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We prove the demiclosedness principle for a class of mappings which is a generalization of all the forms of nonexpansive,
asymptotically nonexpansive, and nearly asymptotically nonexpansive mappings. Moreover, we establish the existence theorem
and convergence theorems for modified Ishikawa iterative process in the framework of CAT(0) spaces. Our results generalize,
extend, and unify the corresponding results on the topic in the literature.

1. Introduction

A self-mapping 𝑇, on a metric space (𝑋, 𝑑), is called nonex-
pansive, if

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑋, (1)

and asymptotically nonexpansive, introduced by Goebel and
Kirk [1], if there exists a nonnegative sequence {𝑘

𝑛
}
𝑛≥1

with
lim
𝑛→∞

𝑘
𝑛
= 1 such that

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤ 𝑘
𝑛
𝑑 (𝑥, 𝑦) , 𝑛 ≥ 1, 𝑥, 𝑦 ∈ 𝑋. (2)

A self-mapping 𝑇, on a metric space (𝑋, 𝑑), is called asymp-
totic point-wise nonexpansive, introduced by Hussain and
Khamsi [2], if there exists a sequence of mappings 𝛼

𝑛
: 𝐾 →

[0,∞) with lim sup
𝑛→∞

𝛼
𝑛
(𝑥) ≤ 1 such that

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤ 𝛼
𝑛
(𝑥) 𝑑 (𝑥, 𝑦) , 𝑛 ≥ 1, 𝑥, 𝑦 ∈ 𝑋. (3)

It is quite natural to extend (2) and (3) in the following
way: a self-mapping 𝑇, on a metric space (𝑋, 𝑑), is called
asymptotically 𝜓-nonexpansive, if there exists a nonnegative
sequence {𝑘

𝑛
}
𝑛≥1

with lim
𝑛→∞

𝑘
𝑛
= 1 such that

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤ 𝑘
𝑛
𝜓 (𝑑 (𝑥, 𝑦)) , 𝑛 ≥ 1, 𝑥, 𝑦 ∈ 𝑋, (4)

where 𝜓 : 𝑅
+

→ 𝑅
+ is a strictly increasing and continuous

mapping with 𝜓(0) = 0. Notice that an asymptotically 𝜓-
nonexpansive is a generalization of an asymptotically nonex-
pansive. Indeed, if we take 𝜓(𝜆) = 𝜆, we get inequality (2).
Analogously, we consider the extension of (3) as follows. A
self-mapping 𝑇, on a metric space (𝑋, 𝑑), is called asymptotic
point-wise 𝜓-nonexpansive if there exists a sequence of
mappings 𝛼

𝑛
: 𝐾 → [0,∞) with lim sup

𝑛→∞
𝛼
𝑛
(𝑥) ≤ 1

such that

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤ 𝛼
𝑛
(𝑥) 𝜓 (𝑑 (𝑥, 𝑦)) , 𝑛 ≥ 1, 𝑥, 𝑦 ∈ 𝑋. (5)

It is evident that if we replace 𝜓(𝜆) = 𝜆 in (5), then we derive
(3).

A self-mapping 𝑇, on a metric space (𝑋, 𝑑), is called
nearly Lipschitzian with respect to a fix sequence {𝑎

𝑛
}, intro-

duced by Sahu [3], if, for each 𝑛 ∈ 𝑁, there exists a constant
𝑘
𝑛
≥ 0 such that

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤ 𝑘
𝑛
(𝑑 (𝑥, 𝑦) + 𝑎

𝑛
) , (6)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑎
𝑛
∈ [0, 1) for each 𝑛 and 𝑎

𝑛
→ 0.

The infimum of constants 𝑘
𝑛
satisfying (6) is called the

nearly Lipschitz constant of 𝑇𝑛 and is denoted by 𝜂(𝑇
𝑛

).
Furthermore, 𝑇 is called nearly nonexpansive if 𝜂(𝑇𝑛) = 1

for all 𝑛 ∈ 𝑁 and nearly asymptotically nonexpansive if
𝜂(𝑇
𝑛

) ≥ 1 for all 𝑛 ∈ 𝑁 and lim
𝑛→∞

𝜂(𝑇
𝑛

) = 1.
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A self-mapping 𝑇, on a metric space (𝑋, 𝑑), is said to
be asymptotically nonexpansive in the intermediate sense,
introduced by Bruck et al. [4], if it is continuous and the
following inequality holds:

lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

(𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) − 𝑑 (𝑥, 𝑦)) ≤ 0. (7)

We note that if we set

𝜉
𝑛
= max{0, sup

𝑥,𝑦∈𝐶

(𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) − 𝑑 (𝑥, 𝑦))} , (8)

then 𝜉
𝑛
→ 0 as 𝑛 → ∞. It follows that (7) is reduced to

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤ 𝑑 (𝑥, 𝑦) + 𝜉
𝑛
, (9)

for 𝑛 ≥ 1 and 𝑥, 𝑦 ∈ 𝐾.
For the examples which are asymptotically nonexpansive

in the intermediate sense but not asymptotically nonexpan-
sive, see, for example, [5]. In fact, the class of nearly asymptot-
ically nonexpansivemappings is intermediate classes between
the class of asymptotically nonexpansive mappings and that
of asymptotically nonexpansive in the intermediate sense
mappings.

In 2006, Alber et al. [6] introduced the notion of total
asymptotically nonexpansive mappings. The class of such
mappings includes the asymptotically nonexpansive map-
pings; for more details, see, for example, [7]. This new notion
unifies various definitions mentioned above.

On the context of uniformly convex Banach spaces, sev-
eral papers appeared on the topic of the approximation of
fixed points of mappings in the classes of nonexpansive and
asymptotically nonexpansive mappings. Motivated by these
results, we investigate the existence of fixed points of total
asymptotically nonexpansive mappings in the context of
𝐶𝐴𝑇(0) spaces that attracted attention of several authors; see,
for example, [8–18].

More precisely, we prove the convergence of modified
Ishikawa iterative process, introduced by Schu [19],

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛

𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛

𝑥
𝑛
,

(10)

where 𝑥
1
lies in a nonempty closed convex subset 𝐾 of a

𝐶𝐴𝑇(0) space𝑋, {𝛼
𝑛
}, {𝛽
𝑛
} are real sequences in (0, 1) for each

𝑛 ≥ 1, and𝑇 : 𝐾 → 𝐾 is a total asymptotically nonexpansive
mapping. The notation “⊕” is introduced in the next section.

Notice that it is not possible to get the following modified
Mann iterative process:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛

𝑥
𝑛
, (11)

from the modified Ishikawa iterative process, since we can
take 𝛽

𝑛
= 0, (𝑛 ≥ 1), in (10). Also, as a special case the

results remain true for modified Mann iteration. Our results
generalize, extend, and unify the corresponding results of
[13, 20–22] and the references contained therein.

2. Preliminary Remarks

Throughout the paper, the set of real numbers will be denoted
by R. Suppose that (𝑋, 𝑑) is a metric space, 𝑥, 𝑦 ∈ 𝑋, and
[0, 𝑙] ⊂ R. A map 𝑐 : [0, 𝑙] → 𝑋 is said to be a geodesic
path joining the point 𝑥 to 𝑦 if 𝑐(0) = 𝑥 and 𝑐(𝑙) = 𝑦, with
𝑑(𝑐(𝑡), 𝑐(𝑡



)) = |𝑡 − 𝑡


| for all 𝑡, 𝑡 ∈ [0, 𝑙]. In short, we use a
geodesic from 𝑥 to 𝑦 instead of a geodesic path joining 𝑥 to
𝑦. Notice that if 𝑐 is an isometry, then 𝑑(𝑥, 𝑦) = 𝑙. The image
of 𝑐 is called a geodesic segment (or metric segment) joining
𝑥 and 𝑦. If it is unique, this geodesic is denoted by [𝑥, 𝑦].
A metric space (𝑋, 𝑑) is called a geodesic space if every two
points of𝑋 are joined by a geodesic. Furthermore,𝑋 is called
uniquely geodesic if there is exactly one geodesic joining 𝑥
to 𝑦 for each 𝑥, 𝑦 ∈ 𝑋. A subset 𝑌 ⊆ 𝑋 is called convex if 𝑌
includes every geodesic segment joining any two of its points.

In a geodesic metric space (𝑋, 𝑑), geodesic triangle
△(𝑥
1
, 𝑥
2
, 𝑥
3
) consists of three points in 𝑋 and a geodesic

segment between each pair of vertices. Here, the points are
also called vertices of △ and a geodesic segment is said to
be the edge of △. A triangle △(𝑥

1
, 𝑥
2
, 𝑥
3
) := △(𝑥

1
, 𝑥
2
, 𝑥
3
),

in the Euclidean plane 𝐸2, is called a comparison triangle for
geodesic triangle△(𝑥

1
, 𝑥
2
, 𝑥
3
) in (𝑋, 𝑑) is where 𝑑

𝐸
2(𝑥
𝑖
, 𝑥
𝑗
) =

𝑑(𝑥
𝑖
, 𝑥
𝑗
) for 𝑖, 𝑗 ∈ {1, 2, 3}.

Comparison Axiom. Let (𝑋, 𝑑) be a geodesic metric space
(𝑋, 𝑑) and let △ be a comparison triangle for a geodesic
triangle△ in𝑋. We say that△ satisfies the𝐶𝐴𝑇(0) inequality
if

𝑑 (𝑥, 𝑦) ≤ 𝑑
𝐸
2 (𝑥, 𝑦) , (12)

for all 𝑥, 𝑦 ∈ △ and all comparison points 𝑥, 𝑦 ∈ △.
A geodesicmetric space is called a𝐶𝐴𝑇(0) space [23] if all

geodesic triangles of appropriate size satisfy the comparison
axiom. A complete 𝐶𝐴𝑇(0) space (𝑋, 𝑑) is called “Hadamard
space.”

Lemma 1 (see [20]). Let (𝑋, 𝑑) be a 𝐶𝐴𝑇(0) space. Then,

(1) (𝑋, 𝑑) is uniquely geodesic;
(2) let 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦. If 𝑧, 𝑤 ∈ [𝑥, 𝑦] such that

𝑑(𝑥, 𝑧) = 𝑑(𝑥, 𝑤), then 𝑧 = 𝑤;
(3) let 𝑥, 𝑦 ∈ 𝑋. For each 𝑡 ∈ [0, 1], there exists a unique

point 𝑧 ∈ 𝑋 such that

𝑑 (𝑥, 𝑧) = 𝑡𝑑 (𝑥, 𝑦) ; 𝑑 (𝑦, 𝑧) = (1 − 𝑡) 𝑑 (𝑥, 𝑦) . (13)

In the sequel, we use the notation (1 − 𝑡)𝑥 ⊕ 𝑡𝑦 for the
unique point 𝑧 ∈ 𝑋 satisfying (13).

Assume that (𝑋, 𝑑) is a Hadamard space. Suppose that
(𝑥
𝑛
) is a bounded sequence in𝑋. Define

𝑟 (𝑥, (𝑥
𝑛
)) = lim sup

𝑛→∞

𝑑 (𝑥, 𝑥
𝑛
) , (14)

for 𝑥 ∈ 𝑋. The asymptotic radius 𝑟((𝑥
𝑛
)) of (𝑥

𝑛
) is given by

𝑟 ((𝑥
𝑛
)) = inf {𝑟 (𝑥, (𝑥

𝑛
)) : 𝑥 ∈ 𝑋} . (15)
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The asymptotic center 𝐴((𝑥
𝑛
)) of (𝑥

𝑛
) is defined as follows:

𝐴 ((𝑥
𝑛
)) = {𝑥 ∈ 𝑋 : 𝑟 (𝑥, 𝑥

𝑛
) = 𝑟 ((𝑥

𝑛
))} . (16)

We denote byK the collection of all bounded closed convex
subsets of a Hadamard space (𝑋, 𝑑).

Asymptotic center is exactly one point in a 𝐶𝐴𝑇(0) space
(see, e.g., [24]). Furthermore, the distance function is convex
in complete 𝐶𝐴𝑇(0) spaces (see, e.g., [23]).

Notice that if 𝑥, 𝑦
1
, 𝑦
2
are points of a 𝐶𝐴𝑇(0) space and

if 𝑦
0
is the midpoint of the segment [𝑦

1
, 𝑦
2
], which we will

denote by (𝑦
1
⊕𝑦
2
)/2, then the𝐶𝐴𝑇(0) inequality implies that

𝑑(𝑥,
𝑦
1
⊕ 𝑦
2

2
)

2

≤
1

2
𝑑(𝑥, 𝑦

1
)
2

+
1

2
𝑑(𝑥, 𝑦

2
)
2

−
1

4
𝑑(𝑦
1
, 𝑦
2
)
2

,

(17)

because equality holds in the Euclidean metric. Here, (17) is
known as the 𝐶𝑁 inequality; see Bruhat and Tits [25].

Finally, we note that a geodesic metric space is a 𝐶𝐴𝑇(0)
space if and only if it satisfies inequality (17) (see, e.g., [23]).

Lemma 2 (see [8]). Let (𝑋, 𝑑) be a 𝐶𝐴𝑇(0) space. Then, the
following inequality,

𝑑
2

((1 − 𝑡) 𝑥 ⊕ 𝑡𝑦, 𝑧) ≤ (1 − 𝑡) 𝑑
2

(𝑥, 𝑧)

+ 𝑡𝑑
2

(𝑦, 𝑧) − 𝑡 (1 − 𝑡) 𝑑
2

(𝑥, 𝑦) ,

(18)

is satisfied for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡 ∈ [0, 1].

Definition 3 (see [14]). A sequence (𝑥
𝑛
) in 𝑋 is said to Δ-

converge to 𝑥 ∈ 𝑋 if 𝑥 is the unique asymptotic center of (𝑢
𝑛
)

for every subsequence (𝑢
𝑛
) of (𝑥

𝑛
). In this case, one writes

Δ − lim
𝑛
𝑥
𝑛
= 𝑥 and call 𝑥 the Δ − Limit of (𝑥

𝑛
).

Lemma 4 (see [8]). Assume that (𝑋, 𝑑) is a Hadamard space
and 𝐾 ∈ K. If {𝑥

𝑛
} is a bounded sequence in 𝐾, then the

asymptotic center of {𝑥
𝑛
} is in 𝐾.

Lemma 5 (see [8]). Assume that (𝑋, 𝑑) is a Hadamard space.
Each bounded sequence {𝑥

𝑛
} in 𝑋 has a Δ-convergent subse-

quence.

𝐶𝐴𝑇(0) space has the 𝑂𝑝𝑖𝑎𝑙 property; that is, for a given
(𝑥
𝑛
) ⊂ 𝑋, we have

lim sup
𝑛

𝑑 (𝑥
𝑛
, 𝑥) < lim sup

𝑛

𝑑 (𝑥
𝑛
, 𝑦) , (19)

where (𝑥
𝑛
) Δ-converges to 𝑥 and given 𝑦 ∈ 𝑋 with 𝑦 ̸= 𝑥.

Moreover, these metric spaces offer a nice example of uni-
formly convex metric spaces.

3. Convergent Theorems

In this section, we first recollect some elementary definitions
and basic results on the topic in the framework of 𝐶𝐴𝑇(0)
spaces.

Definition 6 (see [6]). Let 𝑋 be a 𝐶𝐴𝑇(0) space and 𝐾 be
a subset of 𝑋. A self-mapping 𝑇 on a subset 𝐾 is called
total asymptotically nonexpansive if there are nonnegative
real sequences {𝑘(1)

𝑛
} and {𝑘(2)

𝑛
}, 𝑛 ≥ 1, with 𝑘(1)

𝑛
, 𝑘(2)
𝑛

→ 0 as
𝑛 → ∞, and strictly increasing and continuous function
𝜓 : R+ → R+ with 𝜓(0) = 0 such that

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤ 𝑑 (𝑥, 𝑦) + 𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥, 𝑦)) + 𝑘

(2)

𝑛
. (20)

Remark 7. If 𝜓(𝜆) = 𝜆, then inequality (20) turns into

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤ (1 + 𝑘
(1)

𝑛
) 𝑑 (𝑥, 𝑦) + 𝑘

(2)

𝑛
, (21)

which is nearly asymptotically nonexpansive (6).
In addition, if 𝑘(2)

𝑛
= 0 for all 𝑛 ≥ 1, then total asymptot-

ically nonexpansive mappings coincide with asymptotically
nonexpansive mappings. In the case 𝑘(2)

𝑛
= 0, a self-mapping

𝑇 is uniformly continuous. Notice that a self-mapping 𝑇 can
be uniformly continuous even if 𝑘(2)

𝑛
̸= 0. If 𝑘(1)

𝑛
= 0 and

𝑘
(2)

𝑛
= 0 for all 𝑛 ≥ 1, then we obtain the class of nonexpansive

mappings from (20).

Definition 8 (see [18, 26]). Assume that (𝑋, 𝑑) is a Hadamard
space and 𝐾 ∈ K. A self-mapping 𝐼 − 𝑇 on 𝐾 is called
demiclosed at zero, if, for each sequence (𝑥

𝑛
) ⊂ 𝐾 that Δ-

converges to a point 𝑥
0
in 𝐾, 𝐼 − 𝑇(𝑥

𝑛
) → 0, implies

that 𝐼 − 𝑇(𝑥
0
) → 0 or let one formally say that 𝐼 − 𝑇 is

demiclosed at zero if the conditions {𝑥
𝑛
}, Δ-converges to 𝑥

and 𝑑(𝑥
𝑛
, 𝑇𝑥
𝑛
) → 0, imply 𝑥 ∈ 𝐹(𝑇).

Lemma 9. Assume that (𝑋, 𝑑) is a Hadamard space and
𝐾 ∈ K. For a bounded sequence (𝑥

𝑛
) in 𝐾, one sets 𝜙(𝑢) =

lim sup
𝑛→∞

𝑑(𝑥
𝑛
, 𝑢). Then there is a point 𝑥

0
∈ 𝐾 such that

𝜙 (𝑥
0
) = inf {𝜙 (𝑥) : 𝑥 ∈ 𝐾} . (22)

Proof. It is immediate consequence of existence of the asymp-
totic center and Lemma 4.

Lemma 10. Assume that (𝑋, 𝑑) is a Hadamard space and𝐾 ∈

K. Suppose that a self-mapping𝑇 on𝐾 is a total asymptotically
nonexpansive mapping. For a point 𝑥 in 𝐾, let 𝑥

𝑛
= 𝑇
𝑛

(𝑥).
Then lim

𝑚→∞
𝜙(𝑇
𝑚

(𝑤)) = 𝜙(𝑤), where 𝑤 ∈ 𝐾 is such that
𝜙(𝑤) = inf{𝜙(𝑢) : 𝑢 ∈ 𝐾} for the same 𝜙 in Lemma 9.

Proof. Since 𝑇 is total asymptotically nonexpansive, we have

𝑑 (𝑇
𝑛+𝑚

(𝑥) , 𝑇
𝑚

(𝑤)) ≤ 𝑑 (𝑇
𝑛

(𝑥) , 𝑤)

+ 𝑘
(1)

𝑚
𝜓 (𝑑 (𝑇

𝑛

(𝑥) , 𝑤)) + 𝑘
(2)

𝑚
,

(23)

for any 𝑛,𝑚 ≥ 1. If we let 𝑛 go to infinity, we get

𝜙 (𝑇
𝑚

(𝑤)) ≤ 𝜙 (𝑤) + 𝑘
(1)

𝑚
𝜓 (𝜙 (𝑤)) + 𝑘

(2)

𝑚
. (24)

Let𝑚 go to infinity, which implies that lim
𝑚→∞

𝜙(𝑇
𝑚

(𝑤)) =

𝜙(𝑤).

Theorem 11. Assume that (𝑋, 𝑑) is a Hadamard space and
𝐾 ∈ K. If 𝑇 : 𝐾 → 𝐾 is a uniformly continuous total asymp-
totically nonexpansive mapping, then 𝑇 has a fixed point.
Moreover, the fixed point set 𝐹(𝑇) is closed and convex.
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Proof. Define 𝜙(𝑢) = lim sup
𝑛→∞

𝑑(𝑇
𝑛

(𝑥), 𝑢), for each 𝑢 ∈

𝐾. Let 𝑤 ∈ 𝐾 such that 𝜙(𝑤) = inf{𝜙(𝑢) : 𝑢 ∈ 𝐾}. We have
seen that 𝜙(𝑇𝑚(𝑤)) = 𝜙(𝑤) as 𝑚 → ∞. The 𝐶𝑁 inequality
implies the following:

𝑑(𝑇
𝑛

(𝑥) ,
𝑇
𝑚

(𝑤) ⊕ 𝑇
ℎ

(𝑤)

2
)

2

≤
1

2
𝑑(𝑇
𝑛

(𝑥) , 𝑇
𝑚

(𝑤))
2

+
1

2
𝑑(𝑇
𝑛

(𝑥) , 𝑇
ℎ

(𝑤))
2

−
1

4
𝑑(𝑇
𝑚

(𝑤) , 𝑇
ℎ

(𝑤))
2

.

(25)

If we let 𝑛 go to infinity, we get

𝜙(𝑤)
2

≤ 𝜙(
𝑇
𝑚

(𝑤) ⊕ 𝑇
ℎ

(𝑤)

2
)

2

≤
1

2
𝜙(𝑇
𝑚

(𝑤))
2

+
1

2
𝜙(𝑇
ℎ

(𝑤))
2

−
1

4
𝑑(𝑇
𝑚

(𝑤) , 𝑇
ℎ

(𝑤))
2

,

(26)

which implies that

lim sup
𝑚,ℎ→∞

𝑑(𝑇
𝑚

𝑤, 𝑇
ℎ

𝑤)
2

≤ 0. (27)

Therefore, (𝑇𝑛(𝑤)) is a Cauchy sequence in 𝐾 and hence
converges to some V ∈ 𝐾; that is, V = lim

𝑛→∞
𝑇
𝑛

(𝑤). Since 𝑇
is continuous, then

𝑇V = 𝑇( lim
𝑛→∞

𝑇
𝑛V) = lim

𝑛→∞

𝑇
𝑛+1V = V, (28)

and this proves that 𝐹(𝑇) ̸= 0. Again, since 𝑇 is continuous,
𝐹(𝑇) is closed. In order to prove that 𝐹(𝑇) is convex, it is
enough to prove that (𝑥⊕𝑦)/2 ∈ 𝐹(𝑇), whenever 𝑥, 𝑦 ∈ 𝐹(𝑇).
Indeed, set 𝑤 = (𝑥 ⊕ 𝑦)/2. The 𝐶𝑁 inequality implies that

𝑑(𝑇
𝑛

𝑤,𝑤)
2

≤
1

2
𝑑(𝑥, 𝑇

𝑛

𝑤)
2

+
1

2
𝑑(𝑦, 𝑇

𝑛

𝑤)
2

−
1

4
𝑑(𝑥, 𝑦)

2

,

(29)

for any 𝑛 ≥ 1. Since

𝑑(𝑥, 𝑇
𝑛

𝑤)
2

= 𝑑(𝑇
𝑛

𝑥, 𝑇
𝑛

𝑤)
2

≤ (𝑑 (𝑥, 𝑤) + 𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥, 𝑤)) + 𝑘

(2)

𝑛
)
2

= (
1

2
𝑑 (𝑥, 𝑦) + 𝑘

(1)

𝑛
𝜓(

1

2
𝑑 (𝑥, 𝑦)) + 𝑘

(2)

𝑛
)

2

,

𝑑(𝑦, 𝑇
𝑛

𝑤)
2

= 𝑑(𝑇
𝑛

𝑦, 𝑇
𝑛

𝑤)
2

≤ (𝑑 (𝑦, 𝑤) + 𝑘
(1)

𝑛
𝜓 (𝑑 (𝑦, 𝑤)) + 𝑘

(2)

𝑛
)
2

= (
1

2
𝑑 (𝑥, 𝑦) + 𝑘

(1)

𝑛
𝜓(

1

2
𝑑 (𝑥, 𝑦)) + 𝑘

(2)

𝑛
)

2

,

(30)

when 𝑛 go to infinity, lim
𝑛→∞

𝑇
𝑛

(𝑤) = 𝑤, which implies
𝑇𝑤 = 𝑤.

It is known that the demiclosed principle plays an impor-
tant role in studying the asymptotic behavior for nonex-
pansive mappings (see [12, 27–30]). In [29], Xu proved
the demiclosed principle for asymptotically nonexpansive
mappings in the setting of a uniformly convex Banach space.
Nanjaras and Panyanak [12] extended Xu’s result to 𝐶𝐴𝑇(0)
spaces. A demiclosed principle for asymptotically nonexpan-
sive mappings in the intermediate sense on a real uniformly
convex Banach space was proved by Yanga et al. [30].
Motivated by them we will establish demiclosed principle
and existence theorem for total asymptotically nonexpansive
mappings in the context of 𝐶𝐴𝑇(0) spaces. Also the next
theorem shows that the result of Theorem 11 holds without
the boundness condition imposed on 𝐾, provided that there
exists a bounded approximate fixed point sequence {𝑥

𝑛
}; that

is, lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0.

Theorem 12. Assume that (𝑋, 𝑑) is a Hadamard space and
𝐾 ∈ K. Suppose that 𝑇 : 𝐾 → 𝐾 is a uniformly continuous
total asymptotically nonexpansive mapping. Let (𝑥

𝑛
) ∈ 𝐾 be a

bounded approximate fixed point sequence. If Δ− lim
𝑛
𝑥
𝑛
= 𝑤,

then we have 𝑇𝑤 = 𝑤.

Proof. Since (𝑥
𝑛
) is an approximate fixed point sequence,

then we have

𝜙 (𝑥) = lim sup
𝑛→∞

𝑑 (𝑇
𝑚

𝑥
𝑛
, 𝑥) = lim sup

𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥) , (31)

for any 𝑚 ≥ 1. Hence, 𝜙(𝑇𝑚𝑥) ≤ 𝜙(𝑥) + 𝑘
(1)

𝑚
𝜓(𝜙(𝑥)) + 𝑘

(2)

𝑚
,

for each 𝑥 ∈ 𝐾. In particular, we have lim
𝑚→∞

𝜙(𝑇
𝑚

(𝑤)) =

𝜙(𝑤). The 𝐶𝑁 inequality implies that

𝑑(𝑥
𝑛
,
𝑤 ⊕ 𝑇

𝑚

(𝑤)

2
)

2

≤
1

2
𝑑(𝑥
𝑛
, 𝑤)
2

+
1

2
𝑑(𝑥
𝑛
, 𝑇
𝑚

(𝑤))
2

−
1

4
𝑑(𝑤, 𝑇

𝑚

(𝑤))
2

,

(32)

for any 𝑛,𝑚 ≥ 1. If we let 𝑛 → ∞, we will get

𝜙(
𝑤 ⊕ 𝑇

𝑚

(𝑤)

2
)

2

≤
1

2
𝜙(𝑤)
2

+
1

2
𝜙(𝑇
𝑚

(𝑤))
2

−
1

4
𝑑(𝑤, 𝑇

𝑚

(𝑤))
2

,

(33)

for any𝑚 ≥ 1. The definition of 𝑤 implies that

𝜙(𝑤)
2

≤
1

2
𝜙(𝑤)
2

+
1

2
𝜙(𝑇
𝑚

(𝑤))
2

−
1

4
𝑑(𝑤, 𝑇

𝑚

(𝑤))
2

, (34)

for any𝑚 ≥ 1, or

𝑑(𝑤, 𝑇
𝑚

(𝑤))
2

≤ 2𝜙(𝑇
𝑚

𝑤)
2

− 2𝜙(𝑤)
2

. (35)

Letting𝑚 → ∞, we will get lim
𝑚→∞

𝑑(𝑤, 𝑇
𝑚

𝑤) = 0. By the
continuity of 𝑇,

𝑇𝑤 = 𝑇( lim
𝑚→∞

𝑇
𝑚

𝑤) = lim
𝑚→∞

𝑇
𝑚+1

𝑤 = 𝑤. (36)
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Consequently, we derive the following corollaries which
can be found in [20].

Corollary 13. Assume that (𝑋, 𝑑) is a Hadamard space and
𝐾 ∈ K. Suppose that 𝑇 : 𝐾 → 𝐾 is a uniformly continuous
nearly asymptotically nonexpansive mapping. If {𝑦

𝑛
} is a

bounded sequence in 𝐾 such that lim
𝑛
𝑑(𝑦
𝑛
, 𝑇𝑦
𝑛
) = 0, then

𝑇 has a fixed point.

Proof. Every bounded sequence {𝑦
𝑛
} in𝐾 has aΔ-convergent

subsequence, by Lemma 5, which can be showed again by
{𝑦
𝑛
}. Now apply Theorem 12.

Corollary 14. Assume that (𝑋, 𝑑) is a Hadamard space and
𝐾 ∈ K. Suppose that 𝑇 : 𝐾 → 𝐾 is a uniformly continu-
ous nearly asymptotically nonexpansive mapping. If {𝑥

𝑛
}

is a bounded sequence in 𝐾 which Δ-converges to 𝑥 and
lim
𝑛
𝑑(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0, then 𝑥 ∈ 𝐾 and 𝑥 = 𝑇𝑥.

4. Approximation

Assume that (𝑋, 𝑑) is a Hadamard space and𝐾 ∈ K. Suppose
that a self-mapping 𝑇 : 𝐾 → 𝐾 is total asymptotically non-
expansive. Consider the following iteration process, namely,
modified Ishikawa iteration scheme:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛

𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛

𝑥
𝑛
,

(37)

where {𝛼
𝑛
} and {𝛽

𝑛
} are real sequences in (0, 1) for each 𝑛 ≥ 1.

Note that the modified Ishikawa iterative process coin-
cides with the following modified Mann iterative process if
𝛽
𝑛
= 0 for each 𝑛 ≥ 1 then

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛

𝑥
𝑛
. (38)

In this section we want to show that {𝑥
𝑛
} is an approximate

fixed point sequence. Due to this, we use the following lemma
which can be found in [31].

Lemma 15. Let {𝜆
𝑛
}
𝑛≥1

, {𝜅
𝑛
}
𝑛≥1

, and {𝛾
𝑛
}
𝑛≥1

be sequences of
nonnegative real numbers such that, for all 𝑛 ≥ 1,

𝜆
𝑛+1

≤ (1 + 𝜅
𝑛
) 𝜆
𝑛
+ 𝛾
𝑛
. (39)

Let ∑∞
1
𝜅
𝑛
< ∞ and ∑∞

1
𝛾
𝑛
< ∞. Then lim

𝑛
𝜆
𝑛
exists.

Lemma 16. Assume that (𝑋, 𝑑) is a Hadamard space and𝐾 ∈

K. Suppose that a self-mapping 𝑇 : 𝐾 → 𝐾 is a uniformly
continuous total asymptotically nonexpansive with 𝐹(𝑇) ̸= 0.
Suppose also that there exist constants 𝑀

0
, 𝑀 ≥ 0 such that

𝜓(𝜆) ≤ 𝑀
0
𝜆 for all 𝜆 ≥ 𝑀. Let 𝑥∗ ∈ Fix(𝑇). Starting from

arbitrary 𝑥
1
∈ 𝐾 define the sequence {𝑥

𝑛
} by (37). Suppose

that ∑∞
1
𝑘
(1)

𝑛
< ∞ and ∑∞

1
𝑘
(2)

𝑛
< ∞. Then lim

𝑛
𝑑(𝑥
𝑛
, 𝑥
∗

)

exists and ∑∞
1
𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
)𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
) < ∞.

Proof. Let 𝑥∗ ∈ Fix(𝑇); then

𝑑 (𝑦
𝑛
, 𝑥
∗

) = 𝑑 ((1 − 𝛽
𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛

𝑥
𝑛
, 𝑥
∗

)

≤ (1 − 𝛽
𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝛽
𝑛
𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑥
∗

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝛽
𝑛
𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥

𝑛
, 𝑥
∗

)) + 𝛽
𝑛
𝑘
(2)

𝑛
.

(40)

Since𝜓 is increasing function, it results that𝜓(𝜆) ≤ 𝜓(𝑀)

if 𝜆 ≤ 𝑀 and 𝜓(𝜆) ≤ 𝑀
0
𝜆 if 𝜆 ≥ 𝑀. In either case we obtain

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
∗

)) ≤ 𝜓 (𝑀) +𝑀
0
𝑑 (𝑥
𝑛
, 𝑥
∗

) (41)

for each 𝑛 ≥ 1. Therefore,

𝑑 (𝑦
𝑛
, 𝑥
∗

) ≤ 𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝛽
𝑛
𝑘
(1)

𝑛
[𝜓 (𝑀) +𝑀

0
𝑑 (𝑥
𝑛
, 𝑥
∗

)]

+ 𝛽
𝑛
𝑘
(2)

𝑛
.

(42)

Thus,

𝜓 (𝑑 (𝑦
𝑛
, 𝑥
∗

))

≤ 𝜓 (𝑀) + (𝑀
0
+ 𝛽
𝑛
𝑘
(1)

𝑛
(𝑀
0
)
2

) 𝑑 (𝑥
𝑛
, 𝑥
∗

)

+ 𝑀
0
𝛽
𝑛
𝑘
(1)

𝑛
𝜓 (𝑀) +𝑀

0
𝛽
𝑛
𝑘
(2)

𝑛
,

(43)

so one can write

𝑑 (𝑥
𝑛+1

, 𝑥
∗

)

= 𝑑 ((1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛

𝑦
𝑛
, 𝑥
∗

)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
𝑑 (𝑇
𝑛

𝑦
𝑛
, 𝑇
𝑛

𝑥
∗

)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
𝑑 (𝑦
𝑛
, 𝑥
∗

)

+𝛼
𝑛
𝑘
(1)

𝑛
𝜓 (𝑑 (𝑦

𝑛
, 𝑥
∗

)) + 𝛼
𝑛
𝑘
(2)

𝑛

≤ [1 + 𝛼
𝑛
𝛽
𝑛
𝑘
(1)

𝑛
𝑀
0
+ 𝛼
𝑛
𝑘
(1)

𝑛
𝑀
0
+ 𝛼
𝑛
𝛽
𝑛
(𝑘
(1)

𝑛
)
2

(𝑀
0
)
2

]

× 𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
𝛽
𝑛
𝑘
(1)

𝑛
𝜓 (𝑀)

+ 𝛼
𝑛
𝛽
𝑛
𝑘
(2)

𝑛
+ 𝛼
𝑛
𝑘
(2)

𝑛
+ 𝛼
𝑛
𝑘
(1)

𝑛
𝜓 (𝑀)

+ 𝛼
𝑛
𝛽
𝑛
(𝑘
(1)

𝑛
)
2

𝑀
0
𝜓 (𝑀) + 𝛼

𝑛
𝛽
𝑛
𝑘
(1)

𝑛
𝑘
(2)

𝑛
𝑀
0
.

(44)

Thus, we get the following inequality:

𝑑 (𝑥
𝑛+1

, 𝑥
∗

) ≤ (1 + 𝐴𝑘
(1)

𝑛
) 𝑑 (𝑥

𝑛
, 𝑥
∗

) + 𝐵𝑘
(1)

𝑛
+ 𝐶𝑘
(2)

𝑛
. (45)

For some 𝐴, 𝐵, 𝐶 ≥ 0, since ∑∞
1
𝑘
(1)

𝑛
< ∞ and ∑∞

1
𝑘
(2)

𝑛
<

∞, 𝑘(1)
𝑛
, 𝑘
(2)

𝑛
are bounded, due to Lemma 15 the sequence
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𝑑(𝑥
𝑛
, 𝑥
∗

) has a limit and so it is bounded. By Lemma 2, we
have

𝑑
2

(𝑥
𝑛+1

, 𝑥
∗

)

= 𝑑
2

((1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛

𝑦
𝑛
, 𝑥
∗

)

≤ (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
𝑑
2

(𝑇
𝑛

𝑦
𝑛
, 𝑥
∗

)

− 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑦
𝑛
)

≤ (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
𝑑
2

(𝑇
𝑛

𝑦
𝑛
, 𝑥
∗

)

≤ (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝛼
𝑛
[𝑑(𝑦
𝑛
, 𝑥
∗

) + 𝑘
(1)

𝑛
𝜓(𝑑(𝑦

𝑛
, 𝑥
∗

)) + 𝑘
(2)

𝑛
]
2

≤ (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝛼
𝑛
[𝑑
2

(𝑦
𝑛
, 𝑥
∗

)

+ 𝑘
(1)

𝑛

2

{𝜓 (𝑀) +𝑀
0
𝑑 (𝑦
𝑛
, 𝑥
∗

)}
2

+ 𝑘
(2)

𝑛

2

+ 2𝑘
(1)

𝑛
𝑑 (𝑦
𝑛
, 𝑥
∗

)

× {𝜓 (𝑀) +𝑀
0
𝑑 (𝑦
𝑛
, 𝑥
∗

)} + 2𝑘
(2)

𝑛
𝑑 (𝑦
𝑛
, 𝑥
∗

)

+ 2𝑘
(2)

𝑛
{𝜓 (𝑀) +𝑀

0
𝑑 (𝑦
𝑛
, 𝑥
∗

)}]

= (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
(1 +𝑀

0
𝑘
(1)

𝑛
)
2

𝑑
2

(𝑦
𝑛
, 𝑥
∗

)

+ 𝛼
𝑛
(2𝑘
(1)

𝑛

2

𝑀
0
𝜓 (𝑀) + 2𝑘

(1)

𝑛
𝜓 (𝑀)

+2𝑘
(2)

𝑛
+ 2𝑘
(1)

𝑛
𝑘
(2)

𝑛
𝑀
0
) 𝑑 (𝑦

𝑛
, 𝑥
∗

)

+ 𝛼
𝑛
(𝑘
(1)

𝑛
𝜓 (𝑀) + 𝑘

(2)

𝑛
)
2

.

(46)

Since lim
𝑛
𝑑(𝑥
𝑛
, 𝑥
∗

) exists, {𝑥
𝑛
} is bounded and it follows

from (42) that {𝑦
𝑛
} is also bounded. Then, there exist

constants 𝐴, 𝐵 ≥ 0 such that

𝑑
2

(𝑥
𝑛+1

, 𝑥
∗

)

≤ (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝛼
𝑛
(1 +𝑀

0
𝑘
(1)

𝑛
)
2

𝑑
2

(𝑦
𝑛
, 𝑥
∗

) + 𝐴𝑘
(1)

𝑛
+ 𝐵𝑘
(2)

𝑛

≤ (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝛼
𝑛
(1 +𝑀

0
𝑘
(1)

𝑛
)
2

× [(1 − 𝛽
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝛽
𝑛
𝑑
2

(𝑇
𝑛

𝑥
𝑛
, 𝑥
∗

) − 𝛽
𝑛
(1 − 𝛽

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
)]

+ 𝐴𝑘
(1)

𝑛
+ 𝐵𝑘
(2)

𝑛

≤ (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝛼
𝑛
(1 +𝑀

0
𝑘
(1)

𝑛
)
2

× [(1 − 𝛽
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝛽
𝑛
[𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥

𝑛
, 𝑥
∗

)) + 𝑘
(2)

𝑛
]
2

− 𝛽
𝑛
(1 − 𝛽

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
)]

+ 𝐴𝑘
(1)

𝑛
+ 𝐵𝑘
(2)

𝑛

≤ (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
(1 +𝑀

0
𝑘
(1)

𝑛
)
2

× [(1 − 𝛽
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝛽
𝑛
{𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ (𝑘
(1)

𝑛
)
2

[𝜓 (𝑀) +𝑀
0
𝑑 (𝑥
𝑛
, 𝑥
∗

)]
2

+ (𝑘
(2)

𝑛
)
2

+ 2𝑘
(1)

𝑛
𝑘
(2)

𝑛
[𝜓 (𝑀) +𝑀

0
𝑑 (𝑥
𝑛
, 𝑥
∗

)]

+ 2𝑘
(1)

𝑛
𝑑 (𝑥
𝑛
, 𝑥
∗

) [𝜓 (𝑀) +𝑀
0
𝑑 (𝑥
𝑛
, 𝑥
∗

)]

+ 2𝑘
(2)

𝑛
𝑑 (𝑥
𝑛
, 𝑥
∗

)}

− 𝛽
𝑛
(1 − 𝛽

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
)] + 𝐴𝑘

(1)

𝑛
+ 𝐵𝑘
(2)

𝑛

≤ (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
(1 +𝑀

0
𝑘
(1)

𝑛
)
2

× [ (1 − 𝛽
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝛽
𝑛
{(1 +𝑀

0
𝑘
(1)

𝑛
)
2

𝑑
2

(𝑥
𝑛
, 𝑥
∗

) + 𝐶𝑘
(1)

𝑛
+ 𝐷𝑘
(2)

𝑛
}

− 𝛽
𝑛
(1 − 𝛽

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
) ] + 𝐴𝑘

(1)

𝑛
+ 𝐵𝑘
(2)

𝑛

≤ (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
(1 +𝑀

0
𝑘
(1)

𝑛
)
2

× [ (1 − 𝛽
𝑛
) (1 +𝑀

0
𝑘
(1)

𝑛
)
2

𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝛽
𝑛
(1 +𝑀

0
𝑘
(1)

𝑛
)
2

𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝐶𝑘
(1)

𝑛
+ 𝐷𝑘
(2)

𝑛
− 𝛽
𝑛
(1 − 𝛽

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
) ]

+ 𝐴𝑘
(1)

𝑛
+ 𝐵𝑘
(2)

𝑛

≤ (1 − 𝛼
𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

)

+ 𝛼
𝑛
(1 +𝑀

0
𝑘
(1)

𝑛
)
4

𝑑
2

(𝑥
𝑛
, 𝑥
∗

) + 𝐸𝑘
(1)

𝑛
+ 𝐹𝑘
(2)

𝑛

− 𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
) (1 +𝑀

0
𝑘
(1)

𝑛
)
2

𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
)

≤ (1 +𝑀
0
𝑘
(1)

𝑛
)
4

𝑑
2

(𝑥
𝑛
, 𝑥
∗

) + 𝐸𝑘
(1)

𝑛

+ 𝐹𝑘
(2)

𝑛
− 𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
)

≤ (1 + 𝐾𝑀
0
𝑘
(1)

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑥
∗

) + 𝐸𝑘
(1)

𝑛
+ 𝐹𝑘
(2)

𝑛
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− 𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
)

≤ 𝑑
2

(𝑥
𝑛
, 𝑥
∗

) + 𝐺𝑘
(1)

𝑛
+ 𝐹𝑘
(2)

𝑛

− 𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
) ,

(47)

for some 𝐶,𝐷, 𝐸, 𝐹, 𝐺 ≥ 0. Thus,

𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
)

≤ 𝑑
2

(𝑥
𝑛
, 𝑥
∗

) − 𝑑
2

(𝑥
𝑛+1

, 𝑥
∗

) + 𝐺𝑘
(1)

𝑛
+ 𝐹𝑘
(2)

𝑛
,

(48)

which implies that

𝑚

∑

𝑛=1

𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
) 𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
)

≤

𝑚

∑

𝑛=1

[𝑑
2

(𝑥
𝑛
, 𝑥
∗

) − 𝑑
2

(𝑥
𝑛+1

, 𝑥
∗

)]

+

𝑚

∑

𝑛=1

(𝐸𝑘
(1)

𝑛
+ 𝐹𝑘
(2)

𝑛
) .

(49)

Since ∑∞
𝑛=1

(𝐸𝑘
(1)

𝑛
+ 𝐹𝑘
(2)

𝑛
) < ∞ and lim

𝑛
𝑑(𝑥
𝑛
, 𝑥
∗

) exists,
therefore∑∞

𝑛=1
𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
)𝑑
2

(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
) < ∞.

Note that if the domain of 𝑇 is bounded, we can omit the
conditions of existence of constants 𝑀

0
,𝑀 ≥ 0 such that

𝜓(𝜆) ≤ 𝑀
0
𝜆 for all 𝜆 ≥ 𝑀 and 𝐹(𝑇) ̸= 0.

Theorem 17. Assume that (𝑋, 𝑑) is a Hadamard space and
𝐾 ∈ K. Assume that 𝑇 : 𝐾 → 𝐾 is a uniformly continuous
total asymptotically nonexpansive mapping with 𝐹(𝑇) ̸= 0 and
there exist constants 𝑀

0
,𝑀 ≥ 0 such that 𝜓(𝜆) ≤ 𝑀

0
𝜆 for

all 𝜆 ≥ 𝑀. Let 𝑥∗ ∈ Fix(𝑇). Starting from arbitrary 𝑥
1
∈ 𝐾

define the sequence {𝑥
𝑛
} by (37), where {𝛼

𝑛
}, {𝛽
𝑛
} are sequences

in (0, 1) such that lim
𝑛→∞

𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
) ̸= 0. Suppose that

∑
∞

1
𝑘
(1)

𝑛
< ∞ and ∑∞

1
𝑘
(2)

𝑛
< ∞. Then {𝑥

𝑛
} is Δ-convergent

to a fixed point of 𝑇.

Proof. Since lim
𝑛→∞

𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
) ̸= 0, by Lemma 16,

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
) = 0, so by uniform continuity of 𝑇,

lim
𝑛→∞

𝑑(𝑇𝑥
𝑛
, 𝑇
𝑛+1

𝑥
𝑛
) = 0. Therefore, one can write

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
)

= 𝑑 ((1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛

𝑦
𝑛
, 𝑥
𝑛
)

≤ 𝑑 (𝑥
𝑛
, 𝑇
𝑛

𝑦
𝑛
)

≤ 𝑑 (𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
) + 𝑑 (𝑇

𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑦
𝑛
)

≤ 𝑑 (𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑦
𝑛
)

+ 𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥

𝑛
, 𝑦
𝑛
)) + 𝑘

(2)

𝑛

≤ 𝑑 (𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, (1 − 𝛽

𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛

𝑥
𝑛
)

+ 𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥

𝑛
, 𝑦
𝑛
)) + 𝑘

(2)

𝑛

≤ (1 + 𝛽
𝑛
) 𝑑 (𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
) + 𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥

𝑛
, 𝑦
𝑛
))

+ 𝑘
(2)

𝑛
→ 0 as 𝑛 → ∞.

(50)

Also

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑇
𝑛+1

𝑥
𝑛+1

)

+ 𝑑 (𝑇
𝑛+1

𝑥
𝑛+1

, 𝑇
𝑛+1

𝑥
𝑛
) + 𝑑 (𝑇

𝑛+1

𝑥
𝑛
, 𝑇𝑥
𝑛
)

≤ 2𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑇
𝑛+1

𝑥
𝑛+1

)

+ 𝑘
(1)

𝑛+1
𝜓 (𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)) + 𝑘
(2)

𝑛
+ 𝑑 (𝑇

𝑛+1

𝑥
𝑛
, 𝑇𝑥
𝑛
) ,

(51)

and hence

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. (52)

Set𝑤
𝑤
(𝑥
𝑛
) := ⋃𝐴({𝑢

𝑛
}), where the union is taken over by

all subsequences {𝑢
𝑛
} of {𝑥

𝑛
}. We assert that 𝑤

𝑤
(𝑥
𝑛
) ⊂ 𝐹(𝑇).

Let 𝑢 ∈ 𝑤
𝑤
(𝑥
𝑛
); then there is a subsequence {𝑢

𝑛
} of {𝑥

𝑛
}

such that 𝐴({𝑢
𝑛
}) = {𝑢}. By Lemmas 4 and 5 there exists a

subsequence {V
𝑛
} of {𝑢

𝑛
} such that Δ − lim

𝑛
V
𝑛
= V ∈ 𝐾. We

have seen that lim
𝑛
𝑑(𝑇V
𝑛
, V
𝑛
) = 0, so V ∈ 𝐹(𝑇) byTheorem 12

and lim
𝑛
𝑑(𝑥
𝑛
, V) exists by Lemma 16.Wewill show that𝑢 = V.

Suppose, on the contrary, that 𝑢 ̸= V. By the uniqueness of
asymptotic centers,

lim sup
𝑛

𝑑 (V
𝑛
, V) < lim sup

𝑛

𝑑 (V
𝑛
, 𝑢)

≤ lim sup
𝑛

𝑑 (𝑢
𝑛
, 𝑢)

< lim sup
𝑛

𝑑 (𝑢
𝑛
, V)

= lim sup
𝑛

𝑑 (𝑥
𝑛
, V)

= lim sup
𝑛

𝑑 (V
𝑛
, V) ,

(53)

which is a contradiction. Hence, we get that 𝑢 = V ∈ 𝐹(𝑇). To
show that {𝑥

𝑛
} Δ-converges to a fixed point of 𝑇, it suffices

to show that 𝑤
𝑤
(𝑥
𝑛
) consists of exactly one point. Let {𝑢

𝑛
}

be a subsequence of {𝑥
𝑛
}. By Lemmas 4 and 5 there exists a

subsequence {V
𝑛
} of {𝑢

𝑛
} such that Δ − lim

𝑛
V
𝑛
= V ∈ 𝐾. Let

𝐴({𝑢
𝑛
}) = {𝑢} and 𝐴({𝑥

𝑛
}) = {𝑥}. We have seen that 𝑢 = V

and V ∈ 𝐹(𝑇). It is sufficient to show that 𝑥 = V to finalize
the proof. Suppose, on the contrary, 𝑥 is not equal to 𝑦. Since
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{𝑑(𝑥
𝑛
, V)} is convergent, then by the uniqueness of asymptotic

centers,
lim sup
𝑛

𝑑 (V
𝑛
, V) < lim sup

𝑛

𝑑 (V
𝑛
, 𝑥)

≤ lim sup
𝑛

𝑑 (𝑥
𝑛
, 𝑥)

< lim sup
𝑛

𝑑 (𝑥
𝑛
, V)

= lim sup
𝑛

𝑑 (V
𝑛
, V) ,

(54)

which is a contradiction, and hence the conclusion follows.

Corollary 18. Assume that (𝑋, 𝑑) is a Hadamard space and
𝐾 ∈ K. Suppose that 𝑇 : 𝐾 → 𝐾 is a uniformly continuous
total asymptotically nonexpansive mapping with 𝐹(𝑇) ̸= 0 and
there exist constants 𝑀

0
,𝑀 ≥ 0 such that 𝜓(𝜆) ≤ 𝑀

0
𝜆 for

all 𝜆 ≥ 𝑀. Let 𝑥∗ ∈ Fix(𝑇). Starting from arbitrary 𝑥
1
∈ 𝐾

define the sequence {𝑥
𝑛
} by (37), where {𝛼

𝑛
}, {𝛽
𝑛
} are sequences

in (0, 1). Suppose that ∑∞
1
𝑘
(1)

𝑛
< ∞ and ∑∞

1
𝑘
(2)

𝑛
< ∞. Then

the condition 𝑑(𝑇𝑛𝑥
𝑛
, 𝑥
𝑛
) → 0 as 𝑛 → ∞ implies that

lim
𝑛

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0, lim
𝑛

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. (55)

Note that, in the case 𝛽
𝑛
= 0, we can state Theorem 17 in

the following manner.

Lemma 19. Assume that (𝑋, 𝑑) is a Hadamard space and𝐾 ∈

K. Assume that 𝑇 : 𝐾 → 𝐾 is a uniformly continuous total
asymptotically nonexpansive mapping with 𝐹(𝑇) ̸= 0. Suppose
also that there exist constants 𝑀

0
,𝑀 ≥ 0 such that 𝜓(𝜆) ≤

𝑀
0
𝜆 for all 𝜆 ≥ 𝑀. Let 𝑥∗ ∈ Fix(𝑇). Starting from arbitrary

𝑥
1
∈ 𝐾 define the sequence {𝑥

𝑛
} by (38), where {𝛼

𝑛
} is a

sequence in (0, 1). Suppose that ∑∞
1
𝑘
(1)

𝑛
< ∞ and ∑∞

1
𝑘
(2)

𝑛
<

∞. Then the condition 𝑑(𝑇𝑛𝑥
𝑛
, 𝑥
𝑛
) → 0 as 𝑛 → ∞ implies

that
lim
𝑛

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0, lim
𝑛

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. (56)

Proof. We have from (38)

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑑 ((1 − 𝛼

𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛

𝑥
𝑛
, 𝑥
𝑛
)

≤ 𝛼
𝑛
𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑥
𝑛
) .

(57)

Therefore, lim
𝑛
𝑑(𝑥
𝑛+1

, 𝑥
𝑛
) = 0, and also

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑇
𝑛+1

𝑥
𝑛+1

)

+ 𝑑 (𝑇
𝑛+1

𝑥
𝑛+1

, 𝑇
𝑛+1

𝑥
𝑛
) + 𝑑 (𝑇

𝑛+1

𝑥
𝑛
, 𝑇𝑥
𝑛
)

≤ 2𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑘
(1)

𝑛+1
𝜓 (𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)) + 𝑘
(2)

𝑛+1

+ 𝑑 (𝑥
𝑛+1

, 𝑇
𝑛+1

𝑥
𝑛+1

) + 𝑑 (𝑇
𝑛+1

𝑥
𝑛
, 𝑇𝑥
𝑛
) .

(58)

Since 𝑇 is uniformly continuous, the hypotheses 𝑑(𝑇𝑛𝑥
𝑛
, 𝑥
𝑛
)

→ 0 as 𝑛 → ∞ implies that

𝑑 (𝑇
𝑛+1

𝑥
𝑛
, 𝑇𝑥
𝑛
) → 0, 𝑑 (𝑥

𝑛+1
, 𝑇
𝑛+1

𝑥
𝑛+1

) → 0. (59)

Proposition 20 (see [32, Lemma 2.9]). Let (𝑋, 𝑑) be a
complete CAT(0) space and let 𝑥 ∈ 𝑋. Suppose that {𝑡

𝑛
} is

a sequence in [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1) and {𝑥
𝑛
}, {𝑦
𝑛
}

are sequences in 𝑋 such that lim sup
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) ≤ 𝑟,

lim sup
𝑛→∞

𝑑(𝑦
𝑛
, 𝑥) ≤ 𝑟, and lim

𝑛→∞
𝑑((1 − 𝑡

𝑛
)𝑥
𝑛
⊕

𝑡
𝑛
𝑦
𝑛
, 𝑥) = 𝑟 for some 𝑟 ≥ 0. Then

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) = 0. (60)

Theorem 21. Assume that (𝑋, 𝑑) is a Hadamard space and
𝐾 ∈ K. Suppose that a self-mapping 𝑇 : 𝐾 → 𝐾 is uniformly
continuous total asymptotically nonexpansive mapping with
𝐹(𝑇) ̸= 0 and suppose that there exist constants𝑀

0
,𝑀 ≥ 0 such

that𝜓(𝜆) ≤ 𝑀
0
𝜆 for all𝜆 ≥ 𝑀. Let𝑥∗ ∈ Fix(𝑇), and {𝛼

𝑛
}
𝑛≥1

is
a sequence in (0, 1) for all 𝑛 ≥ 1. Starting fromarbitrary𝑥

1
∈ 𝐾

define the sequence {𝑥
𝑛
} by (38). Suppose that ∑∞

1
𝑘
(1)

𝑛
< ∞

and ∑∞
1
𝑘
(2)

𝑛
< ∞. Then lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0.

Proof. First we show that 𝑑(𝑥
𝑛
, 𝑥
∗

) for 𝑥∗ ∈ 𝐹(𝑇) is bounded
and it has a limit

𝑑 (𝑥
𝑛+1

, 𝑥
∗

)

≤ 𝑑 ((1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝑇
𝑛

𝑥
𝑛
, 𝑥
∗

)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑥
∗

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥

𝑛
, 𝑥
∗

)) + 𝛼
𝑛
𝑘
(2)

𝑛
.

(61)

Since 𝜓 is increasing function, it results that 𝜓(𝜆) ≤ 𝜓(𝑀) if
𝜆 ≤ 𝑀 and 𝜓(𝜆) ≤ 𝑀

0
𝜆 if 𝜆 ≥ 𝑀. In either case we obtain

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
∗

)) ≤ 𝜓 (𝑀) +𝑀
0
𝑑 (𝑥
𝑛
, 𝑥
∗

) (62)

for each 𝑛 ≥ 1. Thus, we get the following inequality:

𝑑 (𝑥
𝑛+1

, 𝑥
∗

) ≤ (1 +𝑀
0
𝛼
𝑛
𝑘
(1)

𝑛
) 𝑑 (𝑥

𝑛
, 𝑥
∗

)

+ 𝛼
𝑛
𝑘
(1)

𝑛
𝜓 (𝑀) + 𝛼

𝑛
𝑘
(2)

𝑛
.

(63)

However, ∑∞
𝑛=1

𝑘
(1)

𝑛
< ∞ and ∑

∞

𝑛=1
𝑘
(2)

𝑛
< ∞; therefore,

due to Lemma 15 the sequence 𝑑(𝑥
𝑛
, 𝑥
∗

) has a limit and it is
bounded. Assume that lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑥
∗

) = 𝑐. Since

𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑥
∗

) = 𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑥
∗

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥

𝑛
, 𝑥
∗

)) + 𝑘
(2)

𝑛

(64)

for all 𝑛 ∈ N, then
lim sup
𝑛→∞

𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑥
∗

) ≤ 𝑐. (65)

Additionally, since

𝑑 (𝑥
𝑛+1

, 𝑥
∗

)

= 𝑑 (𝛼
𝑛
𝑇
𝑛

𝑥
𝑛
⊕ (1 − 𝛼

𝑛
) 𝑥
𝑛
, 𝑥
∗

)

≤ 𝛼
𝑛
𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑥
∗

) + (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
∗

)

≤ 𝛼
𝑛
𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑥
∗

) + (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
∗

)

≤ 𝛼
𝑛
[𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥

𝑛
, 𝑥
∗

)) + 𝑘
(2)

𝑛
]

+ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
∗

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
[𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥

𝑛
, 𝑥
∗

)) + 𝑘
(2)

𝑛
] ,

(66)
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then

𝑑 (𝑥
𝑛+1

, 𝑥
∗

) = 𝑑 (𝛼
𝑛
𝑇
𝑛

𝑥
𝑛
⊕ (1 − 𝛼

𝑛
) 𝑥
𝑛
, 𝑥
∗

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
∗

) + 𝛼
𝑛
[𝑘
(1)

𝑛
𝜓 (𝑑 (𝑥

𝑛
, 𝑥
∗

)) + 𝑘
(2)

𝑛
] .

(67)

Hence,

lim sup
𝑛→∞

(𝑑 (𝛼
𝑛
𝑇
𝑛

𝑥
𝑛
⊕ (1 − 𝛼

𝑛
) 𝑥
𝑛
, 𝑥
∗

)) = 𝑐. (68)

By Proposition 20, we have lim
𝑛→∞

𝑑(𝑇
𝑛

𝑥
𝑛
, 𝑥
𝑛
) = 0. By

Lemma 19, lim
𝑛→∞

𝑑(𝑇𝑥
𝑛
, 𝑥
𝑛
) = 0. This completes the

proof.

Recall that a mapping 𝑇 : 𝐶 → 𝐶 is said to be semicom-
pact if 𝐶 is closed and for any bounded sequence {𝑥

𝑛
} ⊂ 𝐶

with lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0, there exist 𝑧 ∈ 𝐶 and {𝑥

𝑛
𝑗

} ⊂

{𝑥
𝑛
} satisfying lim

𝑗→∞
𝑥
𝑛
𝑗

= 𝑧.
The next theorem extends corresponding results of Beg

[33], Chang [34], and Osilike and Aniagbosor [22] for a more
general class of non-Lipschitzianmappings in the framework
of 𝐶𝐴𝑇(0) spaces. It also extends corresponding results of
Dhompongsa and Panyanak [8] from the class of nonexpan-
sive mappings to a more general class of non-Lipschitzian
mappings in the same space setting. Moreover, it extends
corresponding results of Abbas et al. [20].

Theorem 22. Assume that (𝑋, 𝑑) is a Hadamard space and
𝐾 ∈ K. Suppose that a self-mapping 𝑇 : 𝐾 → 𝐾 is uniformly
continuous total asymptotically nonexpansive mapping with
𝐹(𝑇) ̸= 0; suppose that there exist constants 𝑀

0
,𝑀 ≥ 0 such

that 𝜓(𝜆) ≤ 𝑀
0
𝜆 for all 𝜆 ≥ 𝑀. Let 𝑥∗ ∈ Fix(𝑇). Starting

from arbitrary 𝑥
1
∈ 𝐾 define the sequence {𝑥

𝑛
} by (37), where

{𝛼
𝑛
}, {𝛽
𝑛
} are sequences in (0, 1) for all 𝑛 ≥ 1, such that

lim
𝑛→∞

𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
) ̸= 0. Suppose that ∑∞

1
𝑘
(1)

𝑛
< ∞ and

∑
∞

1
𝑘
(2)

𝑛
< ∞, and also suppose that 𝑇𝑚 is semicompact for

some𝑚 ∈ N.Then the sequence {𝑥
𝑛
} converges strongly to some

fixed point of 𝑇.

Proof. ByTheorem 17, we have lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. Since

𝑇 is uniform continuous, it follows the estimation

𝑑 (𝑥
𝑛
, 𝑇
𝑚

𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
)

+ 𝑑 (𝑇𝑥
𝑛
, 𝑇
2

𝑥
𝑛
) + ⋅ ⋅ ⋅ + 𝑑 (𝑇

𝑚−1

𝑥
𝑛
, 𝑇
𝑚

𝑥
𝑛
)

(69)

that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇
𝑚

𝑥
𝑛
) = 0. Since 𝑇𝑚 is semicompact,

there exist a subsequence {𝑥
𝑛
𝑗

} of {𝑥
𝑛
} and 𝑥 ∈ 𝐾 with

lim
𝑗→∞

𝑥
𝑛
𝑗

= lim
𝑗→∞

𝑇
𝑚

𝑥
𝑛
𝑗

= 𝑥. Again since 𝑇 is uni-
formly continuous lim

𝑛→∞
𝑑(𝑇𝑥, 𝑇𝑥

𝑛
𝑗

) = 0 and it follows
from the estimation,

𝑑 (𝑇𝑥, 𝑥) ≤ 𝑑 (𝑇𝑥, 𝑇𝑥
𝑛
𝑗

) + 𝑑 (𝑇𝑥
𝑛
𝑗

, 𝑥
𝑛
𝑗

) + 𝑑 (𝑥
𝑛
𝑗

, 𝑥) → 0

as 𝑛 → ∞,

(70)

that 𝑑(𝑥, 𝑇𝑥) → 0; that is, 𝑥 ∈ 𝐹(𝑇). By Lemma 16, the limit
of 𝑑(𝑥

𝑛
, 𝑥) = 𝑐 exists as 𝑛 → ∞. Since lim

𝑛→∞
𝑥
𝑛
𝑗

=

𝑥, therefore 𝑐 = 0. This accomplishes the proof.
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