 − 𝑇𝑦
 .

(36)

This implies that ‖𝑇𝑥 − 𝑇𝑦‖ ≤ (1/3)‖𝑥 − 𝑦‖ + (2/3)‖𝑥 − 𝑇𝑦‖.

Case 2 (𝑥 ∈ [0, 1/2) and 𝑦 ∈ [1/2, 1)). In this case, we have

𝑇𝑥 − 𝑇𝑦
 =



𝑥

5
−
𝑦

6



=


𝑥

5
−
𝑇𝑥

5
+
𝑇𝑥

5
−
𝑇𝑦

5
+
𝑇𝑦

5
−
𝑦

6



≤
1

5
‖𝑥 − 𝑇𝑥‖ +

1

5

𝑇𝑥 − 𝑇𝑦


+
1

5

𝑦 − 𝑇𝑦


≤
2

5

𝑥 − 𝑇𝑦
 +

2

5

𝑇𝑦 − 𝑇𝑥


+
1

5

𝑦 − 𝑥
 .

(37)

This implies that ‖𝑇𝑥 − 𝑇𝑦‖ ≤ (1/3)‖𝑥 − 𝑦‖ + (2/3)‖𝑥 − 𝑇𝑦‖.

Case 3 (𝑦 ∈ [0, 1/2) and 𝑥 ∈ [1/2, 1)). The proof is the same
as in Case 2.

Case 4 (𝑥, 𝑦 ∈ [1/2, 1)). The proof is the same as in Case 1.
Hence, 𝑇 is mean nonexpansive by taking 𝑎 = 1/3, 𝑏 =

2/3.

(2) Mean nonexpansive mappings, however, may be con-
tinuous only at their fixed points. For example, the
map 𝑇 defined by

𝑇 (𝑥) =

{{{

{{{

{

1 − 𝑥

3
if 𝑥 ∈ [0, 1] and 𝑥 is irrational,

1 + 𝑥

5
if 𝑥 ∈ [0, 1] and 𝑥 is rational

(38)

is a mean nonexpansive mapping on unit interval by taking
𝑎 = 1/3, 𝑏 = 2/3 and is continuous only at its fixed point
𝑥
0
= 1/4.
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