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This paper presents a computational iterative method to find approximate inverses for the inverse of matrices. Analysis of
convergence reveals that the method reaches ninth-order convergence. The extension of the proposed iterative method for
computingMoore-Penrose inverse is furnished. Numerical results including the comparisons with different existingmethods of the
same type in the literature will also be presented to manifest the superiority of the new algorithm in finding approximate inverses.

1. Introduction

The main purpose of this paper is to present an efficient
method in terms of speed of convergence, while its conver-
gence can be easily achieved and also be economic for large
sparse matrices possessing sparse inverses. We also discuss
the extension of the new scheme for finding the Moore-
Penrose inverse of singular and rectangular matrices.

Finding a matrix inverse is important in some practical
applications such as finding a rational approximation for the
Fermi-Dirac functions in the density functional theory [1],
because it conveys significant features of the problems dealing
with.

We further mention that in some certain circumstances,
the computation of amatrix inverse is necessary. For example,
there are many ways to encrypt a message, whereas the use
of coding has become particularly significant in recent years.
One way to encrypt or code a message is to use matrices and
their inverses. Indeed, consider a fixed invertible matrix 𝐴.
Convert the message into a matrix 𝐵 such that 𝐴𝐵 is possible
to perform. Send the message generated by 𝐴𝐵. At the other
end, they will need to know𝐴−1 in order to decrypt or decode
the message sent.

The direct methods such as Gaussian elimination with
partial pivoting or LU decomposition require a reasonable

time to compute the inverse when the size of the matrices
is high. To illustrate further, the Gaussian elimination with
partial pivoting method cannot be highly parallelized and
this restricts its applicability in some cases. In contrary,
Schulz-type methods, which could be applied for large sparse
matrices (possessing sparse inverses [2]) by preserving the
sparsity feature and can be parallelized, are in focus in such
cases.

Some knownmethods were proposed for the approxima-
tion of a matrix inverse, such as Schulz scheme. The oldest
scheme, that is, the Schulz method (see [3]), is defined as

𝑉
𝑛+1

= 𝑉
𝑛

(2𝐼 − 𝐴𝑉
𝑛

) , 𝑛 = 0, 1, 2, . . . , (1)

wherein 𝐼 is the identity matrix. Note that [4] mentions that
Newton-Schulz iterations can also be combinedwithwavelets
or hierarchical matrices to compute the diagonal elements of
𝐴
−1 independently.
The proposed iteration relies on matrix multiplications,

which destroy sparsity, and therefore the Schulz-type meth-
ods are less efficient for sparse inputs possessing dense
inverses. However, a numerical dropping is usually applied to
𝑉
𝑛+1

to keep the approximated inverse sparse. Such a strategy
is useful for preconditioning.
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To provide more iterations from this classification of
methods, we remember that W. Li and Z. Li in [5] proposed

𝑉
𝑛+1

= 𝑉
𝑛

(3𝐼 − 3𝐴𝑉
𝑛

+ (𝐴𝑉
𝑛

)
2

) , 𝑛 = 0, 1, 2, . . . . (2)

In 2011, Li et al. in [6] represented (2) in the following
form:

𝑉
𝑛+1

= 𝑉
𝑛

(3𝐼 − 𝐴𝑉
𝑛

(3𝐼 − 𝐴𝑉
𝑛

)) , 𝑛 = 0, 1, 2, . . . (3)

and also proposed another iterative method for finding 𝐴−1
as comes next:

𝑉
𝑛+1

= [𝐼 +
1

4
(𝐼 − 𝑉

𝑛

𝐴) (3𝐼 − 𝑉
𝑛

𝐴)
2

]𝑉
𝑛

, 𝑛 = 0, 1, 2, . . . .

(4)

Much of the application of these solvers (specially the
Schulz method) for structured matrices was investigated in
[7] while the authors in [8] showed that the matrix iteration
of Schulz is numerically stable. Further discussion about such
iterative schemes might be found at [9–12].

The Schulz-type matrix iterations are dependent on the
initial matrix𝑉

0

toomuch. In general, we construct the initial
guess for square matrices as follows. For a general matrix
𝐴
𝑚×𝑚 satisfying no structure, we choose as in [13]

𝑉
0

=
𝐴
𝑇

𝑚‖𝐴‖
1

‖𝐴‖
∞

, (5)

or 𝑉
0

= 𝛼𝐼, where 𝐼 is the identity matrix, and 𝛼 ∈ R

should adaptively be determined such that ‖𝐼 − 𝛼𝐴‖ < 1.
For diagonally dominant (DD) matrices, we choose as in [14]
𝑉
0

= diag(1/𝑎
11

, 1/𝑎
22

, . . . , 1/𝑎
𝑚𝑚

), wherein 𝑎
𝑖𝑖

is the diagonal
entry of 𝐴. And for a symmetric positive definite matrix and
by using [15], we choose 𝑉

0

= (1/‖𝐴‖
𝐹

)𝐼, whereas ‖ ⋅ ‖
𝐹

is the
Frobenius norm.

For rectangular or singular matrices, one may choose
𝑉
0

= 𝐴
∗

/(‖𝐴‖
1

‖𝐴‖
∞

) or 𝑉
0

= 𝐴
𝑇

/(‖𝐴‖
1

‖𝐴‖
∞

), based on
[16]. Also, we could choose 𝑉

0

:= 𝛼𝐴
𝑇, where 0 < 𝛼 <

2/𝜌(𝐴
𝑇

𝐴) or

𝑉
0

= 𝛼𝐴
∗

, (6)

with 0 < 𝛼 < 2/𝜌(𝐴
∗

𝐴) [17]. Note that these choices
could also be considered for square matrices. However, the
most efficient way for producing 𝑉

0

(for square nonsingular
matrices) is the hybrid approach presented in Algorithm 1 of
[18].

The rest of this paper is organized as follows. The
main contributions of this article are given in Sections 2
and 3. In Section 2, we analyze a new scheme for matrix
inversion while a discussion about the applicability of the
scheme for Moore-Penrose inverse will be given in Section 3.
Section 4 will discuss the performance and the efficiency of
the new proposed method numerically in comparison with
the other schemes. Finally, concluding remarks are presented
in Section 5.

2. Main Result

The derivation of different Schulz-type methods for matrix
inversion relies on iterative (one- or multipoint) methods for
the solution of nonlinear equations [19, 20]. For instance,
imposing Newton’s iteration on the matrix equation 𝐴𝑉 = 𝐼

would result in (1), as fully discussed in [21]. Here, we apply
the following new nonlinear solver on the matrix equation
𝑓(𝑉) = 𝑉

−1

− 𝐴 = 0:

𝑌
𝑛

= 𝑉
𝑛

− 𝑓


(𝑉
𝑛

)
−1

𝑓 (𝑉
𝑛

) − 2
−1

× (𝑓


(𝑉
𝑛

)
−1

𝑓


(𝑉
𝑛

)) (𝑓


(𝑉
𝑛

)
−1

𝑓 (𝑉
𝑛

))
2

,

𝑍
𝑛

= 𝑌
𝑛

− 2
−1

𝑓


(𝑌
𝑛

)
−1

𝑓 (𝑌
𝑛

) ,

𝑉
𝑛+1

= 𝑌
𝑛

− 𝑓


(𝑍
𝑛

)
−1

𝑓 (𝑌
𝑛

) , 𝑛 = 0, 1, 2, . . . .

(7)

Note that (7) is novel and constructed in such a way to pro-
duce a new matrix iterative method for finding generalized
inverses efficiently. Now, the following iteration method for
matrix inversion could be obtained:

𝑉
𝑛+1

=
1

4
𝑉
𝑛

(3𝐼 + 𝐴𝑉
𝑛

(−3𝐼 + 𝐴𝑉
𝑛

))

× (4𝐼 − (−𝐼 + 𝐴𝑉
𝑛

)
3

× (−3𝐼 + 𝐴𝑉
𝑛

(3𝐼 + 𝐴𝑉
𝑛

(−3𝐼 + 𝐴𝑉
𝑛

)))
2

) ,

𝑛 = 0, 1, 2, . . . .

(8)

The obtained scheme includes matrix power, which is
certainly of too much cost. To remedy this, we rewrite the
obtained iteration as efficiently as possible to also reduce the
number of matrix-matrix multiplications in what follows:

𝜓
𝑛

= 𝐴𝑉
𝑛

,

𝜁
𝑛

= 3𝐼 + 𝜓
𝑛

(−3𝐼 + 𝜓
𝑛

) ,

𝜐
𝑛

= 𝜓
𝑛

𝜁
𝑛

,

𝑉
𝑛+1

= −
1

4
𝑉
𝑛

𝜁
𝑛

(−13𝐼 + 𝜐
𝑛

(15𝐼 + 𝜐
𝑛

(−7𝐼 + 𝜐
𝑛

))) ,

𝑛 = 0, 1, 2, . . . ,

(9)

whereas 𝐼 is the identity matrix and the sequence of matrix
iterates {𝑉

𝑛

}
𝑛=∞

𝑛=0

converges to 𝐴−1 for a good initial guess.
It should be remarked that the convergence of any order

for nonsingular square matrices is generated in Section 6 of
Chapter 2 of [22], whereas the general way for the rectangular
matrices was discussed in Chapter 5 of [23] and the recent
paper of [24]. In those constructions, always a convergence
order 𝜌will be attained by 𝜌 times of matrix-matrix products,
such as (1) which reaches the order 2 using twomatrix-matrix
multiplications.

Two important matters must be mentioned at this
moment to ease up the perception of why a higher order
(efficient) method such as (9) with 7 matrix-matrix products
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to reach at least the convergence order 9 is practical. First, by
following the comparative index of informational efficiency
for inverse finders [25], defined by 𝐸 = 𝜌/𝜃, wherein 𝜌 and
𝜃 stand for the convergence order and the number of matrix-
matrix products, then the informational index for (9), that is,
9/7 ≈ 1.28, beats its other competitors, 2/2 = 1 of (1), 3/3 = 1
of (2)-(3), and 3/4 = 0.75 of (4). And second, the significance
of the new scheme will be displayed in its implementation.
To illustrate further, such iterations depend totally on the
initial matrices. Though there are certain and efficient ways
for finding 𝑉

0

, in general such initial approximations take a
high number of iterations (see e.g., Figure 3, the blue color) to
arrive at the convergence phase.On the other hand, each cycle
of the implementation of such Schulz-type methods includes
one stopping criterion based on the use of amatrix norm, and
this would impose further burden and load in general, for the
low order methods in contrast to the high order methods,
such as (9). Because the computation of a matrix norm
(usually ‖ ⋅ ‖

2

for dense complex matrices and ‖ ⋅ ‖
𝐹

for large
sparse matrices) takes time and therefore higher number of
steps/iterations (which is the result of lower order methods),
it will be costlier than the lower number of steps/iterations
of high order methods. Hence, the higher order (efficient)
iterations are mostly better solvers in terms of computational
time to achieve the desired accuracy.

After this complete discussion of the need and efficacy of
the new scheme (9), we are about to prove the convergence
behavior of (9) theoretically in what follows.

Theorem 1. Let𝐴 = [𝑎
𝑖𝑗

]
𝑚×𝑚 be a nonsingular complex or real

matrix. If the initial approximation 𝑉
0

satisfies
𝐼 − 𝐴𝑉0

 < 1, (10)

then the iterativemethod (9) converges with at least ninth order
to 𝐴−1.

Proof. Let (10) hold, and for the sake of simplicity assume that
𝐸
0

= 𝐼 − 𝐴𝑉
0

and 𝐸
𝑛

= 𝐼 − 𝐴𝑉
𝑛

. It is straightforward to have

𝐸
𝑛+1

= 𝐼 − 𝐴𝑉
𝑛+1

=
1

4
[3𝐸
9

𝑛

+ 𝐸
10

𝑛

] . (11)

Hence, by taking an arbitrary norm from both sides of (11),
we obtain

𝐸𝑛+1
 ≤

1

4
(3
𝐸𝑛



9

+
𝐸𝑛



10

) . (12)

The rest of the proof is similar to Theorem 2.1 of [26], and
it is hence omitted. Finally, 𝐼 − 𝐴𝑉

𝑛

→ 0, when 𝑛 → ∞,
and thus 𝑉

𝑛

→ 𝐴
−1, as 𝑛 → ∞. So the sequence {‖𝐸

𝑛

‖
2

}

is strictly monotonic decreasing. Moreover, if we denote 𝜖
𝑛

=

𝑉
𝑛

− 𝐴
−1, as the error matrix in the iterative procedure (9),

then we could easily obtain the following error inequality:

𝜖𝑛+1
 ≤ (

1

4
[3‖𝐴‖

8

+ ‖𝐴‖
9
𝜖𝑛

])
𝜖𝑛



9

. (13)

The error inequality (13) reveals that the iteration (9) con-
verges with at least ninth order to 𝐴

−1. The proof is now
complete.

Some features of the new scheme (9) are as follows.

(1) The new method can be taken into consideration
for finding approximate inverse (preconditioners) of
complex matrices. Using a dropping strategy, we
could keep the sparsity of a matrix to be used
as a preconditioner. Such an action will be used
throughout this paper for sparse matrices using the
command Chop[exp, tolerance] in Mathematica, to
preserve the sparsity of the approximate inverses 𝑉

𝑖

,
for any 𝑖.

(2) Unlike the traditional direct solvers such as GEPP, the
new scheme has the ability to be parallelized.

(3) In order to further reduce the computational burden
of the matrix-by-matrix multiplications per comput-
ing step of the new algorithm when dealing with
sparse matrices, in the new scheme by using Sparse
Array[] command in Mathematica, we will preserve
the sparsity features of the output approximate inverse
in a reasonable computational time. Additionally,
for some special matrices, such as Toeplitz or Van-
dermonde types of matrices, further computational
savings are possible as discussed by Pan in [27]. See
for more information [28].

(4) If the initial guess commutes with the original matrix,
then all matrices in the sequence {𝑉

𝑛

}
𝑛=∞

𝑛=0

satisfy
the same property of commutation. Notice that only
some initial matrices guarantee that in all cases the
sequence commutes with the matrix 𝐴.

In the next section, we present some analytical discussion
about the fact that the new method (9) could also be used for
computing the Moore-Penrose generalized inverse.

3. An Iterative Method for
Moore-Penrose Inverse

It is well known in the literature that the Moore-Penrose
inverse of a complex matrix 𝐴 ∈ C𝑚×𝑘 (also called pseudo-
inverse), denoted by 𝐴† ∈ C𝑘×𝑚, is a matrix 𝑉 ∈ C𝑘×𝑚

satisfying the following conditions:

𝐴𝑉𝐴 = 𝐴, 𝑉𝐴𝑉 = 𝑉,

(𝐴𝑉)
∗

= 𝐴𝑉, (𝑉𝐴)
∗

= 𝑉𝐴,

(14)

wherein 𝐴
∗ is the conjugate transpose of 𝐴. This inverse

uniquely exists.
Various numerical solution methods have been devel-

oped for approximating Moore-Penrose inverse (see e.g.,
[29]). The most comprehensive review of such iterations
could be found in [17], while the authors mentioned that
iterative Schulz-type methods can be taken into account for
finding pseudoinverse. For example, it is known that (1)
converges to the pseudoinverse in the general case if 𝑉

0

:=

𝛼𝐴
∗, where 0 < 𝛼 < 2/𝜌(𝐴

∗

𝐴) and 𝜌(⋅) denotes the spectral
radius.

Accordingly, it is known that the new scheme (9) con-
verges to the Moore-Penrose inverse. In order validate this
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n = 30000;

A = SparseArray[{Band[{195, 10000}] -> −I, Band[{1, 1}] -> 19.,

Band[{1000, 2500}] -> 2.1, Band[{−60, −1800}] -> 1.1,

Band[{−600, 170}] -> 2. + I, Band[{−1350, 250}] -> −5.3},

{n, n}, 0.]

Algorithm 1

1

10000

20000

30000

1

10000

20000

30000

1 10000 20000 30000

1 10000 20000 30000

(a)

1

10000

20000

30000

1

10000

20000

30000

1 10000 20000 30000

1 10000 20000 30000

(b)

Figure 1: The matrix plot (a) and the inverse (b) of the large complex sparse 30000 × 30000matrix 𝐴 in Example 7.

fact analytically, we provide some important theoretics in
what follows.

Lemma 2. For the sequence {𝑉
𝑛

}
𝑛=∞

𝑛=0

generated by the iterative
Schulz-type method (9) and the initial matrix (6), for any 𝑛 ≥
0, it holds that

(𝐴𝑉
𝑛

)
∗

= 𝐴𝑉
𝑛

, (𝑉
𝑛

𝐴)
∗

= 𝑉
𝑛

𝐴,

𝑉
𝑛

𝐴𝐴
†

= 𝑉
𝑛

, 𝐴
†

𝐴𝑉
𝑛

= 𝑉
𝑛

.

(15)

Proof. The proof of this lemma is based on mathematical
induction. Such a procedure is similar to Lemma 3.1 of [30],
and it is hence omitted.

Theorem 3. For the rectangular complex matrix 𝐴 ∈ C𝑚×𝑘

and the sequence {𝑉
𝑛

}
𝑛=∞

𝑛=0

generated by (9), for any 𝑛 ≥ 0,
using the initial approximation (6), the sequence converges to
the pseudoinverse 𝐴† with ninth order of convergence.

Proof. We consider E
𝑛

= 𝑉
𝑛

− 𝐴
†, as the error matrix for

finding theMoore-Penrose inverse.Then, the proof is similar
to the proof of Theorem 4 in [18] and it is hence omitted. We
finally have

E𝑛+1
 ≤


𝐴
†


‖𝐴‖
9
E𝑛



9

. (16)

Thus, ‖𝑉
𝑛

− 𝐴
†

‖ → 0; that is, the obtained sequence of (9)
converges to the Moore-Penrose inverse as 𝑛 → +∞. This
ends the proof.

Theorem 4. Considering the same assumptions as in
Theorem 3, then the iterative method (9) has asymptotical
stability for finding the Moore-Penrose generalized inverse.

Proof. The steps of proving the asymptotical stability of (9)
are similar to those which have recently been taken for
a general family of methods in [31]. Hence, the proof is
omitted.

Remark 5. It should be remarked that the generalization of
our proposed scheme for generalized outer inverses, that is,
𝐴
(2)

𝑇,𝑆

, is straight forward according to the recent work [32].

Remark 6. The new iteration (9) is free frommatrix power in
its implementation and this allows one to apply it for finding
generalized inverses easily.

4. Computational Experiments

Using the computer algebra system Mathematica 8 [33], we
now compare our iterative algorithm with other Schulz-type
methods.
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Table 1: Results of comparisons for Example 7.

Methods
(1) (3) (4) (9)

Convergence rate 2 3 3 7
Iteration number 3 2 2 1
Residual norm 8.32717 × 10

−7

1.21303 × 10
−7

5.10014 × 10
−8

9.7105 × 10
−8

No. of nonzero ele. 591107 720849 800689 762847
Time (in seconds) 4.22 4.05 9.32 4.18

Id = SparseArray[{{i , i } -> 1.}, {n, n}];

V = DiagonalMatrix@SparseArray[1/Normal[Diagonal[A]]];

Do[V1 = SparseArray[V];

V2 = Chop[A.V1]; V3 = 3 Id + V2.(−3 Id + V2);

V4 = SparseArray[V2.V3];

V = Chop[−(1/4) V1.V3.SparseArray[−13 Id

+ V4.(15 Id + V4.(−7 Id + V4))]];

Print[V];L[i]= N[Norm[Id − V.A, 1]];

Print["The residual norm is:"

Column[{i}, Frame -> All, FrameStyle -> Directive[Blue]]

Column[{L[i]}, Frame -> All, FrameStyle -> Directive[Blue]]];

, {i, 1}]; //AbsoluteTiming

Algorithm 2

n = 10000;

A = SparseArray[{Band[{−700, −200}] -> 1., Band[{1, 1}] -> −1.5,

Band[{1, −400}] -> .9, Band[{1, −400}] -> −1.,

Band[{2000, 200}] -> 1.}, {n, n}, 0.]

Algorithm 3

1

2000

4000

6000

8000

10000

1

2000

4000

6000

8000

10000

1 2000 4000 6000 8000 10000

1 2000 4000 6000 8000 10000

(a)

1

2000

4000

6000

8000

10000

1

2000

4000

6000

8000

10000

1 2000 4000 6000 8000 10000

1 2000 4000 6000 8000 10000

(b)

Figure 2: The matrix plot (a) and the inverse (b) of the large sparse 10000 × 10000matrix 𝐴 in Example 8.
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Table 2: Results of comparisons for Example 8.

Methods
(1) (3) (4) (9)

Convergence rate 2 3 3 7
Iteration number 10 7 6 3
Residual norm 1.29011 × 10

−10

1.63299 × 10
−9

1.18619 × 10
−11

7.68192 × 10
−10

No. of nonzero ele. 41635 42340 41635 41635
Time (in seconds) 2.23 2.15 2.26 1.95

Table 3: Results of elapsed computational time for solving Example 9.

Methods GMRES PGMRES-(1) PGMRES-(3) PGMRES-(4) PGMRES-(9)
The total time 0.29 0.14 0.14 0.09 0.07

For numerical comparisons in this section, we have used
the methods (1), (3), (4), and (9). We implement the above
algorithms on the following examples using the built-in
precision in Mathematica 8.

Example 7. Let us consider the large complex sparse matrix
of the size 30000 × 30000 with 79512 nonzero elements
possessing a sparse inverse as in Algorithm 1 (𝐼 = √−1),
where the matrix plot of 𝐴 showing its structure has been
drawn in Figure 1(a).

Methods like (9) are powerful in finding an approximate
inverse or in finding robust approximate inverse precondi-
tioners in low number of steps, in which the output form of
the approximate inverse is also sparse.

In this test problem, the stopping criterion is ‖𝐼 − 𝑉
𝑛

𝐴‖
1

≤

10
−7. Table 1 shows the number of iterations for different

methods. As the programs were running, we found the
running time using the command Absolute Timing[] to
report the elapsedCPU time (in seconds) for this experiment.
Note that the initial guess has been constructed using 𝑉

0

=

diag(1/𝑎
11

, 1/𝑎
22

, . . . , 1/𝑎
𝑚𝑚

) in Example 7. The plot of the
approximate inverse obtained by applying (9) has been
portrayed in Figure 1(b). The reason which made (4) the
worsemethod is in the fact of computingmatrix power which
is time consuming for sparse matrices. In the tables of this
paper “No. of nonzero ele.” stands for the number of nonzero
elements.

In Algorithm 2, we provide the written Mathematica 8
code of the new scheme (9) in this example to clearly reveals
the simplicity of the new scheme in finding approximate
inverses using a threshold Chop[exp, 10−10].

Example 8. Let us consider a large sparse 10000 × 10000

matrix (with 18601 nonzero elements) as shown in
Algorithm 3.

Table 2 shows the number of iterations for differentmeth-
ods in order to reveal the efficiency of the proposed iteration
with a special attention to the elapsed time.Thematrix plot of
𝐴 in this case showing its structure alongside its approximate
inverse has been drawn in Figure 2, respectively. Note that

in Example 8, we have used an initial value constructed by
𝑉
0

= 𝐴
∗

/(‖𝐴‖
1

‖𝐴‖
∞

). The stopping criterion is same as the
previous example.

The new method (9) is totally better in terms of the
number of iterations and the computational time. In this
paper, the computer specifications are Microsoft Windows
XP Intel(R), Pentium(R) 4, CPU 3.20GHz, and 4GBof RAM.

Matrices used up to now are large and sparse enough
to clarify the applicability of the new scheme. Anyhow, for
some classes of problems, there are collections of matrices
that are used when proving new iterative linear system
solvers or new preconditioners, such as Matrix Market,
http://math.nist.gov/MatrixMarket/. In the following test we
compare the computational time of solving a practical prob-
lem using the above source.

Example 9. Consider the linear system of 𝐴𝑥 = 𝑏, in which
𝐴 is defined by A = Example Data [“Matrix”, “Bai/pde900”]
and the right hand side vector is b = Table [1., {i, 1, 900}]. In
Table 3, we compare the consuming time (in seconds) of solv-
ing this system by GMRES solver and its left preconditioned
system 𝑉

1

𝐴𝑥 = 𝑉
1

𝑏. In Table 3, for example, PGMRES-
(9) shows that the linear system 𝑉

1

𝐴𝑥 = 𝑉
1

𝑏, in which 𝑉
1

has been calculated by (9), is solved by GMRES solver. The
tolerance is the residual norm to be less than 10−14 in this test.
The results support fully the efficiency of the new scheme (9)
in constructing robust preconditioners.

Example 10. This experiment evaluates the applicability of the
newmethod for findingMoore-Penrose inverse of 20 random
sparse matrices (possessing sparse pseudo-inverses)𝑚 × 𝑘 =

1200 × 1500 as shown in Algorithm 4.

Note that the identity matrix should then be an
𝑚 × 𝑚 matrix and the approximate pseudoinverses
would be of the size 𝑘 × 𝑚. In this example, the initial
approximate Moore-Penrose inverse is constructed
by V
0

= ConjugateTranspose [A[j]] ∗ (1./((Singular

ValueList[A[j], 1] [[1]])2)) for each random test matrix.
And the stopping criterion is ||Vn+1 − Vn||1 ≤ 10

−8. We only
compared methods (1) denoted by “Schulz”, (3) denoted by
“KMS,” and the new iterative scheme (9) denoted by “PM.”
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m = 1200; k = 1500; number = 20;

Table[A[l] = SparseArray[{Band[{400, 1}, {m, k}] -> Random[] − I,

Band[{1, 200}, {m, k}] -> {1.1, -Random[]},

Band[{−95, 100}] -> −0.02, Band[{−100, 500}] -> 0.1},

{m, k}, 0.];, {l, number}];

Algorithm 4
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Figure 3:The results of comparisons for Example 10 in terms of the
number of iterations.

The results for the number of iterations and the running
time are compared in Figures 3-4. They show a clear advan-
tage of the new scheme in finding theMoore-Penrose inverse.

5. Conclusions

In this paper, we have developed an iterative method in
inverse finding of matrices, which has the capability to be
applied on real or complex matrices with preserving the
sparsity feature in matrix-by-matrix multiplications using a
threshold. This allows us to interestingly reduce the com-
putational time and usage memory in applying the new
iterative method. We have shown that the suggested method
(9) reaches ninth order of convergence. The extension of
the scheme for pseudoinverse has also been discussed in the
paper. The applicability of the new scheme was illustrated
numerically in Section 4.

Finally, according to the numerical results obtained and
the concrete application of such solvers, we can conclude that
the new method is efficient.

The new scheme (9) has been tested for matrix inversion.
However, we believe that such iterations could also be applied
for finding the inverse of an integer in modulo 𝑝

𝑛 [34].
Following this idea will, for sure, open a new topic of research
which is a combination of Numerical Analysis and Number
Theory. We will focus on this trend of research for future
studies.
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Figure 4:The results of comparisons for Example 10 in terms of the
elapsed time.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors thank the referees for their valuable comments
and for the suggestions to improve the readability of the
paper.

References

[1] R. B. Sidje and Y. Saad, “Rational approximation to the Fermi-
Dirac function with applications in density functional theory,”
Numerical Algorithms, vol. 56, no. 3, pp. 455–479, 2011.

[2] F. Soleymani and P. S. Stanimirović, “A higher order iterative
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[32] P. S. Stanimirović and F. Soleymani, “A class of numerical algo-
rithms for computing outer inverses,” Journal of Computational
and Applied Mathematics, vol. 263, pp. 236–245, 2014.

[33] S. Wolfram, The Mathematica Book, Wolfram Media, 5th edi-
tion, 2003.

[34] M. P. Knapp and C. Xenophontos, “Numerical analysis meets
number theory: using rootfindingmethods to calculate inverses
mod 𝑝𝑛,” Applicable Analysis and Discrete Mathematics, vol. 4,
no. 1, pp. 23–31, 2010.


