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A virus dynamics model with logistic function, general incidence function, and cure rate is considered. By carrying out
mathematical analysis, we show that the infection-free equilibrium is globally asymptotically stable if the basic reproductionnumber
R
0
≤ 1. IfR

0
> 1, then the infection equilibrium is globally asymptotically stable under some assumptions. Furthermore, we also

obtain the conditions for which the model exists an orbitally asymptotically stable periodic solution. Examples are provided to
support our analytical conclusions.

1. Introduction

Mathematical models have proven valuable in understanding
the virus dynamics. The basic viral infection model was
proposed by Nowak et al. [1, 2] in the following form:

𝑥̇ = 𝜆 − 𝑑𝑥 − 𝛽𝑥V,
̇𝑦 = 𝛽𝑥V − 𝑎𝑦,

V̇ = 𝑘𝑦 − 𝑢V,
(1)

where 𝑥, 𝑦, and V denote uninfected cells, infected cells,
and free virus particles, respectively. The uninfected cells are
produced at a constant 𝜆 and die at rate 𝑑𝑥. The infected cells
are produced from uninfected cells and free virus at rate 𝛽𝑥V
and die at rate 𝑎𝑦. Free virus is produced from infected cells
at rate 𝑘𝑦 and declines at rate 𝑢V.

The incidence function in model (1) is based on the law
of mass action. However, many researchers suggested that
the bilinear incidence function is not sufficient to describe
the infection process in detail, and some nonlinear incidence
functions were proposed. For example, Li and Ma [3] con-
sidered a HIV-1 model with Holling type II function. Min
et al. [4] considered a HBV model with standard incidence
function. Elaiw [5] considered a virus dynamics model with
a more general nonlinear incidence function, which satisfies
some conditions.

When HBV infects a cell, infected cells may also revert
to the uninfected state by loss of all covalently closed circular

DNA (cccDNA) from their nucleus [6]. Then HBV infection
has been modelled using the model including cytokine-
mediated “cure” of infected cells [7–9]. Wang et al. [10]
considered an improvedHBVmodel with standard incidence
function and cure rate. According to the virological basis
found in [11], when a HIV enters a resting CD4+ T-cell,
the viral RNA may not be completely reverse transcribed
into DNA. If the cell is activated shortly following infection,
reverse transcription can proceed to completion. However,
the unintegrated virus harbored in resting cells may decay
with time and partial DNA transcripts are labile and degrade
quickly [12]. Hence a proportion of resting infected cells can
revert to the uninfected state [13]. Recently, Zhou et al. [14]
considered a model of HIV infection of CD4+ T-cells with
bilinear incidence function and cure rate. Hattaf et al. [15]
considered a virus dynamics model with general incidence
function and cure rate. However, Tian and Liu [16] have
pointed out that the proof for the main results in [15] is
not corrected. They introduced a more general nonlinear
incidence function including the form in [15].

The population dynamics of target cells is not well under-
stood.Manymodels with logistic uninfected cell proliferation
terms have been introduced. For example, Culshaw and Ruan
[17] considered a delay-differential equation model of HIV
infection of CD4+ T-cells with logistic function term. Ji et al.
[18] considered a viral infectionmodel of HBV infection with
logistic function. Li and Shu [19] considered an in-hostmodel
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with a logistic mitosis term for the uninfected target cells and
a finite intracellular delay in the incidence term.

In this paper, we aim to study the following model with
logistic function, general incidence function, and cure rate:

𝑥̇ = 𝜆 − 𝑑𝑥 + 𝑟𝑥(1 −
𝑥

𝑥max
) − 𝑓 (𝑥, 𝑦, V) V + 𝜌𝑦,

̇𝑦 = 𝑓 (𝑥, 𝑦, V) V − (𝑎 + 𝜌) 𝑦,

V̇ = 𝑘𝑦 − 𝑢V,

(2)

with initial condition (𝑥(0), 𝑦(0), V(0)) ∈ R3
+
. Here 𝜆,𝑑,𝑎,𝑘,

and 𝑢 defined as earlier. 𝑟 is the maximum proliferation rate
of uninfected cells and𝑥max is themaximum capacity of host’s
organ cells. 𝑓(𝑥, 𝑦, V)V is the incidence of new infections. 𝜌 ≥

0 is the rate of cure, that is, noncytolytic loss of infected cells.
The function 𝑓(𝑥, 𝑦, V) satisfies the following conditions:

(i) 𝑓(0, 𝑦, V) = 0 for all 𝑦 ≥ 0 and V ≥ 0;
(ii) 𝜕𝑓(𝑥, 𝑦, V)/𝜕𝑥 > 0, for all 𝑥 > 0, 𝑦 ≥ 0, and V ≥ 0;
(iii) 𝜕𝑓(𝑥, 𝑦, V)/𝜕𝑦 ≤ 0 and 𝜕𝑓(𝑥, 𝑦, V)/𝜕V ≤ 0, for all 𝑥 ≥

0, 𝑦 ≥ 0, and V ≥ 0;
(iv) (𝜕𝑓(𝑥, 𝑦, V)/𝜕V)V + 𝑓(𝑥, 𝑦, V) > 0, for all 𝑥 > 0, 𝑦 ≥ 0,

and V ≥ 0.

Several models for viral dynamics fit model (2). For
example, Song and Neumann [20] considered a viral model
with 𝑓(𝑥, 𝑦, V) = 𝛽𝑥/(1 + 𝛼𝑥) and 𝜌 = 0, where 𝛽 is the
infection rate constant and 𝛼 is a positive constant. Ji et al.
[18] considered a viral infectionmodel of HBV infection with
𝑓(𝑥, 𝑦, V) = 𝛽𝑥 and 𝜌 = 0. Zhou et al. [14] considered amodel
of HIV infection of CD4+ T-cells with 𝑓(𝑥, 𝑦, V) = 𝛽𝑥.

The paper is organized as follows. In Section 2, we carry
out mathematical analysis of the model. In Section 3, the
local stability of equilibria is proved. In Section 4, the global
stability of the infection-free equilibrium or the infection
equilibrium is established, respectively.The conditions for the
existence of an orbitally asymptotically stable periodic solu-
tion are obtained. In Section 5, two examples are provided to
illustrate our theorems. The conclusion is given in Section 6.

2. Mathematical Analysis

First, we show that solution of system (2) is bounded.

Theorem 1. The solution of system (2) is positive and bounded.

Proof. Let

𝐿
1
(𝑡) = 𝑥 (𝑡) + 𝑦 (𝑡) . (3)

Computing the derivation of 𝐿
1
along the solution of system

(2), we have

𝐿̇
1
= 𝜆 − 𝑑𝑥 + 𝑟𝑥(1 −

𝑥

𝑥max
) − 𝑎𝑦,

= 𝜆 − 𝑑𝑥 −
𝑟

𝑥max
(𝑥 −

𝑥max
2

)

2

+
𝑟𝑥max
4

− 𝑎𝑦

≤ 𝜆 +
𝑟𝑥max
4

−min {𝑎, 𝑑} 𝐿
1
,

(4)

which implies that

𝐿
1
(𝑡) ≤

𝛿
1

𝛿
2

+ (𝐿 (0) − 𝛿
1
) 𝑒
−𝛿
2
𝑡
, (5)

where 𝛿
1
= 𝜆 + 𝑟𝑥max/4 and 𝛿

2
= min{𝑎, 𝑑}. Obviously, 𝑥(𝑡)

and 𝑦(𝑡) are bounded. From the third equation of system (2)
and the boundedness of 𝑦(𝑡), it is easy to see that V(𝑡) is also
bounded. This completes the proof.

It can then be verified that the bounded set

Ω = {(𝑥, 𝑦, V) ∈ R
3

+
: 0 < 𝑥 + 𝑦 ≤

𝛿
1

𝛿
2

, 0 < V ≤
𝑘𝛿
1

𝑢𝛿
2

} (6)

is positively invariantwith respect to system (2) and is convex.
Following the computation of the basic reproduction

number in [21], we have the basic reproduction number

R
0
=
𝑘𝑓 (𝑥
0
, 0, 0)

𝑢 (𝑎 + 𝜌)
. (7)

For mathematical convenience, let

𝑛 (𝑥) = 𝜆 − 𝑑𝑥 + 𝑟𝑥(1 −
𝑥

𝑥max
) , (8)

and 𝑥
0
is the positive root of 𝑛(𝑥) = 0. It is clear that 𝑛󸀠(𝑥

0
) <

0 and system (2) has an infection-free equilibrium𝐸
0
(𝑥
0
, 0, 0)

whenR
0
≤ 1.

Theorem 2. If R
0

> 1 and 𝑑 − 𝑟 + 2𝑟𝑥/𝑥max > 0 for
arbitrary𝑥 ≥ 0, then there exists a unique infection equilibrium
𝐸
∗
(𝑥
∗
, 𝑦
∗
, V
∗
).

Proof. In order to find the infection equilibrium, set

𝑛 (𝑥) − 𝑓 (𝑥, 𝑦, V) V + 𝜌𝑦 = 0,

𝑓 (𝑥, 𝑦, V) V − (𝑎 + 𝜌) 𝑦 = 0,

𝑘𝑦 − 𝑢V = 0,

(9)

which yields

𝑛 (𝑥) = 𝑎𝑦 =
𝑎𝑢

𝑘
V. (10)

Substituting the expression of 𝑦 and V by 𝑥, we have

𝐺 (𝑥) = 𝑓(𝑥,
𝑛 (𝑥)

𝑎
,
𝑘𝑛 (𝑥)

𝑎𝑢
) −

𝑢 (𝑎 + 𝜌)

𝑘
. (11)

It is obvious that 𝐺(0) = −𝑢(𝑎 + 𝜌)/𝑘 < 0 and

𝐺 (𝑥
0
) = 𝑓 (𝑥

0
, 0, 0) −

𝑢 (𝑎 + 𝜌)

𝑘

=
𝑢 (𝑎 + 𝜌)

𝑘
(R
0
− 1) > 0.

(12)

This implies that there exists 𝑥
∗
∈ (0, 𝑥

0
) such that 𝐺(𝑥

∗
) =

0. Suppose, to the contrary, there exists another infection
equilibrium 𝐸

∗
(𝑥
∗
, 𝑦
∗
, V∗). Without loss of generality, we

assume that 𝑥
∗
< 𝑥
∗. Since 𝑑 − 𝑟 + 2𝑟𝑥/𝑥max > 0, we have

𝑛(𝑥
∗
) > 𝑛(𝑥

∗
). This yields 𝑦

∗
> 𝑦
∗ and V

∗
> V∗. Hence,

we get 𝑓(𝑥
∗
, 𝑦
∗
, V
∗
) < 𝑓(𝑥

∗
, 𝑦
∗
, V∗). On the other hand,

we have that 𝑓(𝑥
∗
, 𝑦
∗
, V
∗
) = 𝑓(𝑥

∗
, 𝑦
∗
, V∗) = 𝑢(𝑎 + 𝜌)/𝑘.

This is a contradiction. Therefore, 𝐸
∗
is the unique infection

equilibrium.
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3. Local Stability of Equilibria

In this section, we discuss the local stability of the infection-
free equilibrium 𝐸

0
and the infection equilibrium 𝐸

∗
of

system (2), respectively.

Theorem 3. If R
0
≤ 1, then the infection-free equilibrium

𝐸
0
is locally asymptotically stable and becomes unstable when

R
0
> 1.

Proof. The Jacobian matrix of system (2) at 𝐸
0
is

𝐽 (𝐸
0
) = (

𝑛
󸀠
(𝑥
0
) 𝜌 −𝑓 (𝑥

0
, 0, 0)

0 − (𝑎 + 𝜌) 𝑓 (𝑥
0
, 0, 0)

0 𝑘 −𝑢

) . (13)

One eigenvalue of 𝐽(𝐸
0
) is 𝜆
1
= 𝑛
󸀠
(𝑥
0
) < 0. The remaining

two eigenvalues are solutions of the quadratic equation

𝜆
2
+ (𝑎 + 𝑢 + 𝜌) 𝜆 + 𝑢 (𝑎 + 𝜌) (1 −R

0
) = 0. (14)

By the Routh-Hurwitz theorem, 𝐸
0
is locally asymptotically

stable when R
0
≤ 1. When R

0
> 1, 𝐽(𝐸

0
) has a positive

eigenvalue and 𝐸
0
is unstable.

Theorem 4. IfR
0
> 1 and 𝑑 − 𝑟 + 2𝑟𝑥/𝑥max > 0 for arbitrary

𝑥 ≥ 0, then the unique endemic equilibrium 𝐸
∗
is locally

asymptotically stable.

Proof. The Jacobian matrix of system (2) at 𝐸
∗
is

𝐽 (𝐸
∗
) = (

(

𝑛
󸀠
(𝑥
∗
) −

𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕𝑥
V
∗

−
𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕𝑦
V
∗
+ 𝜌 −

𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕V
V
∗
− 𝑓 (𝑥

∗
, 𝑦
∗
, V
∗
)

𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕𝑥
V
∗

𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕𝑦
V
∗
− (𝑎 + 𝜌)

𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕V
V
∗
+ 𝑓 (𝑥

∗
, 𝑦
∗
, V
∗
)

0 𝑘 −𝑢

)

)

. (15)

The characteristic equation of 𝐽(𝐸
∗
) can be written as

𝜆
3
+ 𝑎
1
𝜆
2
+ 𝑎
2
𝜆 + 𝑎
3
= 0, (16)

with

𝑎
1
= 𝑎 + 𝜌 + 𝑢 − 𝑛

󸀠
(𝑥
∗
)

+
𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕𝑥
V
∗
−
𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕𝑦
V
∗
,

𝑎
2
= (𝑎 + 𝑢)

𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕𝑥
V
∗

− 𝑛
󸀠
(𝑥
∗
) (𝑎 + 𝜌 + 𝑢 −

𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕𝑦
V
∗
)

− 𝑘
𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕V
V
∗
− 𝑢

𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕𝑦
V
∗
,

𝑎
3
= 𝑎𝑢

𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕𝑥
V
∗
+ 𝑢𝑛
󸀠
(𝑥
∗
)
𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕𝑦
V
∗

+ 𝑘𝑛
󸀠
(𝑥
∗
)
𝜕𝑓 (𝑥
∗
, 𝑦
∗
, V
∗
)

𝜕V
V
∗
.

(17)

Since 𝑑 − 𝑟 + 2𝑟𝑥/𝑥max > 0, we have 𝑛󸀠(𝑥
∗
) < 0. Therefore,

𝑎
1
> 0, 𝑎

2
> 0, 𝑎

3
> 0. (18)

By direct calculation, we have 𝑎
1
𝑎
2
− 𝑎
3
> 0. Then the Routh-

Hurwitz theorem implies that the infection equilibrium 𝐸
∗
is

locally asymptotically stable.

4. Global Stability of Equilibria

In this section, we study the global stability of the infection-
free equilibrium 𝐸

0
and the infection equilibrium 𝐸

∗
of

system (2), respectively.

Theorem 5. IfR
0
≤ 1, then the infection-free equilibrium 𝐸

0

is globally asymptotically stable.

Proof. Consider a Lyapunov function

𝐿
2
(𝑦, V) = 𝑦 +

𝑎 + 𝜌

𝑘
V. (19)

Calculating the time derivative of 𝐿
2
(𝑦, V) along solutions of

system (2), we obtain

𝐿̇
2
(𝑦, V) = (𝑓 (𝑥, 𝑦, V) −

𝑢 (𝑎 + 𝜌)

𝑘
) V

≤ (𝑓 (𝑥
0
, 0, 0) −

𝑢 (𝑎 + 𝜌)

𝑘
) V

=
𝑢 (𝑎 + 𝜌)

𝑘
(R
0
− 1) V.

(20)

If R
0
< 1, from Corollary 5.2 of Kuang [22], 𝐸

0
is globally

asymptotically stable. Also, for R
0
= 1, 𝐿̇

2
(𝑦, V) = 0 implies

that 𝑥(𝑡) = 𝑥
0
. It is easy to show that the largest invariant

set where 𝐿̇
2
(𝑦, V) = 0 is the singleton {𝐸

0
}. By the LaSalle

invariance principle, 𝐸
0
is globally asymptotically stable.

Next, we prove that the infection equilibrium 𝐸
∗
is glob-

ally asymptotically stable. We need the following theorem.

Theorem 6. IfR
0
> 1, then system (2) is uniformly persistent.

Proof. The result follows from an application of Theorem 4.6
in [23], with 𝑋

1
= int(R3

+
) and 𝑋

2
= 𝜕R3
+
. We only need to

prove that 𝐸
0
is a weak repeller for𝑋

1
.
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Suppose that there exists a solution (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) such
that (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) → 𝐸

0
. When 𝑡 is sufficiently large, we

have

𝑥
0
− 𝜀 < 𝑥 < 𝑥

0
+ 𝜀, (21)

where 𝜀 is an arbitrarily small positive constant satisfying 0 <

𝜀 < 𝑥
0
. Then,

̇𝑦 ≥ 𝑓 (𝑥
0
− 𝜀, 𝑦, V) V − (𝑎 + 𝜌) 𝑦. (22)

Consider the following auxiliary system:

𝑢̇
1
= 𝑓 (𝑥

0
− 𝜀, 𝑢
1
, 𝑢
2
) 𝑢
2
− (𝑎 + 𝜌) 𝑢

1

𝑢̇
2
= 𝑘𝑢
1
− 𝑢𝑢
2
.

(23)

System (23) always has a trivial equilibrium (0, 0). SinceR
0
>

1 and continuously differentiable of the function 𝑓(𝑥, 𝑦, V),
we have

R
𝜀

0
:=

𝑘𝑓 (𝑥
0
− 𝜀, 0, 0)

𝑢 (𝑎 + 𝜌)
> 1, (24)

for some 𝜀 > 0 sufficiently small. By calculation, system (23)
has a unique positive equilibrium (𝑢

∗

1
, 𝑢
∗

2
), where 𝑢∗

1
satisfies

the root equation

𝑓(𝑥
0
− 𝜀, 𝑢
1
,
𝑘𝑢
1

𝑢
) −

𝑢 (𝑎 + 𝜌)

𝑘
= 0. (25)

The Jacobian matrix of system (23) at (𝑢∗
1
, 𝑢
∗

2
) is

𝐽
(𝑢
∗

1
,𝑢
∗

2
)
= (

𝜕𝑓 (𝑥
0
− 𝜀, 𝑢
∗

1
, 𝑢
∗

2
)

𝜕𝑢
1

𝑢
∗

2
− (𝑎 + 𝜌)

𝜕𝑓 (𝑥
0
− 𝜀, 𝑢
∗

1
, 𝑢
∗

2
)

𝜕𝑢
2

𝑢
∗

2
+ 𝑓 (𝑥

0
− 𝜀, 𝑢
∗

1
, 𝑢
∗

2
)

𝑘 −𝑢

) . (26)

The eigenvalues 𝜆
1
and 𝜆

2
of 𝐽
(𝑢
∗

1
,𝑢
∗

2
)
satisfy

𝜆
1
+ 𝜆
2
=
𝜕𝑓 (𝑥
0
− 𝜀, 𝑢
∗

1
, 𝑢
∗

2
)

𝜕𝑢
1

𝑢
∗

2
− (𝑎 + 𝜌 + 𝑢) ,

𝜆
1
𝜆
2
= − 𝑢

𝜕𝑓 (𝑥
0
− 𝜀, 𝑢
∗

1
, 𝑢
∗

2
)

𝜕𝑢
1

𝑢
∗

2

− 𝑘
𝜕𝑓 (𝑥
0
− 𝜀, 𝑢
∗

1
, 𝑢
∗

2
)

𝜕𝑢
2

𝑢
∗

2
.

(27)

We get 𝜆
1
+ 𝜆
2
< 0 and 𝜆

1
𝜆
2
> 0. Hence, (𝑢∗

1
, 𝑢
∗

2
) is locally

asymptotically stable whenR
0
> 1.

Denote the right-hand sides of system (23) by 𝐵
1
and 𝐵

2
,

respectively. We have

𝜕𝐵
1

𝜕𝑢
1

+
𝜕𝐵
2

𝜕𝑢
2

=
𝜕𝑓 (𝑥
0
− 𝜀, 𝑢
∗

1
, 𝑢
∗

2
)

𝜕𝑢
1

𝑢
∗

2

− (𝑎 + 𝜌 + 𝑢) < 0.

(28)

Therefore, (𝑢∗
1
, 𝑢
∗

2
) is globally asymptotically stable by the

Bendixson criterion for two-dimensional ordinary differen-
tial equations. By the comparison theorem, we have that
𝑦(𝑡) ≥ 𝑢

∗

1
as 𝑡 → ∞ for system (23). This is a contradiction

to 𝑦(𝑡) → 0. Hence, 𝐸
0
is a weak repeller for𝑋

1
.

By looking at the Jacobian matrix of system (2) and
choosing the matrix𝐻 as

(

1 0 0

0 −1 0

0 0 1

) , (29)

system (2) is competitive in Ω, with respect to the partial
order defined by the orthant𝐾 = {(𝑥, 𝑦, V) ∈ R3 : 𝑥 ≥ 0, 𝑦 ≤

0, V ≥ 0}.
Theorem 7. Suppose R

0
> 1 and 𝑑 − 𝑟 + 2𝑟𝑥/𝑥max > 0 for

arbitrary 𝑥 ≥ 0; then the infection equilibrium 𝐸
∗
of system (2)

is globally asymptotically stable.

Proof. Let 𝑃(𝑡) = (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) be a periodic solution
whose orbit is contained in int(R3

+
). The second compound

equation is the following periodic linear system:

𝑍
󸀠
(𝑡) =

𝜕𝑓
[2]

𝜕𝑥
(𝑃 (𝑡)) 𝑍 (𝑡) , (30)

where 𝑍 = (𝑍
1
, 𝑍
2
, 𝑍
3
)
𝑇 and 𝜕𝑓

[2]
/𝜕𝑥 is the second additive

compound matrix of the Jacobian matrix of system (2).
The Jacobian matrix of system (2) is

𝐽 = (

𝑛
󸀠
(𝑥) − 𝑚

1
−𝑚
2
+ 𝜌 −𝑚

3

𝑚
1

𝑚
2
− (𝑎 + 𝜌) 𝑚

3

0 𝑘 −𝑢

) , (31)

and its second additive compound matrix is

𝐽
[2]

= (

𝑛
󸀠
(𝑥) − 𝑚

1
+ 𝑚
2
− (𝑎 + 𝜌) 𝑚

3
𝑚
3

𝑘 𝑛
󸀠
(𝑥) − 𝑚

1
− 𝑢 −𝑚

2
+ 𝜌

0 𝑚
1

𝑚
2
− (𝑎 + 𝜌 + 𝑢)

) , (32)
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where

𝑚
1
=
𝜕𝑓 (𝑥, 𝑦, V)

𝜕𝑥
V, 𝑚

2
=
𝜕𝑓 (𝑥, 𝑦, V)

𝜕𝑦
V,

𝑚
3
=
𝜕𝑓 (𝑥, 𝑦, V)

𝜕V
V + 𝑓 (𝑥, 𝑦, V) .

(33)

For the solution 𝑃(𝑡), system (30) becomes

𝑍̇
1
= (𝑛
󸀠
(𝑥) − 𝑚

1
+ 𝑚
2
− (𝑎 + 𝜌))

× 𝑍
1
+ 𝑚
3
(𝑍
2
+ 𝑍
3
) ,

𝑍̇
2
= 𝑘𝑍
1
+ (𝑛
󸀠
(𝑥) − 𝑚

1
− 𝑢)𝑍

2
+ (𝜌 − 𝑚

2
) 𝑍
3
,

𝑍̇
3
= 𝑚
1
𝑍
2
+ (𝑚
2
− (𝑎 + 𝜌 + 𝑢))𝑍

3
.

(34)

Now, define the function

𝑉 (𝑡) = 𝑉 (𝑍
1
, 𝑍
2
, 𝑍
3
; 𝑥, 𝑦, V)

= sup {󵄨󵄨󵄨󵄨𝑍1
󵄨󵄨󵄨󵄨
,
𝑦

V
(
󵄨󵄨󵄨󵄨
𝑍
2

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑍
3

󵄨󵄨󵄨󵄨
)} ,

(35)

which is a Lyapunov function for system (30). Then, we have
󵄨󵄨󵄨󵄨󵄨
𝑍̇
1

󵄨󵄨󵄨󵄨󵄨
≤ (𝑛
󸀠
(𝑥) − 𝑚

1
+ 𝑚
2
− (𝑎 + 𝜌))

󵄨󵄨󵄨󵄨
𝑍
1

󵄨󵄨󵄨󵄨

+ 𝑚
3
(
󵄨󵄨󵄨󵄨
𝑍
2

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑍
3

󵄨󵄨󵄨󵄨
) ,

󵄨󵄨󵄨󵄨󵄨
𝑍̇
2

󵄨󵄨󵄨󵄨󵄨
≤ 𝑘

󵄨󵄨󵄨󵄨
𝑍
1

󵄨󵄨󵄨󵄨
+ (𝑛
󸀠
(𝑥) − 𝑚

1
− 𝑢)

󵄨󵄨󵄨󵄨
𝑍
2

󵄨󵄨󵄨󵄨
+ (𝜌 − 𝑚

2
)
󵄨󵄨󵄨󵄨
𝑍
3

󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
𝑍̇
3

󵄨󵄨󵄨󵄨󵄨
≤ 𝑚
1

󵄨󵄨󵄨󵄨
𝑍
2

󵄨󵄨󵄨󵄨
+ (𝑚
2
− (𝑎 + 𝜌 + 𝑢))

󵄨󵄨󵄨󵄨
𝑍
3

󵄨󵄨󵄨󵄨
.

(36)

From system (36), we have

𝐷
+

𝑦

V
(
󵄨󵄨󵄨󵄨
𝑍
2

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑍
3

󵄨󵄨󵄨󵄨
)

=
𝑦

V
(

̇𝑦

𝑦
−
V̇
V
) (

󵄨󵄨󵄨󵄨
𝑍
2

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑍
3

󵄨󵄨󵄨󵄨
) +

𝑦

V
𝐷
+
(
󵄨󵄨󵄨󵄨
𝑍
2

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑍
3

󵄨󵄨󵄨󵄨
)

≤
𝑦

V
(

̇𝑦

𝑦
−
V̇
V
) (

󵄨󵄨󵄨󵄨
𝑍
2

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑍
3

󵄨󵄨󵄨󵄨
) +

𝑘𝑦

V
󵄨󵄨󵄨󵄨
𝑍
1

󵄨󵄨󵄨󵄨

−
𝑦

V
((𝑢 − 𝑛

󸀠
(𝑥))

󵄨󵄨󵄨󵄨
𝑍
2

󵄨󵄨󵄨󵄨
+ (𝑎 + 𝑢)

󵄨󵄨󵄨󵄨
𝑍
3

󵄨󵄨󵄨󵄨
)

≤
𝑘𝑦

V
󵄨󵄨󵄨󵄨
𝑍
1

󵄨󵄨󵄨󵄨
+
𝑦

V
(

̇𝑦

𝑦
−
V̇
V
− 𝜂 − 𝑢) (

󵄨󵄨󵄨󵄨
𝑍
2

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑍
3

󵄨󵄨󵄨󵄨
) ,

(37)

where 0 < 𝛼
∗

= −max
𝑥∈[0,𝑥

0
]
𝑛
󸀠
(𝑥) and 𝜂 = min{𝛼∗, 𝑎}.

Therefore,

𝐷
+
𝑉 (𝑡) ≤ sup {𝑔

1
(𝑡) , 𝑔
2
(𝑡)} 𝑉 (𝑡) , (38)

where

𝑔
1
(𝑡) = 𝑛

󸀠
(𝑥) − 𝑚

1
+ 𝑚
2
− (𝑎 + 𝜌) + 𝑚

3

V
𝑦
,

𝑔
2
(𝑡) =

𝑘𝑦

V
+ (

̇𝑦

𝑦
−
V̇
V
− 𝜂 − 𝑢) .

(39)

From the second and third equations of system (2), we have

̇𝑦

𝑦
=
𝑓 (𝑥, 𝑦, V) V

𝑦
− (𝑎 + 𝜌) ,

V̇
V
=
𝑘𝑦

V
− 𝑢.

(40)

Hence,

𝑔
1
(𝑡) = 𝑛

󸀠
(𝑥) − 𝑚

1
+ 𝑚
2
− (𝑎 + 𝜌) + 𝑚

3

V
𝑦

=
̇𝑦

𝑦
+ 𝑛
󸀠
(𝑥) − 𝑚

1
+ 𝑚
2
+
V
𝑦

𝜕𝑓 (𝑥, 𝑦, V)
𝜕V

V

≤
̇𝑦

𝑦
− (−𝑛

󸀠
(𝑥))

≤
̇𝑦

𝑦
− 𝛼
∗
,

𝑔
2
(𝑡) =

𝑘𝑦

V
+ (

̇𝑦

𝑦
−
V̇
V
− 𝜂 − 𝑢) =

̇𝑦

𝑦
− 𝜂.

(41)

Therefore,

sup {𝑔
1
(𝑡) , 𝑔
2
(𝑡)} ≤

̇𝑦

𝑦
− 𝜂. (42)

We have

∫

𝜔

0

sup {𝑔
1
(𝑡) , 𝑔
2
(𝑡)} 𝑑𝑡 ≤ log𝑦 (𝑡)󵄨󵄨󵄨󵄨

𝜔

0
− 𝜂𝜔

= −𝜂𝜔 < 0,

(43)

which implies that 𝑉(𝑡) → 0 as 𝑡 → ∞. This means that
(𝑍
1
(𝑡), 𝑍
2
(𝑡), 𝑍
3
(𝑡)) → (0, 0, 0) as 𝑡 → ∞, so the linear

system (34) is asymptotically stable and the periodic solution
is asymptotically orbitally stable.

According to Theorem 4.1 in [24], system (2) satisfies the
Poincare-Bendixson property. Using Theorem 1, Theorems 4
and 6, we have that all conditions of Theorem 2.2 in [25] are
satisfied for system (2). This completes the proof.

If the condition 𝑑 − 𝑟 + 2𝑟𝑥/𝑥max > 0 inTheorem 4 could
not be satisfied, there would exist an orbitally asymptotically
stable periodic solution. We have the following theorem.

Theorem 8. Suppose R
0
> 1 and 𝑎

1
𝑎
2
< 𝑎
3
; then system (2)

has an orbitally asymptotically stable periodic solution.

Proof. The nonlinearities in system (2) are analytic in Ω.
We obtain that the conclusion follows from Theorem 1.2 in
[26]. Take the domain for system (2) to be the interior of
the positive orthant, in which the only steady state is 𝐸

∗
. If

R
0
> 1 and 𝑎

1
𝑎
2
< 𝑎
3
, then 𝐸

∗
is unstable. The dissipativity

hypothesis of Theorem 1.2 in [26] follows from Theorems 1
and 6. System (2) is competitive in Ω and |𝐽

𝐸
∗

| = −𝑎
3
< 0.

Hence, all conditions ofTheorem 1.2 in [26] are satisfied.This
completes the proof.

5. Examples

In this section, we give two examples to show the application
of our theorems.
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Example 1. Consider the following system:

𝑥̇ = 𝜆 − 𝑑𝑥 + 𝑟𝑥(1 −
𝑥

𝑥max
) −

𝛽𝑥V
𝑥 + 𝑦

,

̇𝑦 =
𝛽𝑥V
𝑥 + 𝑦

− 𝑎𝑦,

V̇ = 𝑘𝑦 − 𝑢V,

(44)

which is a special case of system (2) by letting 𝑓(𝑥, 𝑦, V) =

𝛽𝑥/(𝑥 + 𝑦) and 𝜌 = 0. This model has been investigated by
Ji et al. [18]. ApplyingTheorem 5, Theorems 7 and 8, we have
the following result.

Theorem 9.

(i) If R
0
≤ 1, then the infection-free equilibrium 𝐸

0
(𝑥
0
,

0, 0) of system (44) is globally asymptotically stable.
(ii) If R

0
> 1 and 𝑟 ≤ 𝑑, then the unique infection

equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
, V
∗
) of system (44) is globally

asymptotically stable.
(iii) If R

0
> 1 and 𝑎

1
𝑎
2
< 𝑎
3
, then system (44) exists an

orbitally asymptotically stable periodic solution.

Example 2. Consider the following system:

𝑥̇ = 𝜆 − 𝑑𝑥 + 𝑟𝑥(1 −
𝑥

𝑥max
) − 𝛽𝑥V + 𝜌𝑦,

̇𝑦 = 𝛽𝑥V − (𝑎 + 𝜌) 𝑦,

V̇ = 𝑘𝑦 − 𝑢V,

(45)

which is a special case of system (2) by letting 𝑓(𝑥, 𝑦, V) =

𝛽𝑥. This model has been studied by Zhou et al. [14]. By
Theorem 5, Theorem 7, and Theorem 8, we get the following
result.

Theorem 10.

(i) If R
0

≤ 1, then the infection-free equili-
brium 𝐸

0
(𝑥
0
, 0, 0) of system (45) is globally asym-

ptotically stable.
(ii) IfR

0
> 1 and 𝑑−𝑟+2𝑟𝑥/𝑥max > 0 for arbitrary 𝑥 ≥ 0,

then the unique infection equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
, V
∗
) of

system (45) is globally asymptotically stable.
(iii) If R

0
> 1 and 𝑎

1
𝑎
2
< 𝑎
3
, then system (45) exists an

orbitally asymptotically stable periodic solution.

6. Conclusion

In this paper, we have considered a virus dynamics model
with logistic function, general incidence function, and cure
rate. The basic reproduction number is obtained and it
determines the global dynamics of this model. If R

0
≤ 1,

then the infection-free equilibrium is globally asymptotically
stable. If R

0
> 1, then the virus persists in the host,

and solutions approach either an infection equilibrium or
a periodic orbit. Our model is a generalization of several
models that appeared in the literature as its special cases.
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